Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sequence Data Mining and In Silico Structural Modelling of C. rosea UDP-Glycosyltransferases
2.3. Fungal Strains, Preparation of Conidia and Protoplast Production
2.4. CRISPR/Cas9 Knockout of Target C. rosea UDP-Glycosyltransferases
2.5. Genomic DNA Isolation and Confirmation of Knockouts Using PCR and Whole Genome Sequencing
2.6. Confrontation Plate Assays of C. rosea and F. graminearum
2.7. High-Resolution Mass Spectrometry (HRMS) Analysis
2.8. Differentially Expressed Gene Analysis
3. Results
3.1. In Silico Data Mining and Structural Comparisons of UDP-GTases
3.2. Functional Evaluation of Select UDP-GTase Deletions on 15-ADON-3G Production by C. rosea
3.3. Differential Gene Expression Evaluation for Selected UDP-GTases
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitt, J.I.; David Miller, J. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.; Chan, E.T.S.; Zhou, T.; Seah, S.Y.K. Microbial Detoxification of Mycotoxins in Food. Front. Microbiol. 2022, 13, 957148. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin Toxicity and Residue in Animal Products: Prevalence, Consumer Exposure and Reduction Strategies—A Review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.M.; de Gonzalez, A.B.; Beland, F.A.; Browne, P.; Demers, P.A.; Lachenmeier, D.W.; Bahadori, T.; Barupal, D.K.; Belpoggi, F.; Comba, P.; et al. IARC Monographs Priorities Group Advisory Group Recommendations on Priorities for the IARC Monographs. Lancet Oncol. 2019, 20, 763–764. [Google Scholar] [CrossRef]
- Logrieco, A.; Battilani, P.; Leggieri, M.C.; Jiang, Y.; Haesaert, G.; Lanubile, A.; Mahuku, G.; Mesterhazy, A.; Ortega-Beltran, A.; Pasti, M.; et al. Perspectives on Global Mycotoxin Issues and Management from the Mycokey Maize Working Group. Plant Dis. 2021, 105, 525–537. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Wang, R.; Xu, Q. Deoxynivalenol in Food and Feed: Recent Advances in Decontamination Strategies. Front. Microbiol. 2023, 14, 1141378. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of Action, Human Exposure, and Toxicological Relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Gardiner, S.A.; Boddu, J.; Berthiller, F.; Hametner, C.; Stupar, R.M.; Adam, G.; Muehlbauer, G.J. Transcriptome Analysis of the Barley-Deoxynivalenol Interaction: Evidence for a Role of Glutathione in Deoxynivalenol Detoxification. Mol. Plant Microbe Interact 2010, 23, 962–976. [Google Scholar] [CrossRef] [Green Version]
- Sewald, N.; Lepschy Von Gleissenthapc, J.; Schuster, M.; Muller, G.; Aplin, R.T. Structure Elucidation of a Plant Metabolite of 4-Desoxynivalenol. Tetrahedron. Asymmetr. 1992, 3, 953–960. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-Glucosyltransferase from Arabidopsis Thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweiger, W.; Boddu, J.; Shin, S.; Poppenberger, B.; Berthiller, F.; Lemmens, M.; Muehlbauer, G.J.; Adam, G. Validation of a Candidate Deoxynivalenol-Inactivating UDP-Glucosyltransferase from Barley by Heterologous Expression in Yeast. Mol. Plant Microbe Interact. 2010, 23, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairullina, A.; Renhuldt, N.T.; Wiesenberger, G.; Bentzer, J.; Collinge, D.B.; Adam, G.; Bülow, L. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins 2022, 14, 446. [Google Scholar] [CrossRef]
- Kirana, R.P.; Gaurav, K.; Arora, S.; Wiesenberger, G.; Doppler, M.; Michel, S.; Zimmerl, S.; Matic, M.; Eze, C.E.; Kumar, M.; et al. Identification of a UDP-Glucosyltransferase Conferring Deoxynivalenol Resistance in Aegilops Tauschii and Wheat. Plant Biotechnol. J. 2023, 21, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Kluger, B.; Bueschl, C.; Lemmens, M.; Michlmayr, H.; Malachova, A.; Koutnik, A.; Maloku, I.; Berthiller, F.; Adam, G.; Krska, R.; et al. Biotransformation of the Mycotoxin Deoxynivalenol in Fusarium Resistant and Susceptible near Isogenic Wheat Lines. PLoS ONE 2015, 10, e0119656. [Google Scholar] [CrossRef] [PubMed]
