Baseline Analysis of Endophytic Fungal Associates of Solenopsis invicta Buren from Mounds across Five Counties of Guangdong Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Ants Sampling
2.2. Procedure for Fungi Isolation from Samples
2.3. Morphological Characterization
2.4. Molecular Identification
2.5. Phylogenetic Analysis
2.6. Statistical Analysis
3. Results
3.1. Morphological Characterization of Fungal Isolates
3.2. Molecular Identification and Phylogenetic Placement of Isolates
3.3. Assessment of Fungal Species Richness, Diversity, and Densities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orgiazzi, A.; Dunbar, M.B.; Panagos, P.; de Groot, G.A.; Lemanceau, P. Soil biodiversity and DNA barcodes: Opportunities and challenges. Soil Biol. Biochem. 2015, 80, 244–250. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.; Galidevara, S.; Strohmeier, S.; Devi, K.U.; Reineke, A. Effects on diversity of soil fungal community and fate of an artificially applied Beauveria bassiana strain assessed through 454 pyrosequencing. Microb. Ecol. 2013, 66, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Bamisile, B.S.; Akutse, K.S.; Siddiqui, J.A.; Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Front. Plant Sci. 2021, 12, 741804. [Google Scholar] [CrossRef]
- Khachatourians, G.G.; Qazi, S.S. Entomopathogenic fungi: Biochemistry and molecular biology. In Human and Animal Relationships; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–61. [Google Scholar]
- Onofre, S.B.; Miniuk, C.M.; de Barros, N.M.; Azevedo, J.L. Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus. Am. J. Vet. Res. 2001, 62, 1478–1480. [Google Scholar] [CrossRef]
- Baird, R.; Woolfolk, S.; Watson, C. Survey of bacterial and fungal associates of black/hybrid imported fire ants from mounds in Mississippi. Southeast Nat. 2007, 6, 615–632. [Google Scholar] [CrossRef]
- Valles, S.M.; Strong, C.A. Solenopsis invicta virus-1A (SINV-1A): Distinct species or genotype of SINV-1? J. Invertebr Pathol. 2005, 88, 232–237. [Google Scholar] [CrossRef]
- Valles, S.M.; Strong, C.A.; Dang, P.M.; Hunter, W.B.; Pereira, R.M.; Oi, D.H.; Shapiro, A.M.; Williams, D.F. A picorna-like virus from the red imported fire ant, Solenopsis invicta: Initial discovery, genome sequence, and characterization. Virology 2004, 328, 151–157. [Google Scholar] [CrossRef]
- Zettler, J.A.; Mcinnis Jr, T.M.; Allen, C.R.; Spira, T.P. Biodiversity of fungi in red imported fire ant (Hymenoptera: Formicidae) mounds. Ann. Entomol Soc. Am. 2002, 95, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.F.; Oi, D.H.; Porter, S.D.; Pereira, R.M.; Briano, J.A. Biological control of imported fire ants (Hymenoptera: Formicidae). Am. Entomol. 2003, 49, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Beckham, R.; Bilimoria, S.; Bartell, D. A survey for microorganisms associated with ants in western Texas. Southwest Entomol. 1982, 7, 225–229. [Google Scholar]
- Jouvenaz, D.; Allen, G.; Banks, W.; Wojcik, D.P. A survey for pathogens of fire ants, Solenopsis spp., in the southeastern United States. Florida Entomol. 1977, 60, 275–279. [Google Scholar] [CrossRef]
- Woolfolk, S.; Stokes, C.E.; Watson, C.; Baker, G.; Brown, R.; Baird, R. Fungi associated with Solenopsis invicta Buren (Red imported fire ant, Hymenoptera: Formicidae) from mounds in Mississippi. Southeast Nat. 2016, 15, 220–234. [Google Scholar] [CrossRef]
- Woolfolk, S.; Stokes, C.E.; Watson, C.; Brown, R.; Baird, R. Bacteria associated with red imported fire ants (Solenopsis invicta) from mounds in Mississippi. Southeast Nat. 2016, 15, 83–101. [Google Scholar] [CrossRef]
