Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalysts ORR
2.1.1. Porosity and Surface Area Determination
2.1.2. Raman Characterization
2.1.3. XPS Characterization
2.1.4. Morphology
2.1.5. Electrochemical Characterization
2.2. Catalyst Fenton
2.2.1. X-ray Diffraction
2.2.2. Morphology
2.3. Electro-Fenton Experiments (EF)
3. Conclusions
4. Materials and Methods
4.1. Synthesis of Materials
4.1.1. Graphene Oxide (OG)
4.1.2. Magnetite (Fe3O4)
4.1.3. Preparation of the Xerogel/OG Ink
4.2. Deposition Methods
4.2.1. Conventional Catalyst (Sample C)
4.2.2. Painted Catalyst (Sample P)
4.2.3. Screen-Printed Catalyst (Sample S)
4.3. Characterization
4.3.1. Chemical and Textural Characterization
4.3.2. Electrochemical Characterization
4.4. Electro-Fenton Processes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, M.; Zhuo, F.; Li, Y.; Yi, P.; Gao, Y.; Zhou, W.; Sun, Y.; Chen, J.; Wu, X.L. Fe-N-C Catalyst Coated on Carbon Felt for Efficient Degradation of Antibiotics via Electro-Fenton Process. Appl. Surf. Sci. 2023, 609, 155310. [Google Scholar] [CrossRef]
- Amarzadeh, M.; Salehizadeh, S.; Damavandi, S.; Mubarak, N.M.; Ghahrchi, M.; Ramavandi, B.; Shahamat, Y.D.; Nasseh, N. Statistical Modeling Optimization for Antibiotics Decomposition by Ultrasound/Electro-Fenton Integrated Process: Non-Carcinogenic Risk Assessment of Drinking Water. J. Environ. Manag. 2022, 324, 116333. [Google Scholar] [CrossRef]
- Li, S.; Hua, T.; Yuan, C.S.; Li, B.; Zhu, X.; Li, F. Degradation Pathways, Microbial Community and Electricity Properties Analysis of Antibiotic Sulfamethoxazole by Bio-Electro-Fenton System. Bioresour. Technol. 2020, 298, 122501. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Huang, P.; Chen, X.; Li, L.-P.; Lin, C.-Y.; Chen, X.; Ding, R.; Liu, J.; Chen, R. Ciprofloxacin Degradation Performances and Mechanisms by the Heterogeneous Electro-Fenton with Flocculated Fermentation Biochar. Environ. Pollut. 2023, 324, 121425. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.S. Antibiotics Degradation by Advanced Oxidation Process (AOPs): Recent Advances in Ecotoxicity and Antibiotic-Resistance Genes Induction of Degradation Products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, H.; Ren, L.; Ou, Y.; Jiang, S.; Chai, Y.; Chen, A.; Yan, B. Treatment of Amoxicillin-Containing Wastewater by Trichoderma Strains Selected from Activated Sludge. Sci. Total Environ. 2023, 867, 161565. [Google Scholar] [CrossRef]
- Armoudjian, Y.; Lin, Q.; Lammens, B.; Daele, J.; Van Annaert, P. Sensitive and Rapid Method for the Quantitation of Amoxicillin in Minipig Plasma and Milk by LC-MS/MS: A Contribution from the IMI ConcePTION Project. J. Pharmacol. Toxicol. Methods 2023, 123, 107264. [Google Scholar] [CrossRef]
- Andrade, L.A.; Souza, G.B.M.; Dias, I.M.; Mour, L.C.; Viana, J.C.V.; Oliveira, S.B.; Alonso, C.G. Degradation of Antibiotic Amoxicillin from Pharmaceutical Industry Wastewater into a Continuous Flow Reactor Using Supercritical Water Gasification. Water Res. 2023, 234, 119826. [Google Scholar] [CrossRef]
