Antibody-Integrated Solid-to-Gel Microfilm for Protection Against Botulinum Neurotoxin Type A
Abstract
1. Introduction
2. Results and Discussion
2.1. Research Concept
2.2. Antibody Uniform Jet Process and Solidification
2.3. Basic Characteristic and Dissolution Performance of Anti-BoNT/A Antibody-Integrated Solid-to-Gel Microfilm
2.4. In Vivo Application and Local Skin Response
2.5. Pharmacokinetics and Protective Efficacy
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Fabrication Process
4.3. Surface and Compositional Analysis
4.4. Dissolution Assays
4.5. Ethical Approval and Animal Experiments
4.6. Pharmacokinetics Study
4.7. BoNT/A Challenge Test
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shukla, M.; Chandley, P.; Rohatgi, S. The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines 2021, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Mei, S.; Yang, Y.; Shen, Y.; Chen, L. Strategies to Mitigate the On- and off-Target Toxicities of Recombinant Immunotoxins: An Antibody Engineering Perspective. Antib. Ther. 2022, 5, 164–175. [Google Scholar] [CrossRef]
- Maynard, J.A.; Maassen, C.B.M.; Leppla, S.H.; Brasky, K.; Patterson, J.L.; Iverson, B.L.; Georgiou, G. Protection against Anthrax Toxin by Recombinant Antibody Fragments Correlates with Antigen Affinity. Nat. Biotechnol. 2002, 20, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.E.; Song, E.; Moriyama, M.; Wong, P.; Zhang, S.; Jiang, R.; Strohmeier, S.; Kleinstein, S.H.; Krammer, F.; Iwasaki, A. Intranasal Priming Induces Local Lung-Resident B Cell Populations That Secrete Protective Mucosal Antiviral IgA. Sci. Immunol. 2025, 6, eabj5129. [Google Scholar] [CrossRef]
- Solier, C.; Langen, H. Antibody-Based Proteomics and Biomarker Research-Current Status and Limitations. Proteomics 2014, 14, 774–783. [Google Scholar] [CrossRef]
- Davletov, B.; Bajohrs, M.; Binz, T. Beyond BOTOX: Advantages and Limitations of Individual Botulinum Neurotoxins. Trends Neurosci. 2005, 28, 446–452. [Google Scholar] [CrossRef]
- Tighe, A.P.; Schiavo, G. Botulinum Neurotoxins: Mechanism of Action. Toxicon 2013, 67, 87–93. [Google Scholar] [CrossRef]
- Brin, M.F.; Nelson, M.; Ashourian, N.; Brideau-Andersen, A.; Maltman, J. Update on Non-Interchangeability of Botulinum Neurotoxin Products. Toxins 2024, 16, 266. [Google Scholar] [CrossRef]
- Monash, A.; Tam, J.; Rosen, O.; Soreq, H. Botulinum Neurotoxins: History, Mechanism, and Applications. A Narrative Review. J. Neurochem. 2025, 169, e70187. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Palea, S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins 2024, 16, 261. [Google Scholar] [CrossRef]
- Dover, N.; Barash, J.R.; Hill, K.K.; Xie, G.; Arnon, S.S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 2014, 209, 192–202. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef]
- Yu, C.H.; Song, Y.J.; Song, D.H.; Joe, H.E.; Kim, C.H.; Yun, H.; Kim, N.Y.; Sim, E.; Jeong, S.T.; Hur, G.H. An Effective Prophylactic and Therapeutic Protection Against Botulinum Type A Intoxication in Mice and Rabbits Using a Humanized Monoclonal Antibody. Toxins 2025, 17, 138. [Google Scholar] [CrossRef]
- Luo, Y.; Kirker, K.R.; Prestwich, G.D. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery. J. Control. Release 2000, 69, 169–184. [Google Scholar] [CrossRef]
- Mamaligka, A.M.; Dodou, K. Studies on loading salicylic acid in xerogel films of hyaluronic acid/polyallylamine. Gels 2024, 10, 54. [Google Scholar] [CrossRef]
- Rotaru-Zavaleanu, A.D.; Bica, M.; Dinescu, S.N.; Ruscu, M.A.; Vasile, R.C.; Zavate, A.C.; Dinescu, V.C. Bioactive Hydrogels for Spinal Cord Injury Repair: Emphasis on Gelatin and Its Derivatives. Gels 2025, 11, 497. [Google Scholar] [CrossRef]
