Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRF Analysis
2.2. DRIFT Analysis
2.3. XRD Analysis
2.4. FESEM/EDS
2.5. TEM Analysis
2.6. Radiological Characterization of AAMs
3. Conclusions
4. Materials and Methods
4.1. Preparation of Samples
4.2. Method of Characterizations
4.2.1. XRF Analysis
4.2.2. DRIFT Analysis
4.2.3. XRD Analysis
4.2.4. FESEM-EDS Analysis
4.2.5. TEM Analysis
4.2.6. Radiological Characterizations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OTran Thi, K.D.; Liao, M.C.; Vo, D.H. The characteristics of alkali-activated slag-fly ash incorporating the high-volume wood bottom ash: Mechanical properties and microstructures. Const. Build. Mater. 2023, 394, 132240. [Google Scholar] [CrossRef]
- Mendes, B.C.; Pedroti, L.G.; Vieira, C.M.F.; Marvila, M.; Azevedo, A.R.G.; Franco de Carvalho, J.M.; Ribeiro, J.C.L. Application of eco-friendly alternative activators in alkali-activated materials: A review. J. Build. Eng. 2021, 35, 1020103. [Google Scholar] [CrossRef]
- Němečk, J.; Šmilauer, V.; Kopecký, L. Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cem. Concr. Compos. 2011, 33, 163–170. [Google Scholar] [CrossRef]
- Gorhan, G.; Kurklu, G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. B Eng. 2014, 58, 371–377. [Google Scholar] [CrossRef]
- Turhan, Ş.; Arıkan, İ.H.; Küçükcezzar, R. Radiological Consequencwa of the use of fly ash in construction sector and geotehnical applications. Indoor Built. Evniron. 2011, 20, 253–258. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; Separovic, F.; Van Deventer, J.S.J. The Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels. Ind. Eng. Chem. Res. 2005, 44, 832–839. [Google Scholar] [CrossRef]
- Cockrell, C.F.; Muter, R.B.; Leonard, J.W.; Anderson, R.E. Study of the Potential for Recovering Unreacted Lime from Lime Stone Modified Fly Ash by Agglomerate; Final Report; Coal Research Bureau, West Virginia University: Morgantown, WV, USA, 1970; 267p. [Google Scholar]
- Candamano, S.; De Luca, P.; Frontera, P.; Crea, F. Production of Geopolymeric Mortars Containing Forest Biomass Ash as Partial Replacement of Metakaolin. Environments 2017, 4, 74. [Google Scholar] [CrossRef]
- Mladenović Nikolić, N.N.; Kandić, A.B.; Trivunac, K.V.; Mirković, M.M.; Vukanac, I.S.; Nenadović, S.S.; Kljajević, L.M. Radiological and Structural Characterization of Raw and Alkali-Activated Wood Ash and Metakaolin Blends. Sustainability 2022, 14, 12960. [Google Scholar] [CrossRef]
- Canfield, G.M.; Eichler, J.; Griffith, K.; Hearn, J.D. The role of calcium in blended fly ash geopolymers. J. Mater. Sci. 2014, 49, 5922–5933. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Yip, C.K.; van Deventer, J.S.J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 2003, 38, 3851–3860. [Google Scholar] [CrossRef]
- Lee, W.K.W.; Van Deventer, J.S.J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Conc. Res. 2002, 32, 577–584. [Google Scholar] [CrossRef]
- Baha, A.; Hashim, S.; Sanusi, M.S.M.; Engku Chik, E.M.F.; Abu Hanifah, N.Z.H.; Hassan, H.J.; Zulkeplee, S.A. Radioactivity in decorative building materials: Insights from Johor, Malaysia. Radiat. Phys. Chem. 2023, 209, 111006. [Google Scholar] [CrossRef]
- Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 2019, 216, 866–882. [Google Scholar] [CrossRef]
- Ahmed, I.K.; Khalaf, H.N.B.; Ambrosino, F.; Mostafa, M.Y.A. Fly ash radiological characterization from thermal power plants in Iraq. J. Radioanal. Nucl. Chem. 2021, 329, 1237–1245. [Google Scholar] [CrossRef]
- Karangelos, D.J.; Petropoulos, N.P.; Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. J. Environ. Radioact. 2004, 77, 233–246. [Google Scholar] [CrossRef]
- Nasr, A.S.; Duraia, E.S.M.; Shafaa, M.W.; Ayoub, H.A.; Essa, A.M. Evaluation and characterization of the radiological environmental impact of waste generated from the oil ash. J. Radioanal. Nucl. Chem. 2024, 333, 5867–5879. [Google Scholar] [CrossRef]
- Bhangare, R.C.; Tiwari, M.; Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G. Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J. Radioanal. Nucl. Chem. 2014, 300, 17–22. [Google Scholar] [CrossRef]
- Ignjatović, I.; Sas, Z.; Dragaš, J.; Somlai, J.; Kovács, T. Radiological and material characterization of high volume fly ash concrete. J. Environ. Radioact. 2017, 168, 38–45. [Google Scholar] [CrossRef]
- Kljajević, L.M.; Nenadović, S.S.; Nenadović, M.T.; Bundaleski, N.K.; Todorović, B.Ž.; Pavlović, V.B.; Rakočević, Z.L. Structural and chemical properties of thermally treated geopolymer samples. Ceram. Int. 2017, 43, 6700–6708. [Google Scholar] [CrossRef]
- Mladenović Nikolić, N.; Kljajević, L.; Nenadović, S.; Potočnik, J.; Knežević, S.; Dolenec, S.; Trivunac, K. Adsorption Efficiency of Cadmium (II) by Different Alkali-Activated Materials. Gels 2024, 10, 317. [Google Scholar] [CrossRef]
- Li, F.; Wu, W.; Li, R.; Fu, X. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: Experimental and modeling. Appl. Clay Sci. 2016, 132–133, 343–352. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U. Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy. Int. J. Concr. Struct. Mater. 2013, 7, 119–125. [Google Scholar] [CrossRef]
- Nasab, G.M.; Golestanifard, F.; MacKenzie, K.J.D. The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR. J. Ceram. Sci. Technol. 2014, 5, 185–192. [Google Scholar]
- Ng, C.; Alengaram, U.J.; Wong, L.S.; Mo, K.H.; Jumaat, M.Y.; Ramesh, S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Const. Build. Mater. 2018, 186, 550–576. [Google Scholar] [CrossRef]
- Kljajević, L.; Nenadović, M.; Ivanović, M.; Bučevac, D.; Mirković, M.; Mladenović Nikolić, N.; Nenadović, S. Heat Treatment of Geopolymer Samples Obtained by Varying Concentration of Sodium Hydroxide as Constituent of Alkali Activator. Gels 2022, 8, 333. [Google Scholar] [CrossRef]
- Xia, B.; Wang, Z.; Gou, L.; Zhang, M.; Guo, M. Porous mullite ceramics with enhanced compressive strength from fly ash-based ceramic microspheres: Facile synthesis, structure, and performance. Ceram. Int. 2022, 48, 10472–10479. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. Effect of Blast Furnace Slag Addition on Microstructure and Properties of Metakaolinite Geopolymeric Materials. Ceram. Trans. 2003, 153, 187. [Google Scholar] [CrossRef]