- Laksaci, H.; Belhamdi, B.; Khelifi, O.; Khelifi, A. Elimination of Amoxicillin by Adsorption on Coffee Waste Based Activated Carbon. J. Mol. Struct. 2023, 1274, 134500. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Aremu, O.H.; Akintayo, C.O.; Sodeinde, K.O.; Igboama, W.N.; Oseghe, E.O.; Nelana, S.M. Sonocatalytic Degradation of Amoxicillin from Aquaculture Effluent by Zinc Oxide Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100513. [Google Scholar] [CrossRef]
- Li, W.; Zhou, R.; Zhou, R.; Weerasinghe, J.; Zhang, T.; Gissibl, A.; Cullen, P.J.; Speight, R.; Ken, K. Insights into Amoxicillin Degradation in Water by Non-Thermal Plasmas. Chemosphere 2022, 291, 132757. [Google Scholar] [CrossRef] [PubMed]
- Duong-nguyen, T.; Hoang, M.; Hue, N.; Quoc, C. Amoxicillin Degradation Ability of Bacillus Cereus C1 Isolated from Cat Fi Sh Pond Sludge in Vietnam. Heliyon 2022, 8, e11688. [Google Scholar] [CrossRef] [PubMed]
- Aryee, A.A.; Han, R.; Qu, L. Occurrence, Detection and Removal of Amoxicillin in Wastewater: A Review. J. Clean. Prod. 2022, 368, 133140. [Google Scholar] [CrossRef]
- Alomar, T.S.; Hameed, B.H.; Usman, M.; Almomani, F.A.; Ba-abbad, M.M.; Khraisheh, M. Recent Advances on the Treatment of Oil Fields Produced Water by Adsorption and Advanced Oxidation Processes. J. Water Process Eng. 2022, 49, 103034. [Google Scholar] [CrossRef]
- Hadi, M.; Rao, R.; Reddy, J. Recent Trends in the Applications of Sonochemical Reactors as an Advanced Oxidation Process for the Remediation of Microbial Hazards Associated with Water and Wastewater: A Critical Review. Ultrason. Sonochem. 2023, 94, 106302. [Google Scholar] [CrossRef]
- Zhai, C.; Chen, Y.; Huang, X.; Isaev, A.B.; Zhu, M. Recent Progress on Single-Atom Catalysts in Advanced Oxidation Processes for Water Treatment. Environ. Funct. Mater. 2022, 1, 219–229. [Google Scholar] [CrossRef]
- Wei, J.; Shi, L.; Wu, X. Electrochemical Advanced Oxidation Process with Simultaneous Persulfate and Hydrogen Peroxide On-Site Generations for High Salinity Wastewater. Sep. Purif. Technol. 2023, 310, 123147. [Google Scholar] [CrossRef]
- Campos, S.; Lorca, J.; Vidal, J.; Calzadilla, W.; Toledo-neira, C.; Aranda, M.; Miralles-cuevas, S.; Cabrera-reina, A.; Salazar, R. Removal of Contaminants of Emerging Concern by Solar Photo Electro-Fenton Process in a Solar Electrochemical Raceway Pond Reactor. Process Saf. Environ. Prot. 2023, 169, 660–670. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, H.; Qu, Z.; Tang, Z.; Yang, X.; Jiang, P. Promotion of Formaldehyde Degradation by Electro-Fenton: Controlling the Distribution of ⋅ OH and Formaldehyde near Cathode to Increase the Reaction Probability. Chemosphere 2022, 307, 135776. [Google Scholar] [CrossRef]
- Wang, J.; Qin, J.; Liu, B.; Song, S. Reaction Mechanisms and Toxicity Evolution of Sulfamethoxazole Degradation by CoFe-N Doped C as Electro-Fenton Cathode. Sep. Purif. Technol. 2022, 298, 121655. [Google Scholar] [CrossRef]
- Tu, S.; Ning, Z.; Duan, X.; Zhao, X.; Chang, L. Efficient Electrochemical Hydrogen Peroxide Generation Using TiO2/RGO Catalyst and Its Application in Electro-Fenton Degradation of Methyl Orange. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 651, 129657. [Google Scholar] [CrossRef]
