Risk Factors for Pneumocystis jirovecii Pneumonia in Non-HIV Patients Hospitalized for COVID-19: A Case-Control Study
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and me-ta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Kurra, N.; Woodard, P.I.; Gandrakota, N.; Gandhi, H.; Polisetty, S.R.; Ang, S.P.; Patel, K.P.; Chitimalla, V.; Baig, M.M.A.; Samudrala, G. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e23687. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, J.; Mesquida, A.; Machado, M.; Sánchez-Carrillo, C.; Muñoz, P.; Escribano, P.; Guinea, J. Yeasts from blood cultures in the wake of the COVID-19 pandemic in a tertiary care hospital: Shift in species epidemiology, steady low antifungal re-sistance and full in vitro ibrexafungerp activity. Med. Mycol. 2023, 61, myad072. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef] [PubMed]
- Salmanton-García, J.; Sprute, R.; Stemler, J.; Bartoletti, M.; Dupont, D.; Valerio, M.; Garcia-Vidal, C.; Falces-Romero, I.; Machado, M.; de la Villa, S.; et al. COVID-19–Associated Pulmonary Aspergillosis, March–August 2020. Emerg. Infect. Dis. 2021, 27, 1077–1086. [Google Scholar] [CrossRef]
- Satija, A.; Anand, T.; Mukherjee, A.; Velamuri, P.S.; Singh, K.J.; Das, M.; Josten, K.; Keche, A.Y.; Nagarkar, N.M.; Gupta, P.; et al. Satellite Epidemic of Covid-19 Associated Mucormycosis in India: A Multi-Site Observational Study. Mycopathologia 2023, 1–9, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, A.; Falahi, S.; Kenarkoohi, A. COVID-19-associated opportunistic infections: A snapshot on the current reports. Clin. Exp. Med. 2021, 22, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, A.R.; Al-Dulaimi, A.; Alkhatib, M.; Al Maqbali, M.; Al-Najjar, M.A.; Al-Rshaidat, M.M. A comprehensive clinical guide for Pneumocystis jirovecii pneumonia: A missing therapeutic target in HIV-uninfected patients. Expert. Rev. Respir. Med. 2022, 16, 1167–1190. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, P.; Bahr, N.C.; Snyder, K.; Shoemaker, D.M. Pneumocystis jirovecii Infections Among COVID-19 Patients: A Case Series and Literature Review. Open Forum Infect. Dis. 2023, 10, ofad043. [Google Scholar] [CrossRef]
- Sasani, E.; Bahrami, F.; Salehi, M.; Aala, F.; Bakhtiari, R.; Abdollahi, A.; Barac, A.; Abdorahimi, M.; Khodavaisy, S. Pneumocystis pneumonia in COVID-19 patients: A comprehensive review. Heliyon 2023, 9, e13618. [Google Scholar] [CrossRef]
- Miller, R.F.; Le Noury, J.; Corbett, E.L.; Felton, J.M.; De Cock, K.M. Pneumocystis carinii infection: Current treatment and prevention. J. Antimicrob. Chemother. 1996, 37, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in lon-gitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- WHO R&D Blueprint Novel Coronavirus COVID-19 Therapeutic Trial Synopsis. 2020. Available online: https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020 (accessed on 18 February 2022).