- Bošković, I.; Vukčević, M.; Nenadović, S.; Mirković, M.; Stojmenović, M.; Pavlović, V.; Kljajević, L. Characterization of red mud/metakaolin-based geopolymers as modified by Ca(OH). Mater. Technol. 2019, 53, 341–348. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; Dragaš, I. Alkali-activated concrete with Serbian fly ash and its radiological impact. J. Environ. Radioact. 2017, 168, 30–37. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation—United Nations Scientific Committe on the Effects of Atomic Radiation; UNSCEAR 2000 Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- UNSCEAR. Report of the United Nations Scientific Committee on the Effect of Atomic Radiation to the General Assembly of the United Nations Sources and Effect of Ionizing Radiation. Anex B: Exposures from Natural Radiation Sources; United Nations: New York, NY, USA, 2000; Sales Publication E.00.IX.3. [Google Scholar]
- Fidanchevski, E.; Angjusheva, B.; Jovanov, V.; Murtanovski, P.; Vladiceska, L.; Stamatovska Aluloska, N.; Krneta Nikolic, J.; Ipavec, A.; Šter, K.; Mrak, M.; et al. Technical and radiological characterisation of fly ash and bottom ash from thermal power plant. J. Radioanal. Nucl. Chem. 2021, 330, 685–694. [Google Scholar] [CrossRef]
- Bošković, I.V.; Nenadović, S.S.; Kljajević, L.M.; Vukanac, I.S.; Stanković, N.G.; Luković, J.M.; Vukčević, M.A. Radiological and physicochemical properties of red mud based geopolymers. Nucl. Technol. Rad. Protect. 2018, 33, 188–194. [Google Scholar] [CrossRef]
- Sas, Z.; Sha, W.; Soutsos, M.; Doherty, R.; Bondar, D.; Gijbels, K.; Schroeyers, W. Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Sci. Total Environ. 2019, 659, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Directive 2013/59/EUROATOM 5-December 2013, Official European Union 17/01/2014. 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF (accessed on 27 October 2020).
- Rigaku. PDXL Integrated X-Ray Powder Diffraction Software, Version 2.8.4.0; Rigaku: Tokyo, Japan, 2011.
- International Crystallographical Data Base (ICDD). Available online: https://www.icdd.com/?gad_source=1&gclid=EAIaIQobChMIycqNvtvxigMVHqRmAh25AC1AEAAYASAAEgJDofD_BwE (accessed on 31 October 2024).
- Rasband, W.S. ImageJ, (n.d.). Available online: https://imagej.net/ij/ (accessed on 5 March 2023).
- MBSS 2, Cert. No. 9031-OL-032/05; Radioactive Standard. CMI (Czech Metrological Institute): Prague, Czech Republic, 2005.
- International Atomic Energy Agency. Measurement of Radionuclides in Food and the Environment, A Guide Book; Technical Reports Series No. 295; IAEA: Vienna, Austria, 1989. [Google Scholar]
- Regulation on the Limits of Radionuclide Content in Drinking Water, Food, Animal Feed, Medications, Items of General Use, Building Materials, and Other Goods Placed on the Market (“Official Gazette of the Republic of Serbia”, No. 36/2018. In Serbian: Pravilnik o Granicama Sadržaja Radionuklida u Vodi za Piće, Životnim namirnicama, Stočnoj Hrani, Lekovima, Predmetima Opšte Upotrebe, GrađEvinskom Materijalu i Drugoj Robi Koja se Stavlja u Promet (“Sl. Glasnik RS”, br. 36/2018). Available online: https://www.paragraf.rs/propisi/pravilnik-o-granicama-sadrzaja-radionuklida-u-vodi-hrani-lekovima.html (accessed on 15 September 2023).