- Ishak, H.D.; Plowes, R.; Sen, R.; Kellner, K.; Meyer, E.; Estrada, D.A.; Dowd, S.E.; Mueller, U.G. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb. Ecol. 2011, 61, 821–831. [Google Scholar] [CrossRef]
- Powell, C.M.; Hanson, J.D.; Bextine, B.R. Bacterial community survey of Solenopsis invicta Buren (red imported fire ant) colonies in the presence and absence of Solenopsis invicta virus (SINV). Curr. Microbiol. 2014, 69, 580–585. [Google Scholar] [CrossRef]
- Ahmed, A.A.I.; Khalil, S.S.H.; Sahab, A.F. Identification and evaluation of isolated entomopathogenic fungus from Egyptian soil against the black cutworm larvae of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2022, 32, 67. [Google Scholar] [CrossRef]
- Cabrera-Mora, J.; Guzmán-Franco, A.; Santillán-Galicia, M.; Tamayo-Mejía, F. Niche separation of species of entomopathogenic fungi within the genera Metarhizium and Beauveria in different cropping systems in Mexico. Fungal Ecol. 2019, 39, 349–355. [Google Scholar] [CrossRef]
- López Plantey, R.; Papura, D.; Couture, C.; Thiéry, D.; Pizzuolo, P.H.; Bertoldi, M.V.; Lucero, G.S. Characterization of entomopathogenic fungi from vineyards in Argentina with potential as biological control agents against the European grapevine moth Lobesia botrana. BioControl 2019, 64, 501–511. [Google Scholar] [CrossRef]
- Muñiz-Reyes, E.; Guzmán-Franco, A.; Sánchez-Escudero, J.; Nieto-Angel, R. Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella. J. Appl. Microbiol. 2014, 117, 1450–1462. [Google Scholar] [CrossRef]
- Pérez-González, V.H.; Guzmán-Franco, A.W.; Alatorre-Rosas, R.; Hernández-López, J.; Hernández-López, A.; Carrillo-Benítez, M.G.; Baverstock, J. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. J. Invertebr. Pathol. 2014, 119, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Jindal, V.; Jariyal, M.; Gupta, V. Molecular characterization of new isolates of the entomopathogenic fungus Beauveria bassiana and their efficacy against the tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egypt J. Biol. Pest Co. 2019, 29, 8. [Google Scholar] [CrossRef] [Green Version]
- Humber, R.A. Identification of entomopathogenic fungi. Manual Tech. Invertebr. Pathol. 2012, 151–187. [Google Scholar]
- Meyer, J.M.; Hoy, M.A.; Boucias, D.G. Isolation and characterization of an Isaria fumosorosea isolate infecting the Asian citrus psyllid in Florida. J. Invertebr. Pathol. 2008, 99, 96–102. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Information Retrieval Ltd.: London, UK, 1999; pp. 95–98. [Google Scholar]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Inglis, G.; Cohen, A. Influence of antimicrobial agents on the spoilage of a meat-based entomophage diet. J. Econ. Entomol. 2004, 97, 235–250. [Google Scholar] [CrossRef]
- Woolfolk, S.W.; Inglis, G.D. Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol. Control 2004, 29, 155–168. [Google Scholar] [CrossRef]
- Boni, S.B.; Mwashimaha, R.A.; Mlowe, N.; Sotelo-Cardona, P.; Nordey, T. Efficacy of indigenous entomopathogenic fungi against the black aphid, Aphis fabae Scopoli under controlled conditions in Tanzania. Int. J. Trop. Insect Sci. 2021, 41, 1643–1651. [Google Scholar] [CrossRef]
- Hernandez-Trejo, A.; Estrada-Drouaillet, B.; López-Santillán, J.; Rios-Velasco, C.; Varela-Fuentes, S.; Rodríguez-Herrera, R.; Osorio-Hernández, E. In vitro evaluation of native entomopathogenic fungi and neem (Azadiractha indica) extracts on Spodoptera frugiperda. Phyton 2019, 88, 47. [Google Scholar]
- Wu, Q.; Sun, R.; Ni, M.; Yu, J.; Li, Y.; Yu, C.; Dou, K.; Ren, J.; Chen, J. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE 2017, 12, e0179957. [Google Scholar] [CrossRef] [Green Version]
