Platinum and Palladium Accumulation in Edible Mushroom Boletus aereus Bull. Growing in Unpolluted Soils of Sicily Region (Italy)
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of Sites and Sampling
2.2. Data Analysis
2.3. BCF and DIR
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karaman, M.; Novakovic, M.; Matavuly, M. Fundamental fungal strategies in restoration of natural environment. In Fungi: Types, Environmental Impact and Role in Disease; Paz Silva, A., Sol, M., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 167–214. [Google Scholar]
- Rakić, M.; Karaman, M.; Forkapić, S.; Hansman, J.; Kebert, M.; Bikit, K.; Mrdja, D. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ. Sci. Pollut. Res. 2014, 21, 11283–11292. [Google Scholar] [CrossRef] [PubMed]
- Širić, I.; Kasap, A.; Kos, I.; Markota, T.; Tomić, D.; Poljak, M. Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Šumarski List 2016, 140, 29–37. [Google Scholar]
- Ab Rhaman, S.M.S.; Naher, L.; Siddiquee, S. Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. J. Fungi 2022, 8, 42. [Google Scholar] [CrossRef]
- Ivanić, M.; FurdekTurk, M.; Tkalčec, Z.; Fiket, Ž.; Mešić, A. Distribution and Origin of Major, Trace and Rare Earth Elements in Wild Edible Mushrooms: Urban vs. Forest Areas. J. Fungi 2021, 7, 1068. [Google Scholar] [CrossRef] [PubMed]
- Gast, C.H.; Jansen, E.; Bierling, J.; Haanstra, L. Heavy metals in mushrooms and their relationship with soil characteristic. Chemosphere 1988, 17, 789–799. [Google Scholar] [CrossRef]
- Świsłowski, P.; Rajfur, M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol. Chem. Eng. S 2018, 25, 557–568. [Google Scholar] [CrossRef]
- Kalač, P.; Svaboda, L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Isildak, Ö.; Turkekul, I.; Elmastas, M.; Tuzen, M. Analysis of heavy metals in some wild-grown edible mushrooms from the middle Black Sea region, Turkey. Food Chem. 2004, 86, 547–552. [Google Scholar] [CrossRef]
- Campos, J.A.; Tejera, N.A.; Sánchez, C.J. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 2009, 22, 835–841. [Google Scholar] [CrossRef]
- Severoglu, Z.; Sumer, S.; Yalcin, B.; Leblebici, Z.; Aksoy, A. Trace metal levels in edible wild fungi. Int. J. Environ. Sci. Technol. 2013, 10, 295–304. [Google Scholar] [CrossRef]
- Mleczek, M.; Niedzielski, P.; Kalač, P.; Budka, A.; Siwulski, M.; Gąsecka, M.; Rzymski, P.; Magdziak, Z.; Sobieralski, K. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res. 2016, 23, 16280–16295. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Gąsecka, M.; Budka, A.; Siwulski, M.; Mleczek, P.; Magdziak, Z.; Budzyńska, S.; Niedzielski, P. Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. Environ. Sci. Pollut. Res. 2021, 28, 4430–4442. [Google Scholar] [CrossRef]
- Alaimo, M.G.; Dongarrà, G.; La Rosa, A.; Tamburo, E.; Vasquez, G.; Varrica, D. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy). Ecotoxicol. Environ. Saf. 2018, 157, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Venturella, G.; Gargano, M.L.; Compagno, R.; Saitta, A.; Alaimo, M.G. The Mineral Contents of Some Boletaceae Species from Sicily (Southern Italy). J. AOAC Int. 2014, 97, 20197. [Google Scholar] [CrossRef]
- Kalač, P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem. 2010, 122, 2–15. [Google Scholar] [CrossRef]
- Huang, Q.; Jia, Y.; Wan, Y.; Li, H.; Jiang, R. Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J. Food Sci. 2015, 80, 1612–1618. [Google Scholar] [CrossRef]
- Falandysz, J.; Sapkota, A.; Medyk, M.; Feng, X. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem. 2017, 221, 24–28. [Google Scholar] [CrossRef]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Tüzen, M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem. J. 2003, 74, 289–297. [Google Scholar] [CrossRef]
- Doĝan, H.H.; Sanda, M.A.; Uyanöz, R.; Oztürk, C.; Cetin, U. Contents of metals in some wild mushrooms: Its impact in human health. Biol. Trace Elem. Res. 2006, 110, 79–94. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Gençcelep, H.; Uzun, Y.; Tunçtürk, Y.; Demirel, K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009, 113, 1033–1036. [Google Scholar] [CrossRef]
- Mleczek, M.; Niedzielski, P.; Kalač, P.; Siwulski, M.; Rzymski, P.; Gasecka, M. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland. Food Addit. Contam. Part A 2016, 33, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.H.; Sun, Y.L.; Zhang, G.; Chakraborty, P. Spatial distributions and characteristics of platinum group elements (PGEs) in urban dusts from China and India. J. Geochem. Explor. 2013, 128, 153–157. [Google Scholar] [CrossRef]
