Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of T. vaccinum and Germination of Seeds of P. abies
2.2. Sampling of Below-Ground Volatiles
2.3. GC–MS Analysis of Volatiles
2.4. Identification of Sesquiterpenes of T. vaccinum
2.5. Homology Searches and Phylogenetic Tree Reconstruction
2.6. Expression Analyses by qRT-PCR for Putative Sesquiterpene Synthase Genes
3. Results
3.1. Sesquiterpenes Produced by Axenically Grown T. vaccinum
3.2. The Volatilome of T. vaccimum Is Modified by Mycorrhization
3.3. Multiple Genes for Sesquiterpene Synthases Are Present in the T. vaccinum Genome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vickers, C.E.; Sabri, S. Isoprene. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 148, pp. 289–317. ISSN 0724-6145. [Google Scholar]
- Wirth, S.; Krause, K.; Kunert, M.; Broska, S.; Paetz, C.; Boland, W.; Kothe, E. Function of sesquiterpenes from Schizophyllum commune in interspecific interactions. PLoS ONE 2021, 16, e0245623. [Google Scholar] [CrossRef] [PubMed]
- De Pinho, P.G.; Ribeiro, B.; Gonçalves, R.F.; Baptista, P.; Valentão, P.; Seabra, R.M.; Andrade, P.B. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J. Agric. Food Chem. 2008, 56, 1704–1712. [Google Scholar] [CrossRef] [PubMed]
- Amirzakariya, B.Z.; Shakeri, A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). Phytochemistry 2022, 197, 113130. [Google Scholar] [CrossRef] [PubMed]
- Gressler, M.; Löhr, N.A.; Schäfer, T.; Lawrinowitz, S.; Seibold, P.S.; Hoffmeister, D. Mind the mushroom: Natural product biosynthetic genes and enzymes of Basidiomycota. Nat. Prod. Rep. 2021, 38, 702–722. [Google Scholar] [CrossRef]
- Riipinen, I.; Yli-Juuti, T.; Pierce, J.R.; Petäjä, T.; Worsnop, D.R.; Kulmala, M.; Donahue, N. Aerosols–the contribution of organics to atmospheric nanoparticle growth. Nat. Geosci. 2012, 5, 453–458. [Google Scholar] [CrossRef]
- Ichinose, H.; Kitaoka, H. Insight into metabolic diversity of the brown-rot basidiomycete Postia placenta responsible for sesquiterpene biosynthesis: Semi-comprehensive screening of cytochrome P450 monooxygenase involved in protoilludene metabolism. Microb. Biotechnol. 2018, 11, 952–965. [Google Scholar] [CrossRef] [Green Version]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef]
- Pham, H.T.; Doan, T.P.; Kim, H.W.; Kim, T.W.; Park, S.Y.; Kim, H.; Lee, M.; Kim, K.H.; Oh, W.K.; Lim, Y.W.; et al. Cyclohumulanoid sesquiterpenes induced by the noncompetitive coculture of Phellinus orientoasiaticus and Xylodon flaviporus. J. Nat. Prod. 2022, 85, 511–518. [Google Scholar] [CrossRef]
- Kreuzenbeck, N.B.; Seibel, E.; Schwitalla, J.W.; Fricke, J.; Conlon, B.H.; Schmidt, S.; Hammerbacher, A.; Köllner, T.G.; Poulsen, M.; Hoffmeister, D.; et al. Comparative genomic and metabolomic analysis of Termitomyces species provides insights into the terpenome of the fungal cultivar and the characteristic odor of the fungus garden of Macrotermes natalensis termites. mSystems 2022, 7, e0121421. [Google Scholar] [CrossRef]
- Wirth, S.; Kunert, M.; Ahrens, L.M.; Krause, K.; Broska, S.; Paetz, C.; Kniemeyer, O.; Jung, E.M.; Boland, W.; Kothe, E. The regulator of G-protein signalling Thn1, links pheromone response to volatile production in Schizophyllum Commun. Environ. Microbiol. 2018, 20, 3684–3699. [Google Scholar] [CrossRef]
- Freihorst, D.; Brunsch, M.; Wirth, S.; Krause, K.; Kniemeyer, O.; Linde, J.; Kunert, M.; Boland, W.; Kothe, E. Smelling the difference: Transcriptome, proteome and volatilome changes after mating. Fungal Genet. Biol. 2018, 112, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.; Abraham, W.R. Volatile sesquiterpenes from fungi: What are they good for? Phytochem. Rev. 2012, 11, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Henke, C.; Jung, E.-M.; Kothe, E. Hartig’ net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures. Environ. Sci. Pollut. Res. Int. 2015, 22, 19394–19399. [Google Scholar] [CrossRef] [PubMed]
- Sammer, D.; Krause, K.; Gube, M.; Wagner, K.; Kothe, E. Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum. PLoS ONE 2016, 11, e0167773. [Google Scholar] [CrossRef] [Green Version]