- Wetterhorn, K.M.; Newmister, S.A.; Caniza, R.K.; Busman, M.; McCormick, S.P.; Berthiller, F.; Adam, G.; Rayment, I. Crystal Structure of Os79 (Os04g0206600) from Oryza Sativa: A UDP-Glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry 2016, 55, 6175–6186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shin, S.; Heinen, S.; Dill-Macky, R.; Berthiller, F.; Nersesian, N.; Clemente, T.; McCormick, S.; Muehlbauer, G.J. Transgenic Wheat Expressing a Barley UDP-Glucosyltransferase Detoxifies Deoxynivalenol and Provides High Levels of Resistance to Fusarium Graminearum. Mol. Plant Microbe Int. 2015, 28, 1237–1246. [Google Scholar] [CrossRef] [Green Version]
- Wetterhorn, K.M.; Gabardi, K.; Michlmayr, H.; Malachova, A.; Busman, M.; McCormick, S.P.; Berthiller, F.; Adam, G.; Rayment, I. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza Sativa. Biochem. US 2017, 56, 6585–6596. [Google Scholar] [CrossRef]
- Demissie, Z.A.; Witte, T.; Robinson, K.A.; Sproule, A.; Foote, S.J.; Johnston, A.; Harris, L.J.; Overy, D.P.; Loewen, M.C. Transcriptomic and Exometabolomic Profiling Reveals Antagonistic and Defensive Modes of Clonostachys Rosea Action against Fusarium graminearum. Mol. Plant Microbe Interact. 2020, 33, 842–858. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.; Liu, N.; Yan, Z.; Liao, Y.; Chen, J.; De Saeger, S.; Yang, H.; Zhang, Q.; Wu, A. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma When Confronted with Fusarium Graminearum. Toxins 2016, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demissie, Z.A.Z.A.; Foote, S.J.S.J.; Tan, Y.; Loewen, M.C. Profiling of the Transcriptomic Responses of Clonostachys Rosea Upon Treatment with Fusarium Graminearum Secretome. Front. Microbiol. 2018, 9, 1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, T.; Sridhar, P.S.; Blackman, C.; Foote, S.J.; Allingham, J.S.; Subramaniam, R.; Loewen, M.C. Fusarium Graminearum Ste3 G-Protein Coupled Receptor: A Mediator of Hyphal Chemotropism and Pathogenesis. mSphere 2022, 7, e00456-22. [Google Scholar] [CrossRef] [PubMed]
- Al Abdallah, Q.; Ge, W.; Fortwendel, J.R. A Simple and Universal System for Gene Manipulation in Aspergillus Fumigatus: In Vitro-Assembled Cas9-Guide RNA Ribonucleoproteins Coupled with Microhomology Repair Templates. mSphere 2017, 2, e00446-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frandsen, R.J.N.; Andersson, J.A.; Kristensen, M.B.; Giese, H. Efficient Four Fragment Cloning for the Construction of Vectors for Targeted Gene Replacement in Filamentous Fungi. BMC Mol. Biol. 2008, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Wingett, S.W.; Andrews, S. Fastq Screen: A Tool for Multi-Genome Mapping and Quality Control [Version 1; Referees: 3 Approved, 1 Approved with Reservations]. F1000Res 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, Y.; Feng, Y. Structural Dissection of Sterol Glycosyltransferase UGT51 from Saccharomyces Cerevisiae for Substrate Specificity. J. Struct. Biol. 2018, 204, 371–379. [Google Scholar] [CrossRef]
- Errey, J.C.; Lee, S.S.; Gibson, R.R.; Fleites, C.M.; Barry, C.S.; Jung, P.M.J.; O’Sullivan, A.C.; Davis, B.G.; Davies, G.J. Mechanistic Insight into Enzymatic Glycosyl Transfer with Retention of Configuration through Analysis of Glycomimetic Inhibitors. Angew. Chem. Int. Edit. 2010, 49, 1234–1237. [Google Scholar] [CrossRef]