- Barbante, C.; Veysseyre, A.; Ferrari, C.; van de Velde, K.; Morel, C.; Capodoglio, G.; Cescon, P.; Scarponi, G.; Boutron, C.F. Greenland snow evidence of large scale atmospheric contamination for platinum, palladium, and rhodium. Environ. Sci. Technol. 2001, 35, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Lu, M.; Morrison, G.M. Heterogeneity of platinum group metals in airborne particles. Environ. Sci. Technol. 2001, 35, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Niskavaara, H. Regional Distribution of Pd, Pt and Au-Emissions from the Nickel Industry on the Kola Peninsula, NW-Russia, as Seen in Moss and Humus Samples. In Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects; Zereini, F., Alt, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 53–70. [Google Scholar]
- Zereini, F.; Alt, F. Anthropogenic Platinum-Group Element Emissions: Their Impact on Man and Environment; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Godlewska-Żyłkiewicz, B. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochim. Acta B 2003, 58, 1531–1540. [Google Scholar] [CrossRef]
- Kowalska, J.; Asztemborska, M.; Bystrzejewska-Piotrowska, G. Platinum uptake by mustard (Sinapis alba L.) and maize (Zea mays L.) plants. Nukleonika 2004, 49, 31–34. [Google Scholar]
- Kowalska, J.; Huszał, S.; Sawicki, M.G. Voltammetric determination of platinum in plant material. Electroanal 2004, 16, 1266–1270. [Google Scholar] [CrossRef]
- Moldovan, M. Origin and fate of platinum group elements in the environment. Anal. Bioanal. Chem. 2007, 388, 537–540. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X. Health risk of platinum group elements from automobile catalysts. International Symposium on Safety Science and Technology. Procedia Eng. 2012, 45, 1004–1009. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ. 2009, 407, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Lo Medico, F.; Varrica, D.; Alaimo, M.G. Occurrence of palladium and platinum in human scalp hair of adolescents living in urban and industrial sites. Sci. Total Environ. 2023, 892, 164777. [Google Scholar] [CrossRef]
- Law 02/2006 of the Region of Sicily. Disciplina Della Raccolta, Commercializzazione e Valorizzazione Dei Funghi Epigei Spontanei. Available online: http://www.gurs.regione.sicilia.it/Gazzette/g06-06/g06-06.htm (accessed on 6 August 2023).
- Breitenbach, J.; Kränzlin, F. Champignon de Suisse, Tome 1 Les Ascomycètes; Mykologica: Lucerne, Switzerland, 1981. [Google Scholar]
- Boccardo, F.; Traverso, M.; Vizzini, A.; Zotti, M. Funghi d’Italia; Zanichelli: Bologna, Italy, 2008. [Google Scholar]
- Augustsson, A.; Qvarforth, A.; Engström, E.; Paulukat, C.; Rodushkin, I. Trace and major elements in food supplements of different origin: Implication for daily intake levels and health risks. Toxicol. Rep. 2021, 8, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Djingova, R.; Kovacheva, P.; Wagner, G.; Markert, B. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci. Total Environ. 2003, 308, 235–246. [Google Scholar] [CrossRef]
- Mleczek, M.; Siwulski, M.; Mikołajczak, P.; Goliński, P.; Gąsecka, M.; Sobieralski, K.; Dawidowicz, L.; Szymańczyk, M. Bioaccumulation of elements in three selected mushroom species from southwest Poland. J. Environ. Sci. Health B 2015, 50, 207–216. [Google Scholar] [CrossRef]
- Kollander, B.; Rodushkin, I.; Sundström, B. Multi-Element Assessment of Potentially Toxic and Essential Elements in New and Traditional Food Varieties in Sweden. Foods 2023, 12, 1831. [Google Scholar] [CrossRef]
- Frazzoli, C.; Cammarone, R.; Caroli, S. Investigation of palladium and platinum levels in food by sector field inductively coupled plasma mass spectrometry. Food Addit. Contam. 2007, 24, 546–552. [Google Scholar] [CrossRef]
- Ysart, G.; Miller, P.; Crews, H.; Robb, P.; Baxter, M.; De L’Argy, C.; Lofthouse, S.; Sargent, C.; Harrison, N. Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit. Contam. 1999, 16, 391–403. [Google Scholar] [CrossRef]
- Vaughan, G.T.; Florence, T.M. Platinum in the human diet, blood, hair and excreta. Sci. Total Environ. 1992, 111, 47–58. [Google Scholar] [CrossRef]
- Cabrera-Vique, C.; Teissedre, P.L.; Cabanis, M.T.; Cabanis, J.-C. Determination of platinum in wine by graphite furnace atomic absorption spectrometry. J. AOAC Int. 1997, 80, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J.; Ayres, D.C. Chemical Principles of Environmental Pollution; Blackie Academic & Professional: London, UK, 1997; p. 395. [Google Scholar]