- de Boer, M.; Kroon, F.; le Cessie, S.; de Fijter, J.; van Dissel, J. Risk factors for Pneumocystis jirovecii pneumonia in kidney transplant recipients and appraisal of strategies for selective use of chemoprophylaxis. Transpl. Infect. Dis. 2011, 13, 559–569. [Google Scholar] [CrossRef]
- Maertens, J.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.G.; Helweg-Larsen, J.; et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2397–2404. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.M.; Peacock, J.E. Pneumocystis Pneumonia and the Rheumatologist: Which Patients are at Risk and How Can PCP be Prevented? Curr. Rheumatol. Rep. 2017, 19, 35. [Google Scholar] [CrossRef]
- Beumer, M.; Koch, R.; van Beuningen, D.; OudeLashof, A.; van de Veerdonk, F.; Kolwijck, E.; van der Hoeven, J.; Bergmans, D.; Hoedemaekers, C. Influenza virus and factors that are associated with ICU admission, pulmonary co-infections and ICU mortality. J. Crit. Care 2019, 50, 59–65. [Google Scholar] [CrossRef]
- The Recovery Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19—Preliminary Report. N. Engl. J. Med. 2020, 384, 693–704. [Google Scholar]
- Sun, H.-B.; Zhang, Y.-M.; Huang, L.-G.; Lai, Q.-N.; Mo, Q.; Ye, X.-Z.; Wang, T.; Zhu, Z.-Z.; Lv, X.-L.; Luo, Y.-J.; et al. The changes of the peripheral CD4+ lymphocytes and inflammatory cytokines in Patients with COVID-19. PLoS ONE 2020, 15, e0239532. [Google Scholar] [CrossRef]
- Nasim, S.; Kumar, S.; Azim, D.; Ashraf, Z.; Azeem, Q. Corticosteroid use for 2019-nCoV infection: A double-edged sword. Infect. Control Hosp. Epidemiol. 2020, 41, 1244–1245. [Google Scholar] [CrossRef] [Green Version]
- White, P.L.; Dhillon, R.; Cordey, A.; Hughes, H.; Faggian, F.; Soni, S.; Pandey, M.; Whitaker, H.; May, A.; Morgan, M.; et al. A National Strategy to Diagnose Coronavirus Disease 2019—Associated Invasive Fungal Disease in the Intensive Care Unit. Clin. Infect. Dis. 2021, 73, e1634–e1644. [Google Scholar] [CrossRef]
- Hearing, S.D.; Norman, M.; Smyth, C.; Foy, C.; Dayan, C.M. Wide Variation in Lymphocyte Steroid Sensitivity Among Healthy Human Volunteers. J. Clin. Endocrinol. Metab. 1999, 84, 4149–4154. [Google Scholar] [CrossRef] [Green Version]
- Calero-Bernal, M.L.; Martin-Garrido, I.; Donazar-Ezcurra, M.; Limper, A.H.; Carmona, E.M. Intermittent Courses of Corticosteroids Also Present a Risk for Pneumocystis Pneumonia in Non-HIV Patients. Can. Respir. J. 2016, 2016, 2464791. [Google Scholar] [CrossRef] [Green Version]
- Boylan, C.J.; Current, W.L. Improved rat model of Pneumocystis carinii pneumonia: Induced laboratory infections in Pneumocystis-free animals. Infect. Immun. 1992, 60, 1589–1597. [Google Scholar] [CrossRef]
- Walzer, P.D.; LaBine, M.; Redington, T.J.; Cushion, M.T. Lymphocyte changes during chronic administration of and withdrawal from corticosteroids: Relation to Pneumocystis carinii pneumonia. J. Immunol. 1984, 133, 2502–2508. [Google Scholar] [CrossRef]
- Shiba, H.; Kotani, T.; Nagai, K.; Hata, K.; Yamamoto, W.; Yoshikawa, A.; Wada, Y.; Hiramatsu, Y.; Makino, H.; Ueda, Y.; et al. Prognostic Factors Affecting Death in Patients with Rheumatoid Arthritis Complicated by Pneumocystis jirovecii Pneumonia and One-Year Clinical Course: The ANSWER Cohort Study. Int. J. Mol. Sci. 2023, 24, 7399. [Google Scholar] [CrossRef]
