Design of Aerated Oleogel–Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inks Appearance and Overrun Evaluation
2.2. Printability Evaluation
2.3. Rheological Studies
2.4. Inks’ Microstructure Analysis
2.5. Thermal Behavior during Heating
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.2.1. Hydrogel and Oleogel Preparation
4.2.2. 3D-Printable Inks Preparation
4.3. Overrun Measurements
4.4. Rheological Studies
4.5. Printability Evaluation
4.5.1. Food 3D Printing Process
4.5.2. Printing Quality Evaluation
4.6. Confocal Laser Scanning Microscopy Observation (CLSM)
4.7. Polarized Light Microscopy Observation (PLM)
4.8. Differential Scanning Calorimetry (DSC)
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monou, P.K.; Mamaligka, A.M.; Tzimtzimis, E.K.; Tzetzis, D.; Vergkizi-Nikolakaki, S.; Vizirianakis, I.S.; Andriotis, E.G.; Eleftheriadis, G.K.; Fatouros, D.G. Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2022, 14, 1637. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, H.; Kimiaei, E.; Polez, R.T.; Ajdary, R.; Rojas, O.J.; Österberg, M.; Seppälä, J. High-Resolution 3D Printing of Xanthan Gum/Nanocellulose Bio-Inks. Int. J. Biol. Macromol. 2022, 209, 2020–2031. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Virgin Hemp Seed Oil: An Interesting Niche Product. Eur. J. Lipid Sci. Technol. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- RTI International; Barrus, D.; Capogrossi, K.; Cates, S.; Gourdet, C.; Peiper, N.; Novak, S.; Lefever, T.; Wiley, J. asty THC: Promises and Challenges of Cannabis Edibles; RTI Press: Research Triangle Park, NC, USA, 2016. [Google Scholar]
- Gholamipour-Shirazi, A.; Norton, I.T.; Mills, T. Designing Hydrocolloid Based Food-Ink Formulations for Extrusion 3D Printing. Food Hydrocoll. 2019, 95, 161–167. [Google Scholar] [CrossRef]
- Qiu, R.; Wang, K.; Tian, H.; Liu, X.; Liu, G.; Hu, Z.; Zhao, L. Analysis on the Printability and Rheological Characteristics of Bigel Inks: Potential in 3D Food Printing. Food Hydrocoll. 2022, 129, 107675. [Google Scholar] [CrossRef]
- Lille, M.; Nurmela, A.; Nordlund, E.; Metsä-Kortelainen, S.; Sozer, N. Applicability of Protein and Fiber-Rich Food Materials in Extrusion-Based 3D Printing. J. Food Eng. 2018, 220, 20–27. [Google Scholar] [CrossRef]
- Sharma, R.; Chandra Nath, P.; Kumar Hazarika, T.; Ojha, A.; Kumar Nayak, P.; Sridhar, K. Recent Advances in 3D Printing Properties of Natural Food Gels: Application of Innovative Food Additives. Food Chem. 2024, 432, 137196. [Google Scholar] [CrossRef]
- Pulatsu, E.; Lin, M. A Review on Customizing Edible Food Materials into 3D Printable Inks: Approaches and Strategies. Trends Food Sci. Technol. 2021, 107, 68–77. [Google Scholar] [CrossRef]
- Ghosal, K.; Nanda, A. Development of Diclofenac Potassium Gel from Hydrophobically Modified HPMC. Iran. Polym. J. 2013, 22, 457–464. [Google Scholar] [CrossRef]
- Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical Drug Delivery by a Polymeric Nanosphere Gel: Formulation Optimization and In Vitro and In Vivo Skin Distribution Studies. J. Control. Release 2011, 149, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.; Dong, X.; Bhandari, B.; Prakash, S. The Role of Hydrocolloids on the 3D Printability of Meat Products. Food Hydrocoll. 2021, 119, 106879. [Google Scholar] [CrossRef]