- Kalavrouziotis, I.K.; Koukoulakis, P.H. The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut. 2009, 196, 393–402. [Google Scholar] [CrossRef]
- Savignan, L.; Faucher, S.; Chéry, P.; Lespes, G. Platinum group elements contamination in soils: Review of the current state. Chemosphere 2021, 271, 129517. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, J.; Łodyga-Chruścińska, E.; Chrustowicz, J. Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 2014, 28, 247–254. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; van Grieken, R. Platinum group elements in the environment and their health risk. Sci. Total Envion. 2004, 318, 1–43. [Google Scholar]
- Dubiella-Jackowska, A.; Kudak, B.; Polkowska, Z.; Namisenik, J. Environment fate of traffic-derived platinum group metals. Crit. Rev. Anal. Chem. 2009, 39, 251–271. [Google Scholar] [CrossRef]
- Iavicoli, I.; Bocca, B. Biomonitoring of tram divers exposed to airborne platinum, rhodium and palladium. Int. Arch. Occup. Environ. Health 2007, 81, 109–114. [Google Scholar] [CrossRef]
- Zereini, F.; Skerstupp, B.; Alt, F.; Helmers, E.; Urban, H. Geochemical behavior of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: Experimental results and environmental investigations. Sci. Total Environ. 1997, 206, 137–146. [Google Scholar] [CrossRef]
- Schafer, J.; Puchelt, H. Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soil. J. Geochem. Explor. 1998, 64, 307–314. [Google Scholar] [CrossRef]
- Azaroual, M.; Romand, B.; Freyssinet, P.; Disnar, J.-R. Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions. Geochem. Cosmochim. Acta 2001, 65, 4453–4466. [Google Scholar] [CrossRef]
- Colombo, C.; Oates, C.J.; Monhemius, A.J.; Plant, J.A. Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochem. Explor. Environ. Anal. 2008, 8, 91–101. [Google Scholar]
- Suchá, V.; Mihaljevič, M.; Ettler, V.; Strnad, L. The pH-dependent release of platinum group elements (PGEs) from gasoline and diesel fuel catalysts: Implication for weathering in soils. J. Environ. Manag. 2016, 171, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional composition and biological properties of sixteen edible mushroom species. Appl. Sci. 2022, 12(16), 8074. [Google Scholar] [CrossRef]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Puścion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J. Food Compos. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, G.; Wang, L. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province China. Environ. Sci. Pollut. Res. Int. 2020, 27, 29218–29227. [Google Scholar] [CrossRef]
- Alaimo, M.G.; Saitta, A.; Ambrosio, E. Bedrock and soil geochemistry influence the content of chemical elements in wild edible mushrooms (Morchella group) from South Italy (Sicily). Acta Mycol. 2019, 54, 1122. [Google Scholar] [CrossRef]
- Dowlati, M.; Sobhi, H.R.; Esrafili, A.; FarzadKia, M.; Yeganeh, M. Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food. Sci. Technol. 2021, 109, 527–535. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Popović-Djordjević, J.; Solak, M.H. Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 190, 110058. [Google Scholar] [CrossRef]
- Mleczek, M.; Siwulski, M.; Budka, A.; Mleczek, P.; Budzyńska, S.; Szostek, M.; Kuczyńska-Kippen, N.; Kalač, P.; Niedzielski, P.; Gąsecka, M.; et al. Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. Chemosphere 2021, 263, 128095. [Google Scholar] [CrossRef]
- García, M.A.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms: Levels and bioaccumulation factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef]
- Širić, I.; Kumar, P.; Eid, E.M.; Bachheti, A.; Kos, I.; Bedeković, D.; Mioč, B.; Humar, M. Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. J. Fungi 2022, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Peucker-Ehrenbrink, B.; Jahn, B.M. Rhenium osmium isotope systematics and platinum group element concentations: Loess and the upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 1061. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Guideline on the Specification Limits for Residues of Metal Catalysts or Metal Reagents. February 2008. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-specification-limits-residues-metal-catalysts-metal-reagents_en.pdf (accessed on 12 June 2023).