- Fajardo-Puerto, E.; Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Carrasco-Marín, F. From Fenton and ORR 2e−Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023, 13, 674. [Google Scholar] [CrossRef]
- Qin, X.; Wang, K.; Cao, P.; Su, Y.; Chen, S.; Yu, H.; Quan, X. Highly Efficient Electro-Fenton Process on Hollow Porous Carbon Spheres Enabled by Enhanced H2O2 Production and Fe2+ Regeneration. J. Hazard. Mater. 2023, 446, 130664. [Google Scholar] [CrossRef] [PubMed]
- Garza-Campos, B.; Morales-Acosta, D.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Manríquez, J.; Ruiz-Ruiz, E.J. Air Diffusion Electrodes Based on Synthetized Mesoporous Carbon for Application in Amoxicillin Degradation by Electro-Fenton and Solar Photo Electro-Fenton. Electrochim. Acta 2018, 269, 232–240. [Google Scholar] [CrossRef]
- Molla, H.; Pishnamaz, N.; Farimaniraad, H.; Baghdadi, M.; Aminzadeh, B.; Mahpishanian, S. Application of Nickel Foam Cathode Modi Fi Ed by Single-Wall Carbon Nanotube in Electro-Fenton Process Coupled with Anodic Oxidation: Enhancing Organic Pollutants Removal. J. Electroanal. Chem. 2023, 929, 117130. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Gao, J.; Meng, H.; Chai, S.; Jian, Y.; Shi, L.; Wang, Y.; He, C. Selective Electrochemical H2O2 Generation on the Graphene Aerogel for Efficient Electro-Fenton Degradation of Ciprofloxacin. Sep. Purif. Technol. 2021, 272, 118884. [Google Scholar] [CrossRef]
- Wang, Z.; Olvera-vargas, H.; Vinicius, M.; Martins, S.; Garcia-rodriguez, O.; Garaj, S.; Lefebvre, O. High Performance and Durable Graphene-Grafted Cathode for Electro-Fenton Degradation of Tetramethyldecynediol. Chem. Eng. J. 2023, 455, 140643. [Google Scholar] [CrossRef]
- Ramírez-Valencia, L.D.; Bailón-García, E.; Moral-Rodríguez, A.I.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Carbon Gels–Green Graphene Composites as Metal-Free Bifunctional Electro-Fenton Catalysts. Gels 2023, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Briz-Amate, T.; Castelo-Quibén, J.; Bailón-García, E.; Abdelwahab, A.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Growing Tungsten Nanophases on Carbon Spheres Doped with Nitrogen. Behaviour as Electro-Catalysts for Oxygen Reduction Reaction. Materials 2021, 14, 7716. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Ros, C.H.; Morales-Torres, S.; Pérez-Cadenas, M.; Kooyman, P.J.; Moreno-Castilla, C.; Kapteijn, F. Metal-Doped Carbon Xerogels for the Electro-Catalytic Conversion of CO2 to Hydrocarbons. Carbon N. Y. 2013, 56, 324–331. [Google Scholar] [CrossRef]
- Wang, S.; Ye, D.; Zhu, X.; Yang, Y.; Chen, J.; Liu, Z.; Chen, R.; Liao, Q. Beyond the Catalyst: A Robust and Omnidirectional Hydrophobic Triple-Phase Architecture for Ameliorating Air-Breathing H2O2 Electrosynthesis and Wastewater Remediation. Sep. Purif. Technol. 2023, 305, 122397. [Google Scholar] [CrossRef]