- Hosseini-Moghaddam, S.M.; Dufresne, P.J.; Hunter Gutierrez, E.; Dufresne, S.F.; House, A.A.; Humar, A.; Kumar, D.; Jevnikar, A.M. Long-lasting cluster of nosocomial pneumonia with a single Pneumocystis jirovecii genotype involving different organ allograft recipients. Clin. Transplant. 2020, 34, e14108. [Google Scholar] [CrossRef]
- Le Gal, S.; Damiani, C.; Rouillé, A.; Grall, A.; Tréguer, L.; Virmaux, M.; Moalic, E.; Quinio, D.; Moal, M.C.; Berthou, C.; et al. A Cluster of Pneumocystis Infections Among Renal Transplant Recipients: Molecular Evidence of Colonized Patients as Potential Infectious Sources of Pneumocystis jirovecii. Clin. Infect. Dis. 2012, 54, e62–e71. [Google Scholar] [CrossRef]
- Alsayed, A.R.; Talib, W.; Al-Dulaimi, A.; Daoud, S.; Al Maqbali, M. The first detection of Pneumocystis jirovecii in asthmatic patients post COVID-19 in Jordan. Bosn. J. Basic. Med. Sci. 2022, 22, 784–790. [Google Scholar] [CrossRef]
- Karageorgopoulos, D.; Qu, J.-M.; Korbila, I.; Zhu, Y.-G.; Vasileiou, V.; Falagas, M. Accuracy of β-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: A meta-analysis. Clin. Microbiol. Infect. 2013, 19, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Del Corpo, O.; Butler-Laporte, G.; Sheppard, D.C.; Cheng, M.P.; McDonald, E.G.; Lee, T.C. Diagnostic accuracy of serum (1-3)-β-D-glucan for Pneumocystis jirovecii pneumonia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1137–1143. [Google Scholar] [CrossRef]
- Fragoulis, G.E.; Nikiphorou, E.; Dey, M.; Zhao, S.S.; Courvoisier, D.S.; Arnaud, L.; Atzeni, F.; Behrens, G.M.; Bijlsma, J.W.; Böhm, P.; et al. 2022 EULAR recommendations for screening and prophylaxis of chronic and opportunistic infections in adults with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2023, 82, 742. [Google Scholar] [CrossRef]
Overall N = 54 | Cases N = 18 | Controls N = 36 | p-Value | OR (95%CI) | p-Value | |
---|---|---|---|---|---|---|
Age, years, median (IQR) | 60 (51–68) | 60 (49.75–70) | 60 (49–78) | 0.98 | 0.994 (0.995–1.034) | 0.754 |
Females, n (%) | 19 (34.5) | 7 (39) | 12 (32) | 0.764 | 0.754 (0.234–2.433) | 0.637 |
Pregnant, n (%) | 7 (12.7) | 4 (22) | 3 (8) | 0.2 | 3.2 (064–16.32) | 0.155 |
Charlson Comorbidity Index, median (IQR) | 3 (1–5) | 3 (0.75–5) | 3 (1–5) | 0.389 | 0.876 (0.685–1.12) | 0.291 |
Deaths, n (%) | 14 (25.5) | 6 (33) | 8 (21.6) | 0.51 | - | - |
ICU admission, n (%) | 20 (37) | 9 (50) | 11(30) | 0.232 | - | - |
SARS-CoV-2 vaccination, n (%) | ||||||
1 dose | 33 (60) | 7 (39) | 26 (70) | 0.027 | 0.269 (0.083–0.877) | 0.029 |
2 doses | 29 (52) | 6 (33) | 23 (62) | 0.042 | 0.304 (0.093–0.994) | 0.049 |
3 doses | 16 (29) | 3 (16.7) | 13 (35) | 0.135 | 0.369 (0.9–1.5) | 0.166 |
4 doses | 2 (3.6) | 0 (0) | 2 (5.4) | 1 | 0 (0–0) | - |
Pneumocystis jirovecii prophylaxis recipients, n (%) | 8 (14.5) | 1 (5.6) | 7 (19) | 0.25 | 0.252 (0.029–2.226) | 0.215 |
Length of stay, days, median (IQR) | 16 (12–34) | 20.5 (14.5–50.25) | 15 (10.5–27) | 0.058 | 1.033 (0.998–1.068) | 0.062 |
Days of SARS-CoV-2 positivity, median (IQR) | 20 (14–26) | 25 (20–37) | 16 (13–23) | 0.014 | 1.141 (0.993–1.322) | 0.062 |
Use of immunomodulatory drug for COVID-19, n (%) | 6 (11) | 3 (16.7) | 3 (8) | 0.381 | 2.267 (0.0409–12.5) | 0.349 |