- Briano, J.; Jouvenaz, D.; Wojcik, D.; Cordo, H.; Patterson, R. Protozoan and fungal diseases in Solenopsis richteri and S. quinquecuspis (Hymenoptera: Formicidae) in Buenos Aires Province, Argentina. Florida Entomol. 1995, 78, 531. [Google Scholar]
- Bamisile, B.S.; Nie, L.; Siddiqui, J.A.; Ramos Aguila, L.C.; Akutse, K.S.; Jia, C.; Xu, Y. Assessment of mound soils bacterial community of the red imported fire ant, Solenopsis invicta across Guangdong province of China. Sustainability 2023, 15, 1350. [Google Scholar] [CrossRef]
- Atkins, S.D.; Clark, I.M.; Pande, S.; Hirsch, P.R.; Kerry, B.R. The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol. Ecol. 2005, 51, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, K.; Payne, G. Unlocking the secrets behind secondary metabolism: A review of Aspergillus flavus from pathogenicity to functional genomics. J. Toxicol: Toxin Rev. 2003, 22, 423–459. [Google Scholar] [CrossRef]
- Dobson, A. Yeasts and Molds | Aspergillus flavus. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 785–791. [Google Scholar] [CrossRef]
- Cleveland, T.E.; Yu, J.; Fedorova, N.; Bhatnagar, D.; Payne, G.A.; Nierman, W.C.; Bennett, J.W. Potential of Aspergillus flavus genomics for applications in biotechnology. Trends Biotechnol. 2009, 27, 151–157. [Google Scholar] [CrossRef]
- Litoriya, N.S.; Modi, A. Mycotoxin-associated food safety concerns of agriculture crops. In Food Security and Plant Disease Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–169. [Google Scholar]
Targeted Region | Primer Used | |
---|---|---|
Internal transcribed spacers region | ITS 1 | 5′-TCCGTAGGTGAACCTGCGG -3′ |
ITS 4 | 5′-TCCTCCGCTTATTGATATGC-3′ | |
Partial 18S rRNA (SSU) | NS1 | 5′-GTAGTCATATGCTTGTCTC-3′ |
NS4 | 5′-CTTCCGTCAATTCCTTTAAG-3′ | |
Partial 28S rRNA (LSU) | LR0R | 5′-ACCCGCTGAACTTAAGC-3′ |
LR5 | 5′-TCCTGAGGGAAACTTCG-3′ |
Isolate Number | Taxa | Location of Isolation | Source of Isolation | GenBank Accession Number | ||
---|---|---|---|---|---|---|
ITS | SSU | LSU | ||||
D1112 | Penicillium citrinum | Dongguan | MS | OQ518404 | OQ518708 | OQ538334 |
D1314 | Unidentified fungal sp. | Dongguan | MS | - | - | - |
D2133 | Unidentified fungal sp. | Dongguan | MS | - | - | - |
D2342 | Unidentified fungal sp. | Dongguan | MS | - | - | - |
D23422 | Unidentified fungal sp. | Dongguan | PD | - | - | - |
D2441 | Talaromyces diversus | Dongguan | PD | OQ518374 | OQ518686 | OQ538307 |
D2442 | Trichoderma asperellum | Dongguan | PD | OQ518375 | OQ518687 | OQ538308 |
D3311 | Talaromyces pinophilus | Dongguan | PD | OQ518405 | OQ518709 | OQ538335 |
G1123 | Talaromyces pinophilus | Guangzhou | MS | OQ518376 | OQ518688 | OQ538309 |
G1233 | Unidentified fungal sp. | Guangzhou | MS | - | - | - |
G12332 | Unidentified fungal sp. | Guangzhou | MS | - | - | - |
G1243 | Aspergillus flavus | Guangzhou | MS | OQ518377 | OQ518689 | OQ538310 |
G2324 | Talaromyces minioluteus | Guangzhou | MS | OQ518378 | - | - |
G2344 | Talaromyces minioluteus | Guangzhou | MS | OQ518379 | OQ518690 | OQ538311 |
G23442 | Talaromyces minioluteus | Guangzhou | MS | OQ518399 | - | - |
G3123 | Aspergillus flavus | Guangzhou | MS | OQ518380 | OQ518691 | OQ538312 |
G31232 | Aspergillus flavus | Guangzhou | MS | OQ518400 | OQ518706 | OQ538330 |
G3212 | Unidentified fungal sp. | Guangzhou | PD | - | - | - |
G32122 | Unidentified fungal sp. | Guangzhou | PD | - | - | - |
G3312 | Unidentified fungal sp. | Guangzhou | PD | - | - | OQ538313 |
G3411 | Penicillium citrinum | Guangzhou | PD | OQ518381 | OQ518692 | OQ538314 |
G3414 | Talaromyces pinophilus | Guangzhou | AB | OQ518382 | OQ518693 | OQ538315 |