- Zhao, Z.; Hao, Y.; Wu, J.; Feng, Z.; Feng, F.; Li, Y.; Yang, Q. Development of a Three-Dimensional Electro-Fenton System Packed with C-PTFE/Fe–Co–C Hybrid Particle Electrodes for Simultaneous H2O2 Generation and Activation into • OH. Sep. Purif. Technol. 2023, 317, 123960. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated Carbons from KOH and H3PO4-Activation of Olive Residues and Its Application as Supercapacitor Electrodes. Electrochim. Acta 2017, 229, 219–228. [Google Scholar] [CrossRef]
- Aoki, A.; Ogasawara, T.; Aoki, T.; Ishida, Y.; Shimamura, Y. Raman Spectroscopy Used for Estimating the Effective Elastic Modulus of Carbon Nanotubes in Aligned Multi-Walled Carbon Nanotubes / Epoxy Composites under Tensile Loading. Compos. Part A 2023, 167, 107448. [Google Scholar] [CrossRef]
- Bokobza, L.; Bruneel, J.; Couzi, M. Vibrational Spectroscopy Raman Spectroscopy as a Tool for the Analysis of Carbon-Based Materials (Highly Oriented Pyrolitic Graphite, Multilayer Graphene and Multiwall Carbon Nanotubes) and of Some of Their Elastomeric Composites. Vib. Spectrosc. 2014, 74, 57–63. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman Spectroscopy of Carbon Materials and Their Composites: Graphene, Nanotubes and Fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, W.; Du, X.; Yang, X.; Wang, F.; Zhou, Y.; Pan, Y.; Lu, Y. Materials Today Sustainability An N, P, O-Doped Porous Carbon Electrode Material Derived from a Lignin-Modi Fi Ed Chitosan Xerogel for a Supercapacitor. Mater. Today Sustain. 2023, 22, 100372. [Google Scholar] [CrossRef]
- Medina, O.E.; Galeano-caro, D.; Ocampo-p, R.; Carrasco-marín, F.; Franco, C.A.; Corte, F.B. Microporous and Mesoporous Materials Development of a Monolithic Carbon Xerogel-Metal Composite for Crude Oil Removal from Oil in-Saltwater Emulsions: Evaluation of Reuse Cycles. Microporous Mesoporous Mater. 2021, 327, 111424. [Google Scholar] [CrossRef]
- Gaikwad, M.M.; Sarode, K.K.; Pathak, A.D.; Sharma, C.S. Ultrahigh Rate and High-Performance Lithium-Sulfur Batteries with Resorcinol-Formaldehyde Xerogel Derived Highly Porous Carbon Matrix as Sulfur Cathode Host. Chem. Eng. J. 2021, 425, 131521. [Google Scholar] [CrossRef]
- Perciani, N.; Moraes, D.; Siervo, A.D.; Moreira, T.; Campos, B.; Thim, P.; Alvares, L. Structure-Directing Ability of the Kraft-Lignin / Cellulose Carbon Xerogel for the Development of C-Nb2O5 Sunlight-Active Photocatalysts. J. Photochem. Photobiol. A Chem. 2023, 441, 114697. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Wang, W.; Fortner, J. Organic Functionalized Graphene Oxide Behavior in Water. Nanomaterials 2020, 10, 1228. [Google Scholar] [CrossRef]
- Beeran, Y.; Bobnar, V.; Grohens, Y.; Thomas, S.; Kokol, V. Cellulose Nano Fi Brils-Reduced Graphene Oxide Xerogels and Cryogels for Dielectric and Electrochemical Storage Applications z Fin. Polymer 2018, 147, 260–270. [Google Scholar] [CrossRef]