- Gebel, T. Toxicology of platinum, palladium, rhodium, and their compounds. In Anthropogenic Platinum-Group Element Emissions; Springer: Berlin/Heidelberg, Germany, 2000; pp. 245–255. [Google Scholar]
- Food Standards Agency. MAFF UK—Multi-Element Survey of Wild Edible Fungi and Blackberries (Sheet 199). 2000. Available online: http://www.food.gov.uk/science/surveillance/maffinfo/2000/maff-2000-199 (accessed on 12 June 2023).
No. | Sampling Location | Substrate | Vegetation Type |
---|---|---|---|
F1–F14 | Nebrodi Mountains | SED | Quercus cerris, Q. virgiliana, Q. suber |
F15–F16 | Sicani Mountains | SED | Q. sativa, Q.suber |
F17–F18 | Peloritani Mountains | SED | Q. virgiliana, Castanea sativa, Erica arborea, Genista e Prunus |
F19–F20 | Madonie Mountains | SED | Q. suber |
F21–F22 | Palermo Mountains | SED | Q. virgiliana |
F23–F24 | Hyblaean Mountains | SED | Q. virgiliana, Q. suber, Q. pubescens, C. avellana, C. sativa |
F25–F27 | Erei Mountains | SED | Eucalyptus camaldulensis, Q. virgiliana, Q. suber |
F28–F29 | Trapani Mountains | SED | Q. suber |
F30–F39 | Mount Etna | VULC | Q. virgiliana, Q. sativa, Q. suber, Fagus sylvatica, C. avellana |
Min | Max | Mean | Std. Dev. | Median | P10 | Q25 | Q75 | P90 | Skewness | Kurtosis | CV% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pd | 0.31 | 3.09 | 1.26 | 0.59 | 1.18 | 0.63 | 0.81 | 1.71 | 2.04 | 0.79 | 0.76 | 46 |
Pt | 0.21 | 4.22 | 1.30 | 0.97 | 1.08 | 0.38 | 0.54 | 1.87 | 2.52 | 1.07 | 0.71 | 75 |
Pt/Pd | 0.13 | 4.84 | 1.35 | 1.15 | 1.06 | 0.20 | 0.33 | 2.07 | 2.73 |
Pd | Pt | Reference | |
---|---|---|---|
Boletus aereus Bull. | 0.52 | 0.53 | this study |
Mushrooms | 0.03 * | 0.01 * | Mleczek et al. [42] |
Mushrooms | 0.1 * | 0.9 * | Mleczek et al. [12] |
algae | 6.6 | 0.56 | Augustsson et al. [40] |
berries, herbs | 11 | 0.56 | Djingova et al. [41] |
Cerals | 0.2 | 0.3 | Kollander et al. [43] |
Vegetable | 69.6 | 0.024 | Frazzoli et al. [44] |
Potatos | 0.5 | <0.1 | Ysart et al. [45] |
Green vegetable | 0.6 | 0.1 | Ysart et al. [45] |
Fresh fruit | 0.4 | <0.1 | Ysart et al. [45] |
Nuts | 30 | 0.1 | Ysart et al. [45] |
ng g−1 | Pd | Pt | BCF Pd | BCF Pt |
---|---|---|---|---|
Upper continental crust | 0.52 | 0.5 | 2.4 | 2.5 |
Sicilian soil | 0.21 | 0.2 | 5.9 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaimo, M.G.; Varrica, D. Platinum and Palladium Accumulation in Edible Mushroom Boletus aereus Bull. Growing in Unpolluted Soils of Sicily Region (Italy). J. Fungi 2023, 9, 914. https://doi.org/10.3390/jof9090914
Alaimo MG, Varrica D. Platinum and Palladium Accumulation in Edible Mushroom Boletus aereus Bull. Growing in Unpolluted Soils of Sicily Region (Italy). Journal of Fungi. 2023; 9(9):914. https://doi.org/10.3390/jof9090914
Chicago/Turabian StyleAlaimo, Maria Grazia, and Daniela Varrica. 2023. "Platinum and Palladium Accumulation in Edible Mushroom Boletus aereus Bull. Growing in Unpolluted Soils of Sicily Region (Italy)" Journal of Fungi 9, no. 9: 914. https://doi.org/10.3390/jof9090914
APA StyleAlaimo, M. G., & Varrica, D. (2023). Platinum and Palladium Accumulation in Edible Mushroom Boletus aereus Bull. Growing in Unpolluted Soils of Sicily Region (Italy). Journal of Fungi, 9(9), 914. https://doi.org/10.3390/jof9090914