Uncovering the Role of PdePrx12 Peroxidase in Enhancing Disease Resistance in Poplar Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials, Growth Environment and Treatment Conditions
2.2. RNA Extraction with Reverse Transcription and Quantitative PCR (RT–qPCR) Analysis
2.3. Generation and Identification of Transgenic Lines
2.4. Determination of H2O2 Content
2.5. Phenotypic Observations of the Symptoms
2.6. Construction of a Phylogenetic Tree
2.7. Domain of Protein
3. Statistical Analysis
4. Results
4.1. The PdePrx12 Gene Is Homologous to the AtPrx12 Gene
4.2. Expression Characteristics of the PdePrx12 Gene
4.3. Five OE and Three RE Poplar PdePrx12 Transgenic Lines Were Successfully Generated
4.4. The PdePrx12 Gene Inhibits the Accumulation of H2O2
4.5. The PdePrx12 Gene Negatively Regulates Disease Resistance in Poplar
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolwell, G.P.; Wojtaszek, P. Mechanisms for the generation of reactive oxygen species in plant defence—A broad perspective. Physiol. Mol. Plant Pathol. 1997, 51, 347–366. [Google Scholar] [CrossRef]
- Huchzermeyer, B.; Menghani, E.; Khardia, P.; Shilu, A. Metabolic Pathway of Natural Antioxidants, Antioxidant Enzymes and ROS Providence. Antioxidants 2022, 11, 761. [Google Scholar] [CrossRef]
- Dietz, K.J.; Jacob, S.; Oelze, M.L.; Laxa, M.; Tognetti, V.; de Miranda, S.M.; Baier, M.; Finkemeier, I. The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 2006, 57, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Passardi, F.; Penel, C.; Dunand, C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Shigeto, J.; Tsutsumi, Y. Diverse functions and reactions of class III peroxidases. New Phytol. 2016, 209, 1395–1402. [Google Scholar] [CrossRef] [Green Version]
- Taheri, P.; Kakooee, T. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen. J. Plant Physiol. 2017, 216, 152–163. [Google Scholar] [CrossRef]
- Datta, K.; Sinha, S.; Chattopadhyay, P. Reactive oxygen species in health and disease. Natl. Med. J. India 2000, 13, 304–310. [Google Scholar] [PubMed]
- Gabbita, S.P.; Robinson, K.A.; Stewart, C.A.; Floyd, R.A.; Hensley, K. Redox regulatory mechanisms of cellular signal transduction. Arch. Biochem. Biophys. 2000, 376, 1–13. [Google Scholar] [CrossRef]
- Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 2001, 29, 345–350. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Cerny, M.; Habanova, H.; Berka, M.; Luklova, M.; Brzobohaty, B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef] [Green Version]
- Dat, J.; Vandenabeele, S.; Vranova, E.; Van Montagu, M.; Inze, D.; Van Breusegem, F. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 2000, 57, 779–795. [Google Scholar] [CrossRef] [PubMed]
- WOJTASZEK, P. Oxidative burst: An early plant response to pathogen infection. Biochem. J. 1997, 322, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Doke, N. Generation of superoxide anion by potato tuber proto plasts duringthe hypersensitive responseto hyphal cell wall components of phyophthorainfestans and specific inhibition of the reaction by supperssors of hypersensitiveity. Physiol. Plant Pathol. 1983, 9, 359–367. [Google Scholar] [CrossRef]
- Lamb, C.; Dixon, R.A. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 251–275. [Google Scholar] [CrossRef]
- Steenackers, J.; Steenackers, M.; Steenackers, V.; Stevens, M. Poplar diseases, consequences on growth and wood quality. Biomass Bioenergy 1996, 10, 267–274. [Google Scholar] [CrossRef]
- Feau, N.; Mottet, M.J.; Perinet, P.; Hamelin, R.C.; Bernier, L. Recent advances related to poplar leaf spot and canker caused by Septoria musiva. Can. J. Plant Pathol. 2010, 32, 122–134. [Google Scholar] [CrossRef]
- Dong, F.X.; Wang, Y.H.; Tang, M. Study on the molecular mechanism of Laccaria bicolor helping Populus trichocarpa to resist the infection of Botryosphaeria dothidea. J. Appl. Microbiol. 2022, 132, 2220–2233. [Google Scholar] [CrossRef]
- Ji, H.F.; Yang, Q.; Song, R.Q. Biological characters and rDNA ITS sequences of pathogen of poplar leaf blight. J. For. Res. 2006, 4, 17–20. [Google Scholar] [CrossRef]