- Pham, H.D.; Pham, V.H.; Cuong, T.V. Synthesis of the Chemically Converted Graphene Xerogel with Superior Electrical Conductivity, W. ChemComm 2011, 47, 9672–9674. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, W.; Li, Y.; Zhang, Q.; Chen, H.; Zhang, J.; Huang, T. Anthraquinone (AQS)/Polyaniline (PANI) Modified Carbon Felt (CF) Cathode for Selective H2O2 Generation and Efficient Pollutant Removal In. J. Environ. Manag. 2022, 304, 114315. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Liu, H.; Hu, X.; Zhou, S. Insight into the Mechanisms of BPS Degradation by Electro-Fenton Method Modified by Co-Based Nanoparticles on the Oxidized Carbon Cathode. Chem. Eng. J. 2022, 446, 137376. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Yang, F.; Che, S.; Chen, N.; Xu, C.; Wu, N.; Sun, Y.; Yu, C.; Li, Y. Multifunctional Electrocatalyst Based on MoCoFe LDH Nanoarrays for the Coupling of High Efficiency Electro-Fenton and Water Splitting Process. Chem. Eng. J. 2023, 467, 143274. [Google Scholar] [CrossRef]
- Wang, L.; Niu, J.; Gao, S.; Liu, Z.; Wu, S.; Huang, M.; Li, H.; Zhu, M.; Yuan, R. Breakthrough in Controlling Membrane Fouling and Complete Demulsification via Electro-Fenton Pathway: Principle and Mechanisms. J. Memb. Sci. 2023, 670, 121354. [Google Scholar] [CrossRef]
- Zhao, H.; Han, S.; Jia, J.; He, M.; An, K.; Tang, Z.; Lai, S.; Yang, X.; Wang, Z. The Effect of N-Doping on the Synergy between Adsorption and 2e-ORR Performance of Activated Carbon Cathode in an Electro-Fenton System. Chem. Eng. J. 2023, 468, 143505. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, R.; Chi, C.; Chen, X.; Pan, Y.; Li, J.; Xia, X. One-Step Synthesis of S, N Dual-Element Doped RGO as an Ef Fi Cient Electrocatalyst for ORR. J. Electroanal. Chem. 2023, 940, 117489. [Google Scholar] [CrossRef]
- Alekseeva, O.V.; Smirnova, D.N.; Noskov, A.V.; Yu, O.; Kirilenko, M.A.; Agafonov, A.V. Mesoporous Halloysite/Magnetite Composite: Synthesis, Characterization and in Vitro Evaluation of the Effect on the Bacteria Viability. Mater. Today Commun. 2022, 32, 103877. [Google Scholar] [CrossRef]
- Iglesias-rojas, D.; Bar, A.; Muro, I.G.D.; Lezama, L.; Insausti, M. Getting Insight into How Iron (III) Oleate Precursors Affect the Features of Magnetite Nanoparticles. J. Solid State Chem. 2022, 316, 123619. [Google Scholar] [CrossRef]
- Vinod, K.R.; Saravanan, P.; Sakar, M.; Balakumar, S. Insights into the Nitridation of Zero-Valent Iron Nanoparticles for the Facile Synthesis of Iron Nitride Nanoparticles. RSC Adv. 2016, 123619, 45850–45857. [Google Scholar] [CrossRef]
- Crane, R.A.; Scott, T.B. The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium. J. Nanotechnol. 2013, 2013, 173625. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, R.; Yang, J.; Wang, P. Enhanced Heterogeneous Fenton Degradation of Organic Pollutants by CRC/Fe3O4 Catalyst at Neutral PH. Front. Chem. 2022, 10, 892424. [Google Scholar] [CrossRef]
- Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, 509097. [Google Scholar] [CrossRef]
- Li, A.; Zhang, M.; Ma, W.; Li, D.; Xu, Y. Sugar-Disguised Bullets for Combating Multidrug-Resistant Bacteria Infections Based on an Oxygen Vacancy-Engineered Glucose-Functionalized MoO3-x Photo-Coordinated Bienzyme. Chem. Eng. J. 2022, 431, 133943. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Y.; Song, C.; Tang, D.; Sun, J. Double-Potential Electro-Fenton: A Novel Strategy Coupling Oxygen Reduction Reaction and Fe2+/Fe3+ Recycling. Electrochem. Commun. 2018, 94, 55–58. [Google Scholar] [CrossRef]