- Tian, H.; Wang, K.; Lan, H.; Wang, Y.; Hu, Z.; Zhao, L. Effect of Hybrid Gelator Systems of Beeswax-Carrageenan-Xanthan on Rheological Properties and Printability of Litchi Inks for 3D Food Printing. Food Hydrocoll. 2021, 113, 106482. [Google Scholar] [CrossRef]
- Uribe-Alvarez, R.; O’Shea, N.; Murphy, C.P.; Coleman-Vaughan, C.; Guinee, T.P. Evaluation of Rennet-Induced Gelation under Different Conditions as a Potential Method for 3D Food Printing of Dairy-Based High-Protein Formulations. Food Hydrocoll. 2021, 114, 106542. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Bhandari, B. Effect of Addition of Beeswax Based Oleogel on 3D Printing of Potato Starch-Protein System. Food Struct. 2021, 27, 100176. [Google Scholar] [CrossRef]
- Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and Characterization of Novel Carbopol Based Bigels for Topical Delivery of Metronidazole for the Treatment of Bacterial Vaginosis. Mater. Sci. Eng. C 2014, 44, 151–158. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key Characteristics and Modelling of Bigels Systems: A Review. Mater. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Rehman, K.; Zulfakar, M.H. Recent Advances in Gel Technologies for Topical and Transdermal Drug Delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. [Google Scholar] [CrossRef]
- Andriotis, E.G.; Chachlioutaki, K.; Monou, P.K.; Bouropoulos, N.; Tzetzis, D.; Barmpalexis, P.; Chang, M.-W.; Ahmad, Z.; Fatouros, D.G. Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech 2021, 22, 23. [Google Scholar] [CrossRef]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Development and Characterization of Food-Grade Bigel System for 3D Printing Applications: Role of Oleogel/Hydrogel Ratios and Emulsifiers. Food Hydrocoll. 2023, 139, 108565. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, A.; Wang, T.; Liu, S. A Modified Tessari Method for Producing More Foam. SpringerPlus 2016, 5, 129. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, Y.; Wang, Y.; Rogers, M.A.; Cao, Y.; Lan, Y. Microstructure and Physical Properties of Novel Bigel-Based Foamed Emulsions. Food Hydrocoll. 2023, 134, 108097. [Google Scholar] [CrossRef]
- Liu, Z.; Bhandari, B.; Prakash, S.; Mantihal, S.; Zhang, M. Linking Rheology and Printability of a Multicomponent Gel System of Carrageenan-Xanthan-Starch in Extrusion Based Additive Manufacturing. Food Hydrocoll. 2019, 87, 413–424. [Google Scholar] [CrossRef]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Development and Characterization of a Novel Soy Lecithin-Stearic Acid and Whey Protein Concentrate Bigel System for Potential Edible Applications. Food Hydrocoll. 2020, 101, 105570. [Google Scholar] [CrossRef]
- Jagadiswaran, B.; Alagarasan, V.; Palanivelu, P.; Theagarajan, R.; Moses, J.A.; Anandharamakrishnan, C. Valorization of Food Industry Waste and By-Products Using 3D Printing: A Study on the Development of Value-Added Functional Cookies. Future Foods 2021, 4, 100036. [Google Scholar] [CrossRef]