Hematologic malignancy, n (%) | 29 (53) | 5 (27.8) | 10 (27) | 0.39 | 0.564 (0.166–1.915) | 0.359 |
Use of anti-CD20, n (%) | 6 (11) | 3 (16.7) | 3 (8) | 0.381 | 2.267 (0.409–12.5) | 0.349 |
Chronic steroidal treatment, n (%) | 8 (14.5) | 3 (16.7) | 5 (13.5) | 1 | 1.28 (0.270–6) | 0.756 |
Solid organ transplant recipients, n (%) | 6 (11) | 2 (11) | 4 (10.8) | 1 | 1.031 (0.171–6.23) | 0.973 |
Cumulative steroid dose during hospital stay, milligrams, median (IQR) | 84 (55–190) | 178.5 (68–513) | 78 (46–158) | 0.026 | 1.004 (1–1.008) | 0.042 |
Number of days of steroid, median (IQR) | 15 (12–27) | 15 (12–20) | 16.5 (12–29.25) | 0.718 | 0.984 (0.929–1.043) | 0.596 |
Worst WHO grade, median (IQR) | 4 (4–6) | 5 (4–6) | 4 (4–6.5) | 0.434 | 1.287 (0.7–2.378) | 0.421 |
Lowest PaO2/FiO2 ratio, median (IQR) | 135 (89–235) | 100 (65–191) | 150 (100–269) | 0.081 | 0.995 (0.988–1.002) | 0.13 |
Days of highest O2, n (%) | 7 (5–10) | 7 (5–10) | 6 (4.75–10) | 0.849 | 0.965 (0.873–1.068) | 0.5 |
Lowest lymphocyte value, cells/mm3, median (IQR) | 620 (320–1480) | 540 (217–772) | 780 (415–2313) | 0.033 | 1 (0.999–1) | 0.732 |
Highest CRP value, mg/dL, median (IQR) | 10 (2.9–20) | 14.4 (10–28.6) | 6.3 (2.3–15) | 0.005 | 1.076 (1.016–1.140) | 0.012 |
Highest LDH value, IU/mL, median (IQR) | 384 (289–524) | 368 (289–452) | 384 (258–533) | 0.788 | 0.999 (0.996–1.002) | 0.4 |
Ferritin on admission, median (IQR) | 595 (246–1335) | 740 (279–1342) | 520 (205–1073) | 0.332 | 1 (0.999–1.001) | 0.588 |
Highest D-dimer value, median (IQR) | 765 (533–1524) | 761 (497–1392) | 1051 (570–1526) | 0.554 | 1 (1) | 0.641 |
Vaccinated N = 32 | Non-Vaccinated N = 22 | p-Value | |
---|---|---|---|
Cumulative steroid dose during admission, milligrams, median (IQR) | 78 (50–163) | 168.5 (80–568) | 0.031 |
Highest CRP value, mg/dL, median (IQR) | 8.26 (2.34–21.59) | 12.36 (3.33–17.37) | 0.223 |
Worst WHO grade, median (IQR) | 5 (5–6.5) | 6 (5–7) | 0.089 |
Lowest PaO2/FiO2 ratio, median (IQR) | 183 (100–275) | 100 (75–140) | 0.015 |
Days of highest O2, n (%) | 6.5 (4.25–9.75) | 7 (5–10) | 0.739 |
Highest LDH value, IU/mL, median (IQR) | 348 (221–528) | 390 (305–505) | 0.460 |
Lowest lymphocyte value, cells/mm3, median (IQR) | 600 (315–1635) | 680 (355–1065) | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viceconte, G.; Buonomo, A.R.; D’Agostino, A.; Foggia, M.; Di Fusco, A.; Pinchera, B.; Scotto, R.; Iacovazzo, C.; Fanasca, L.; Messina, G.; et al. Risk Factors for Pneumocystis jirovecii Pneumonia in Non-HIV Patients Hospitalized for COVID-19: A Case-Control Study. J. Fungi 2023, 9, 838. https://doi.org/10.3390/jof9080838
Viceconte G, Buonomo AR, D’Agostino A, Foggia M, Di Fusco A, Pinchera B, Scotto R, Iacovazzo C, Fanasca L, Messina G, et al. Risk Factors for Pneumocystis jirovecii Pneumonia in Non-HIV Patients Hospitalized for COVID-19: A Case-Control Study. Journal of Fungi. 2023; 9(8):838. https://doi.org/10.3390/jof9080838
Chicago/Turabian StyleViceconte, Giulio, Antonio Riccardo Buonomo, Alessia D’Agostino, Maria Foggia, Antonio Di Fusco, Biagio Pinchera, Riccardo Scotto, Carmine Iacovazzo, Luca Fanasca, Gaetana Messina, and et al. 2023. "Risk Factors for Pneumocystis jirovecii Pneumonia in Non-HIV Patients Hospitalized for COVID-19: A Case-Control Study" Journal of Fungi 9, no. 8: 838. https://doi.org/10.3390/jof9080838