- Boonpetcharat, N.M.; Thu Kyaw, M.T.; Boonkanokwong, V.; Luckanagul, J.A. Development of a Curcumin-Loaded Hyaluronic Acid Nanogel Formulation Using Wet Granulation Method for Enhanced Dissolution and Stability. Gels 2025, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.H.; Kim, J.Y.; Kim, D.; Ahn, J.; Jeong, Y.; Ko, J.; Hwang, S.; Jeon, S.; Jung, Y.; Gu, J.; et al. Multifunctional Micro/Nanofiber Based-Dressing Patch with Healing, Protection, and Monitoring Capabilities for Advanced Wound Care. Adv. Mater. Technol. 2023, 8, 2201765. [Google Scholar] [CrossRef]
- Chang, W.T.; Chen, L.R.; Chen, K.H. The Bioengineering Application of Hyaluronic Acid in Tissue Regeneration and Repair. Int. J. Biol. Macromol. 2024, 270, 132454. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, C.; Leggeri, A.; Cammarota, I.; Carosi, P.; Mazzetti, V.; Arcuri, C. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent. J. 2024, 12, 263. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Raghuram, G.K.S.; Bansal, L.; Basu, S.; Kumar, A. Suppression of Coffee Ring Effect in High Molecular Weight Polyacrylamide Droplets Evaporating on Hydrophobic Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126002. [Google Scholar] [CrossRef]
- Kimura, H. Influence of Sol–Gel State in Smectite Aqueous Dispersions on Drying Patterns of Droplets. Materials 2024, 17, 2891. [Google Scholar] [CrossRef]
- Kim, S.H.; Huh, Y.; Park, B.S.; Jung, K.I.; Won, Y.Y.; Bang, J.; Jung, H.W. Tunable Coffee-Ring Patterns of Sessile Suspension Droplets through Silica Particle Encapsulation with Thermo-Responsive Block Copolymers. Chem. Eng. J. 2024, 494, 152929. [Google Scholar] [CrossRef]
- Ita, K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed. Pharmacother. 2017, 93, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.T.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012, 22, 4879–4890. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.; Tam, C.; Askounis, A.; Qi, S. Suppression of the Coffee-Ring Effect by Tailoring the Viscosity of Pharmaceutical Sessile Drops. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126144. [Google Scholar] [CrossRef]
- Pröhl, A.; Batinic, M.; Alkildani, S.; Hahn, M.; Radenkovic, M.; Najman, S.; Jung, O.; Barbeck, M. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Int. J. Mol. Sci. 2021, 22, 4818. [Google Scholar] [CrossRef]
- Thanh, T.N.; Laowattanatham, N.; Ratanavaraporn, J.; Sereemaspun, A.; Yodmuang, S. Hyaluronic Acid Crosslinked with Alginate Hydrogel: A Versatile and Biocompatible Bioink Platform for Tissue Engineering. Eur. Polym. J. 2022, 166, 111027. [Google Scholar] [CrossRef]
- Lee, J.H.; Rim, Y.S.; Min, W.K.; Park, K.; Kim, H.T.; Hwang, G.; Song, J.; Kim, H.J. Biocompatible and Biodegradable Neuromorphic Device Based on Hyaluronic Acid for Implantable Bioelectronics. Adv. Funct. Mater. 2021, 31, 2107074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, J.-H.; Jeon, S.; Lee, Y.-W.; Hwang, S.H.; Kang, B.-H.; Song, Y.J.; Lim, J.-S.; Kim, H.; Yoon, Y.; Jeong, J.-H. Antibody-Integrated Solid-to-Gel Microfilm for Protection Against Botulinum Neurotoxin Type A. Gels 2025, 11, 777. https://doi.org/10.3390/gels11100777
Ha J-H, Jeon S, Lee Y-W, Hwang SH, Kang B-H, Song YJ, Lim J-S, Kim H, Yoon Y, Jeong J-H. Antibody-Integrated Solid-to-Gel Microfilm for Protection Against Botulinum Neurotoxin Type A. Gels. 2025; 11(10):777. https://doi.org/10.3390/gels11100777
Chicago/Turabian StyleHa, Ji-Hwan, Sohee Jeon, Yun-Woo Lee, Soon Hyoung Hwang, Byung-Ho Kang, Young Jo Song, Ji-Su Lim, Hyunbeen Kim, Yoosik Yoon, and Jun-Ho Jeong. 2025. "Antibody-Integrated Solid-to-Gel Microfilm for Protection Against Botulinum Neurotoxin Type A" Gels 11, no. 10: 777. https://doi.org/10.3390/gels11100777
APA StyleHa, J.-H., Jeon, S., Lee, Y.-W., Hwang, S. H., Kang, B.-H., Song, Y. J., Lim, J.-S., Kim, H., Yoon, Y., & Jeong, J.-H. (2025). Antibody-Integrated Solid-to-Gel Microfilm for Protection Against Botulinum Neurotoxin Type A. Gels, 11(10), 777. https://doi.org/10.3390/gels11100777