- Divyapriya, G.; Nambi, I.; Senthilnathan, J. Ferrocene Functionalized Graphene Based Electrode for the Electro−Fenton Oxidation of Ciprofloxacin. Chemosphere 2018, 209, 113–123. [Google Scholar] [CrossRef]
- Company, L.; William, B.; Offeman, R.E. Preparation of Graphitic Oxide. J. Chem. 1958, 89, 1958. [Google Scholar] [CrossRef]
- Shen, Y.F.; Tang, J.; Nie, Z.H.; Wang, Y.D.; Ren, Y.; Zuo, L. Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification. Sep. Purif. Technol. 2009, 68, 312–319. [Google Scholar] [CrossRef]
- Bailón-garcía, E.; Carrasco-marín, F.; Pérez-cadenas, A.F.; Maldonado-hódar, F.J. Chemoselective Pt-Catalysts Supported on Carbon-TiO2 Composites for the Direct Hydrogenation of Citral to Unsaturated Alcohols. J. Catal. 2016, 344, 701–711. [Google Scholar] [CrossRef]
- Fernández-Sáez, N.; Villela-Martinez, D.E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Pastrana-Martínez, L.M. Heteroatom-Doped Graphene Aerogels and Carbon-Magnetite Catalysts for the Heterogeneous Electro-Fenton Degradation of Acetaminophen in Aqueous Solution. J. Catal. 2019, 378, 68–79. [Google Scholar] [CrossRef]
Sample | SB.E.T | SDFT | SDR | W0 | L0 | WDFT | LDFT | V0.95 | Vmeso |
---|---|---|---|---|---|---|---|---|---|
m2 g−1 | m2 g−1 | m2 g−1 | cm3 g−1 | nm | cm3 g−1 | nm | cm3 g−1 | cm3 g−1 | |
S | 436 | 506 | 492.2 | 0.170 | 0.63 | 0.19 | 0.61 | 0.218 | 0.043 |
C | 383 | 448 | 424.2 | 0.150 | 0.60 | 0.17 | 0.61 | 0.171 | 0.020 |
P | 363 | 428 | 408.6 | 0.145 | 0.65 | 0.15 | 0.61 | 0.183 | 0.038 |
Bond | Peak | S (%) | C (%) | P (%) |
---|---|---|---|---|
C-C | 284.6 | 70.3 | 68.8 | 71.2 |
C-O | 285.4 | 18.7 | 19.7 | 18.9 |
C-O-C | 286.8 | 5.5 | 5.7 | 5.3 |
C=O | 288.5 | 3.3 | 3.6 | 2.7 |
CO2 | 290.7 | 2.1 | 2.2 | 1.9 |
Total C | --- | 93.8 | 93.0 | 94.1 |
Total O2 | --- | 6.2 | 7.0 | 5.9 |
Sample | JK mA cm−2 | n | E° Initial V |
---|---|---|---|
S | 14.35 | 2.33 | −0.25 |
C | 9.00 | 2.50 | −0.23 |
P | 14.59 | 2.03 | −0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Valero, L.C.; Fajardo-Puerto, E.; Elmouwahidi, A.; Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin. Gels 2024, 10, 53. https://doi.org/10.3390/gels10010053
Valencia-Valero LC, Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Carrasco-Marín F, Pérez-Cadenas AF. Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin. Gels. 2024; 10(1):53. https://doi.org/10.3390/gels10010053
Chicago/Turabian StyleValencia-Valero, Laura Carolina, Edgar Fajardo-Puerto, Abdelhakim Elmouwahidi, Esther Bailón-García, Francisco Carrasco-Marín, and Agustín Francisco Pérez-Cadenas. 2024. "Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin" Gels 10, no. 1: 53. https://doi.org/10.3390/gels10010053
APA StyleValencia-Valero, L. C., Fajardo-Puerto, E., Elmouwahidi, A., Bailón-García, E., Carrasco-Marín, F., & Pérez-Cadenas, A. F. (2024). Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin. Gels, 10(1), 53. https://doi.org/10.3390/gels10010053