H1112 | Trichoderma asperellum | Huizhou | MS | OQ518401 | - | OQ538331 |
H11412 | Talaromyces diversus | Huizhou | MS | OQ518402 | OQ518707 | OQ538332 |
H1143 | Talaromyces pinophilus | Huizhou | MS | OQ518373 | OQ518685 | OQ538306 |
H24112 | Talaromyces pinophilus | Huizhou | MS | OQ518403 | - | OQ538333 |
J111 | Trichoderma asperellum | Jiangmen | MS | - | OQ518694 | OQ538316 |
J1143 | Talaromyces diversus | Jiangmen | MS | OQ518383 | - | OQ538317 |
J11432 | Unidentified fungal sp. | Jiangmen | MS | - | - | - |
J2133 | Unidentified fungal sp. | Jiangmen | MS | - | - | - |
J2143 | Unidentified fungal sp. | Jiangmen | MS | - | - | - |
Z11122 | Talaromyces diversus | Zhuhai | MS | OQ518384 | OQ518695 | OQ538318 |
Z1141 | Talaromyces diversus | Zhuhai | MS | OQ518385 | - | OQ538319 |
Z1143 | Talaromyces pinophilus | Zhuhai | MS | OQ518386 | - | OQ538320 |
Z1144 | Talaromyces pinophilus | Zhuhai | MS | OQ518387 | OQ518696 | OQ538321 |
Z2121 | Talaromyces sp. | Zhuhai | MS | OQ518388 | OQ518697 | OQ538322 |
Z2411 | Talaromyces sp. | Zhuhai | MS | OQ518389 | OQ518698 | OQ538323 |
Z2432 | Talaromyces diversus | Zhuhai | MS | OQ518390 | OQ518699 | OQ538324 |
Z2443 | Talaromyces diversus | Zhuhai | MS | OQ518391 | - | - |
Z311 | Talaromyces sp. | Zhuhai | MS | OQ518392 | OQ518700 | OQ538325 |
Z312 | Talaromyces sp. | Zhuhai | MS | OQ518393 | OQ518701 | OQ538326 |
Z321 | Talaromyces diversus | Zhuhai | MS | OQ518394 | - | OQ538327 |
Z3421 | Talaromyces diversus | Zhuhai | PD | OQ518395 | OQ518702 | OQ538328 |
Z3423 | Talaromyces diversus | Zhuhai | PD | OQ518396 | OQ518703 | OQ538329 |
Z343 | Talaromyces diversus | Zhuhai | AB | OQ518397 | OQ518704 | - |
Z344 | Talaromyces diversus | Zhuhai | AB | OQ518398 | OQ518705 | - |
Location | Dongguan | Huizhou | Guangzhou | Zhuhai | Jiangmen | H’ | J’ |
17.4 (4) | 8.7 (3) | 30.4 (4) | 32.6 (3) | 10.7 (3) | 1.49 | 0.92 | |
Substrates | Soil | Plant debris | Ant body | H’ | J’ | ||
71.7 (7) | 21.7 (4) | 6.5 (2) | 0.75 | 0.68 |
Substrates | CC |
---|---|
AB–MS | 0.29 |
AB–PD | 0.50 |
PD–MS | 0.57 |
Location | Substrates | CC |
---|---|---|
Dongguan | AB–PD | 0.0 |
AB–MS | 0.0 | |
PD–MS | 0.0 | |
Guangzhou | AB–PD | 0.00 |
AB–MS | 0.33 | |
PD–MS | 0.0 | |
Huizhou | AB–PD | 0.0 |
AB–MS | 0.0 | |
PD–MS | 0.0 | |
Jiangmen | AB–PD | 1.00 |
AB–MS | 0.33 | |
PD–MS | 0.33 | |
Zhuhai | AB–PD | 0.0 |
AB–MS | 0.0 | |
PD–MS | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamisile, B.S.; Siddiqui, J.A.; Nie, L.; Idrees, A.; Aguila, L.C.R.; Jia, C.; Xu, Y. Baseline Analysis of Endophytic Fungal Associates of Solenopsis invicta Buren from Mounds across Five Counties of Guangdong Province, China. J. Fungi 2023, 9, 377. https://doi.org/10.3390/jof9030377
Bamisile BS, Siddiqui JA, Nie L, Idrees A, Aguila LCR, Jia C, Xu Y. Baseline Analysis of Endophytic Fungal Associates of Solenopsis invicta Buren from Mounds across Five Counties of Guangdong Province, China. Journal of Fungi. 2023; 9(3):377. https://doi.org/10.3390/jof9030377
Chicago/Turabian StyleBamisile, Bamisope Steve, Junaid Ali Siddiqui, Lei Nie, Atif Idrees, Luis Carlos Ramos Aguila, Chunsheng Jia, and Yijuan Xu. 2023. "Baseline Analysis of Endophytic Fungal Associates of Solenopsis invicta Buren from Mounds across Five Counties of Guangdong Province, China" Journal of Fungi 9, no. 3: 377. https://doi.org/10.3390/jof9030377
APA StyleBamisile, B. S., Siddiqui, J. A., Nie, L., Idrees, A., Aguila, L. C. R., Jia, C., & Xu, Y. (2023). Baseline Analysis of Endophytic Fungal Associates of Solenopsis invicta Buren from Mounds across Five Counties of Guangdong Province, China. Journal of Fungi, 9(3), 377. https://doi.org/10.3390/jof9030377