- Parsons, T.J.; Sinkar, V.P.; Stettler, R.F.; Nester, E.W.; Gordon, M.P. Transformation of Poplar by Agrobacterium-Tumefaciens. Biotechnology 1986, 4, 533–536. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Y.; Liu, M.; Zhan, C.; Yang, X.; Nvsvrot, T.; Yan, Z.; Wang, N. Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar. Tree Physiol. 2020, 40, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Mc, K.R. Mutations appearing in Fusarium caeruleum cultures treated with tetrachlornitrobenzene. Nature 1951, 167, 611. [Google Scholar] [CrossRef]
- Xia, W.X.; Yu, H.Y.; Cao, P.; Luo, J.; Wang, N. Identification of TIFY Family Genes and Analysis of Their Expression Profiles in Response to Phytohormone Treatments and Melampsora larici-populina Infection in Poplar. Front. Plant Sci. 2017, 8, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.Q.; Nvsvrot, T.; Huang, L.Y.; Cai, G.H.; Ding, Y.W.; Ren, W.Y.; Wang, N.A. The transcription factor WRKY75 regulates the development of adventitious roots, lateral buds and callus by modulating hydrogen peroxide content in poplar. J. Exp. Bot. 2022, 73, 1483–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Wang, C.T.; Liu, H.; Tang, R.J.; Zhang, H.X. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba x P. berolinensis and Populus davidiana x P. bolleana. Plant Cell Rep. 2011, 30, 2037–2044. [Google Scholar] [CrossRef]
- Cervera, M. Histochemical and fluorometric assays for uidA (GUS) gene detection. Methods Mol. Biol. 2005, 286, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xia, W.X.; Cao, P.; Xiao, Z.A.; Zhang, Y.; Liu, M.F.; Zhan, C.; Wang, N.A. Integrated Transcriptome Analysis Reveals Plant Hormones Jasmonic Acid and Salicylic Acid Coordinate Growth and Defense Responses upon Fungal Infection in Poplar. Biomolecules 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.M.; Liu, W.C.; Lu, Y.T. CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses. Cell Host Microbe 2017, 21, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Harfouche, A.L.; Rugini, E.; Mencarelli, F.; Botondi, R.; Muleo, R. Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. J. Plant Physiol. 2008, 165, 734–744. [Google Scholar] [CrossRef]
- Pei, Z.M.; Murata, Y.; Benning, G.; Thomine, S.; Klusener, B.; Allen, G.J.; Grill, E.; Schroeder, J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 2000, 406, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Peralta-Videa, J.R.; Lopez-Moreno, M.L.; Ren, M.H.; Saupe, G.; Gardea-Torresdey, J.L. Kinetin Increases Chromium Absorption, Modulates Its Distribution, and Changes the Activity of Catalase and Ascorbate Peroxidase in Mexican Palo Verde. Environ. Sci. Technol. 2011, 45, 1082–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifacio, A.; Martins, M.O.; Ribeiro, C.W.; Fontenele, A.V.; Carvalho, F.E.; Margis-Pinheiro, M.; Silveira, J.A. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ. 2011, 34, 1705–1722. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Dolai, S.; Yadav, R.K.; Adak, S. Ascorbate Peroxidase from Leishmania major Controls the Virulence of Infective Stage of Promastigotes by Regulating Oxidative Stress. PLoS ONE 2010, 5, e11271. [Google Scholar] [CrossRef] [Green Version]
- Intapruk, C.; Yamamoto, K.; Sekine, M.; Takano, M.; Shinmyo, A. Regulatory sequences involved in the peroxidase gene expression in Arabidopsis thaliana. Plant Cell Rep. 1994, 13, 123–129. [Google Scholar] [CrossRef]
- Yang, C.Y.; Liang, Y.B.; Qiu, D.W.; Zeng, H.M.; Yuan, J.J.; Yang, X.F. Lignin metabolism involves Botrytis cinerea BcGs1-induced defense response in tomato. BMC Plant Biol. 2018, 18, 103. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, G.; Zhang, Y.; Huang, L.; Wang, N. Uncovering the Role of PdePrx12 Peroxidase in Enhancing Disease Resistance in Poplar Trees. J. Fungi 2023, 9, 410. https://doi.org/10.3390/jof9040410
Cai G, Zhang Y, Huang L, Wang N. Uncovering the Role of PdePrx12 Peroxidase in Enhancing Disease Resistance in Poplar Trees. Journal of Fungi. 2023; 9(4):410. https://doi.org/10.3390/jof9040410
Chicago/Turabian StyleCai, Guanghua, Yan Zhang, Liyu Huang, and Nian Wang. 2023. "Uncovering the Role of PdePrx12 Peroxidase in Enhancing Disease Resistance in Poplar Trees" Journal of Fungi 9, no. 4: 410. https://doi.org/10.3390/jof9040410