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation (UNSCEAR) Report to the General Assembly with Annex A: Exposures from Natural Sources of Radiation; United Nations: New York, NY, USA, 1993. [Google Scholar]
Chem. Comp. (wt.%) | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | TiO2 | MnO | Fe2O3 | As2O3 | BaO | LOI * 950 °C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWA10FA90 | 8.77 | 1.35 | 16.03 | 43.04 | 0.153 | 0.135 | 1.57 | 4.68 | 0.39 | 0.185 | 3.29 | 0.106 | 0.065 | 20.10 |
AWA10MK90 | 7.19 | 0.633 | 20.92 | 48.16 | 0.163 | 0.027 | 2.26 | 3.33 | 0.422 | 0.168 | 1.23 | 0.106 | 0.047 | 15.24 |
AFA50MK50 | 6.93 | 0.92 | 20.37 | 53.37 | 0.03 | 0.02 | 1.20 | 1.49 | 0.44 | 0.03 | 2.59 | 0.16 | 0.04 | 12.29 |
AWA10FA45MK45 | 8.61 | 1.02 | 18.03 | 45.06 | 0.14 | 0.08 | 1.78 | 3.75 | 0.40 | 0.16 | 2.29 | 0.01 | 0.06 | 18.39 |
Raw Mixture | 226Ra | 232Th (228Ac) | 40K | Iγ | Raeq, Bq/kg | Hex, Bq/kg | Ḋ, nGy/h | EDR, mSv/y |
---|---|---|---|---|---|---|---|---|
WA10FA90 | 83.1 ± 6.6 | 58.8 ± 3.6 | 465 ± 24 | 0.726 | 203.0 | 0.548 | 93.3 | 0.458 |
WA10MK90 | 130.7 ± 10.7 | 76.4 ± 4.6 | 660 ± 34 | 1.038 | 290.8 | 0.785 | 134.1 | 0.658 |
FA50MK50 | 128.3 ± 10.6 | 81. 4 ± 4.8 | 393 ± 21 | 0.966 | 275.0 | 0.743 | 124.8 | 0.612 |
WA10FA45MK45 | 125.9 ± 9.3 | 73.5 ± 4.7 | 635 ± 33 | 0.999 | 279.9 | 0.756 | 129.0 | 0.633 |
AAMs | 226Ra | 232Th (228Ac) | 40K | Iγ | Raeq, Bq/kg | Hex, Bq/kg | Ḋ, nGy/h | EDR, mSv/y |
---|---|---|---|---|---|---|---|---|
AWA10FA90 | 95.9 ± 8.7 | 55.7 ± 3.9 | 486 ± 26 | 0.760 | 213.0 | 0.575 | 98.2 | 0.482 |
AWA10MK90 | 85.7 ± 6.4 | 68.8 ± 4.6 | 627 ± 33 | 0.839 | 232.4 | 0.628 | 107.3 | 0.526 |
AFA50MK50 | 66.0 ± 5.5 | 54.5 ± 3.4 | 271 ± 15 | 0.583 | 164.8 | 0.445 | 74.7 | 0.367 |
AWA10FA45MK45 | 72.3 ± 6.3 | 47.0 ± 3.2 | 397 ± 21 | 0.608 | 170.1 | 0.459 | 78.3 | 0.384 |
Raw Mixture | Precursors | ||
---|---|---|---|
WA (%) | FA (%) | MK (%) | |
WA10FA90 | 10 | 90 | 0 |
WA10MK90 | 10 | 0 | 90 |
FA50MK50 | 0 | 50 | 50 |
WA10FA45MK45 | 10 | 45 | 45 |
Dose Calculation | Formula | References |
---|---|---|
Gamma index | [33] | |
Radium equivalent activity | [33] | |
External hazard index | [33] | |
External absorbed gamma dose rate | [33] | |
Annual effective dose rates | EDR(mSv) = (nGy/h) × 8760·(h/y) × 0.8 × 0.7 (Sv/Gy) 10−6 | [33,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović Nikolić, N.; Kandić, A.; Potočnik, J.; Latas, N.; Ivanović, M.; Nenadović, S.; Kljajević, L. Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin. Gels 2025, 11, 57. https://doi.org/10.3390/gels11010057
Mladenović Nikolić N, Kandić A, Potočnik J, Latas N, Ivanović M, Nenadović S, Kljajević L. Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin. Gels. 2025; 11(1):57. https://doi.org/10.3390/gels11010057
Chicago/Turabian StyleMladenović Nikolić, Nataša, Aleksandar Kandić, Jelena Potočnik, Nemanja Latas, Marija Ivanović, Snežana Nenadović, and Ljiljana Kljajević. 2025. "Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin" Gels 11, no. 1: 57. https://doi.org/10.3390/gels11010057
APA StyleMladenović Nikolić, N., Kandić, A., Potočnik, J., Latas, N., Ivanović, M., Nenadović, S., & Kljajević, L. (2025). Microstructural Analysis and Radiological Characterization of Alkali-Activated Materials Based on Aluminosilicate Waste and Metakaolin. Gels, 11(1), 57. https://doi.org/10.3390/gels11010057