- Lupi, F.R.; Gentile, L.; Gabriele, D.; Mazzulla, S.; Baldino, N.; De Cindio, B. Olive Oil and Hyperthermal Water Bigels for Cosmetic Uses. J. Colloid. Interface Sci. 2015, 459, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.A.; Cross, L.M.; Peak, C.W.; Gaharwar, A.K. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. ACS Appl. Mater. Interfaces 2017, 9, 43449–43458. [Google Scholar] [CrossRef]
- Doan, C.D.; Van De Walle, D.; Dewettinck, K.; Patel, A.R. Evaluating the Oil-Gelling Properties of Natural Waxes in Rice Bran Oil: Rheological, Thermal, and Microstructural Study. J. Am. Oil Chem. Soc. 2015, 92, 801–811. [Google Scholar] [CrossRef]
- Montoya, J.; Medina, J.; Molina, A.; Gutiérrez, J.; Rodríguez, B.; Marín, R. Impact of Viscoelastic and Structural Properties from Starch-Mango and Starch-Arabinoxylans Hydrocolloids in 3D Food Printing. Addit. Manuf. 2021, 39, 101891. [Google Scholar] [CrossRef]
- Andriotis, E.G.; Monou, P.-K.; Komis, G.; Bouropoulos, N.; Ritzoulis, C.; Delis, G.; Kiosis, E.; Arsenos, G.; Fatouros, D.G. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels. Gels 2022, 8, 705. [Google Scholar] [CrossRef] [PubMed]
- Koliastasi, A.; Kompothekra, V.; Giotis, C.; Moustakas, A.K.; Skotti, E.P.; Gerakis, A.; Kalogianni, E.; Ritzoulis, C. Emulsifiers from Partially Composted Olive Waste. Foods 2019, 8, 271. [Google Scholar] [CrossRef] [PubMed]
Sample Name | K (105 Pa*sn) | n | R2 |
---|---|---|---|
CSO | 215.1 ± 16.6 a | −0.22 ± 0.02 a | 0.99 |
C3X1 | 206.2 ± 10.6 a | −0.29 ± 0.01 a | 0.99 |
C1X1 | 100.9 ± 1.6 b | 0.14 ± 0.09 b | 0.99 |
C1X3 | 63.7 ± 3.2 c | 0.13 ± 0.07 b | 1 |
Sample Name | Tm onset (°C) | Tm1 (°C) | Tm2 (°C) | ΔHm total (J/g) |
---|---|---|---|---|
CSO | 45.2 ± 1.2 | 55.5 ± 1.6 | 61.2 ± 0.9 | 18.6 ± 3.9 a |
C3X1 | 45.4 ± 1.3 | 51.4 ± 1.1 * | 56.9± 1.3 | 23.0 ± 2.9 a |
C1X1 | 45.2 ± 0.9 | 51.1 ± 0.8 * | 56.1 ± 1.7 | 9.9 ± 2.6 b |
C1X3 | 45.1 ± 1.0 | 51.7 ± 1.2 * | 56.3 ± 1.7 | 11.2 ± 2.7 b |
Sample Name | Cannabis Seed Oil Oleogel (% w/w) | Xanthan Gum Hydrogel (% w/w) |
---|---|---|
CSO | 100 | 0 |
C3X1 | 75 | 25 |
C1X1 | 50 | 50 |
C1X3 | 25 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriotis, E.G.; Paraskevopoulou, A.; Fatouros, D.G.; Zhang, H.; Ritzoulis, C. Design of Aerated Oleogel–Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles. Gels 2024, 10, 654. https://doi.org/10.3390/gels10100654
Andriotis EG, Paraskevopoulou A, Fatouros DG, Zhang H, Ritzoulis C. Design of Aerated Oleogel–Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles. Gels. 2024; 10(10):654. https://doi.org/10.3390/gels10100654
Chicago/Turabian StyleAndriotis, Eleftherios G., Adamantini Paraskevopoulou, Dimitrios G. Fatouros, Hui Zhang, and Christos Ritzoulis. 2024. "Design of Aerated Oleogel–Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles" Gels 10, no. 10: 654. https://doi.org/10.3390/gels10100654
APA StyleAndriotis, E. G., Paraskevopoulou, A., Fatouros, D. G., Zhang, H., & Ritzoulis, C. (2024). Design of Aerated Oleogel–Hydrogel Mixtures for 3D Printing of Personalized Cannabis Edibles. Gels, 10(10), 654. https://doi.org/10.3390/gels10100654