- Lee, S.S.; Hong, S.Y.; Errey, J.C.; Izumi, A.; Davies, G.J.; Davis, B.G. Mechanistic Evidence for a Front-Side, SNi-Type Reaction in a Retaining Glycosyltransferase. Nat. Chem. Biol. 2011, 7, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.; Tenor, J.L.; Toffaletti, D.L.; Maskarinec, S.A.; Liu, J.; Lee, R.E.; Perfect, J.R.; Brennan, R.G. Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. mBio 2017, 8, e00643-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meech, R.; Hu, D.G.; Mckinnon, R.A.; Mubarokah, N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The Udp-Glycosyltransferase (Ugt) Superfamily: New Members, New Functions, And Novel Paradigms. Physiol. Rev. 2019, 99, 1153–1222. [Google Scholar] [CrossRef] [PubMed]
- Gharabli, H.; Della Gala, V.; Welner, D.H. The Function of UDP-Glycosyltransferases in Plants and Their Possible Use in Crop Protection. Biotechnol. Adv. 2023, 67, 108182. [Google Scholar] [CrossRef]
C. rosea CBS125111v1.0 jgi Protein ID (From Supplemental Table S4) | Assigned Protein Name | Active Site Amino Acid Resides (Number or Type) | Modelling Template (RCSB PDB ID) | % Identity of C. rosea CBS125111v1.0 Protein to ACM941 RNAseq Data | C. rosea ACM941 Fasta Entry [19] ** | C. rosea ACM941 Gene ID *** | |||||||
Os70 | 26 | 27 | 120 | 291 | 361 | 366 | 385 | 386 | |||||
UGT51 | 751 | 752 | 847 | 998 | 1069 | 1074 | 1093 | 1094 | |||||
Os70 | G | H | D | T | H | S | D | Q | 5TMD | ||||
UGT51 | G | D | S | S | H | T | D | Q | 5GL5 | ||||
493176 | CrUGT1 | G | H | D | T | N | S | D | K | 2IYA | 93 | JACYFL010000055.1 | scf_055.r.213883 |
501281 | CrUGT2 | T | H | D | T | H | S | D | Q | 6LNF | 94 | JACYFL010000025.1 | scf_025.r.655870 |
472238 | CrUGT3 | T | H | D | T | H | S | D | Q | 5V2K | 93 | JACYFL010000016.1 | scf_016.r.712528 |
493176 | CrUGT4 | G | H | E | T | N | G | D | H | 2IYA | 94 | JACYFL010000472.1 | scf_472.r.2070 |
565562 | CrUGT5 | G | D | S | S | H | T | D | Q | 5XVM | 91 | JACYFL010000004.1 | scf_004.f.484466 |
451096 | CrUGT6 | G | D | N | S | H | T | D | Q | 5GL5 | 91 | JACYFL010000010.1 | scf_010.r.539615 |
497403 | CrUGT7 | G | D | N | S | H | T | D | Q | 5GL5 | 94 | JACYFL010000005.1 | scf_005.f.859807 |
473884 | CrUGT8 | G | D | N | S | H | T | D | Q | 1PNV/5Gl5 | 93 | JACYFL010000030.1 | scf_030.f.8134 |
597105 | CrUGT9 | G | D | N | S | H | T | D | Q | 5GL5 | 92 | JACYFL010000032.1 | scf_032.r.200735 |
257207 | CrUGT10 | G | D | N | S | H | T | D | Q | 5GL5 | 94 | JACYFL010000013.1 | scf_013.r.885225 |
301967 | CrUTPS1 | 5HUT | 99 | JACYFL010000005.1 | scf_005.r.669569 | ||||||||
409634 | CrUTPS2 | 5HUT | 97 | JACYFL010000030.1 | scf_030.f.441167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson, K.A.; St-Jacques, A.D.; Shields, S.W.; Sproule, A.; Demissie, Z.A.; Overy, D.P.; Loewen, M.C. Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum. J. Fungi 2023, 9, 723. https://doi.org/10.3390/jof9070723
Robinson KA, St-Jacques AD, Shields SW, Sproule A, Demissie ZA, Overy DP, Loewen MC. Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum. Journal of Fungi. 2023; 9(7):723. https://doi.org/10.3390/jof9070723
Chicago/Turabian StyleRobinson, Kelly A., Antony D. St-Jacques, Sam W. Shields, Amanda Sproule, Zerihun A. Demissie, David P. Overy, and Michele C. Loewen. 2023. "Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum" Journal of Fungi 9, no. 7: 723. https://doi.org/10.3390/jof9070723
APA StyleRobinson, K. A., St-Jacques, A. D., Shields, S. W., Sproule, A., Demissie, Z. A., Overy, D. P., & Loewen, M. C. (2023). Multiple Clonostachys rosea UDP-Glycosyltransferases Contribute to the Production of 15-Acetyl-Deoxynivalenol-3-O-Glycoside When Confronted with Fusarium graminearum. Journal of Fungi, 9(7), 723. https://doi.org/10.3390/jof9070723