- Abdulsalam, O.; Wagner, K.; Wirth, S.; Kunert, M.; David, A.; Kallenbach, M.; Boland, W.; Kothe, E.; Krause, K. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). Mycorrhiza 2021, 31, 173–188. [Google Scholar] [CrossRef]
- Wagner, K.; Linde, J.; Krause, K.; Gube, M.; Koestler, T.; Sammer, D.; Kniemeyer, O.; Kothe, E. Tricholoma vaccinum host communication during ectomycorrhiza formation. FEMS Microbiol. Ecol. 2015, 91, fiv120. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Sharkey, T.D. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat. Prod. Rep. 2014, 31, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.C.; Hewage, R.T.; Lu, Y.C.; Chooi, Y.H. Biosynthesis of bioactive natural products from Basidiomycota. Org. Biomol. Chem. 2019, 17, 1027–1036. [Google Scholar] [CrossRef]
- Engels, B.; Heinig, U.; Grothe, T.M.; Stadler, M.; Jennewein, S. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides. J. Biol. Chem. 2011, 286, 6871–6878. [Google Scholar] [CrossRef] [Green Version]
- Minerdi, D.; Maggini, V.; Fani, F. Volatile organic compounds: From figurants to leading actors in fungal symbiosis. FEMS Microbiol. Ecol. 2021, 97, 67. [Google Scholar] [CrossRef]
- Ditengou, F.A.; Müller, A.; Rosenkranz, M.; Felten, J.; Lasok, H.; van Doorn, M.; Legue, V.; Palme, W.K.; Schnitzlerm, J.-P.; Polle, A. The volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Comm. 2015, 6, 6279. [Google Scholar] [CrossRef] [PubMed]
- Menotta, M.; Gioacchini, A.M.; Amicucci, A.; Buffalini, M.; Sisti, D.; Stocchi, V. Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhizae synthesis system. Rap. Commun. Mass Spect. 2004, 18, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Abdulsalam, O.; Ueberschaar, N.; Krause, K.; Kothe, E. Geosmin synthase ges1 knock-down by siRNA in the dikaryotic fungus Tricholoma vaccinum. J. Basic Microbiol. 2022, 62, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Stashenko, E.E.; Martínez, J.R. Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. J. Biochem. Biophys. Methods 2007, 70, 235–242. [Google Scholar] [CrossRef]
- Gioacchini, A.M.; Menotta, M.; Bertini, L.; Rossi, I.; Zeppa, S.; Zambonelli, A.; Piccoli, G.; Stocchi, V. Solid-phase microextraction gas chromatography/mass spectrometry: A new method for species identification of truffles. Rapid Commun. Mass Spectrom. 2005, 19, 2365–2370. [Google Scholar] [CrossRef]
- Kottke, I.; Guttenberger, M.; Hampp, R.; Oberwinkler, F. An in vitro method for establishing mycorrhizae on coniferous tree seedling. Trees 1987, 9, 191–194. [Google Scholar] [CrossRef]
- Krause, K.; Kothe, E. Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J. Basic Microbiol. 2006, 46, 387–399. [Google Scholar] [CrossRef]
- Meents, A.K.; Chen, S.P.; Reichelt, M.; Lu, H.; Bartram, S.; Yeh, K.W. Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mischko, W.; Hirte, M.; Fuchs, M.; Mehlmer, N.; Brück, T.B. Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective ß-copaene and cubebol production in E. coli. Microb. Cell Fact. 2018, 17, 164. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinf. 2003, 1, 2.3.1–2.3.22. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdmann, S.; Freihorst, D.; Raudaskoski, M.; Schmidt-Heck, W.; Jung, E.-M.; Senftleben, D.; Kothe, E. Transcriptome and functional analysis of mating in the basidiomycete Schizophyllum commune. Eukaryot. Cell 2012, 11, 571–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Rösecke, J.; Pietsch, M.; König, W.A. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 2000, 54, 747–750. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ryu, S.H.; Choi, I.G.; Kim, M. Biosynthesis of eudesmane-type sesquiterpenoids by the wood-rotting fungus, Polyporus brumalis, on specific medium, including inorganic magnesium source. J. Korean Wood Sci. Technol. 2016, 44, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Combet, E.; Henderson, J.; Eastwood, D.C.; Burton, K.S. Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus). J. Agric. Food Chem. 2009, 57, 3709–3717. [Google Scholar] [CrossRef]
- Fäldt, J.; Jonsell, M.; Nordlander, G.; Borg-Karlson, A.K. Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J. Chem. Ecol. 1999, 25, 567–590. [Google Scholar] [CrossRef]
- Agger, S.; Lopez-Gallego, F.; Schmidt-Dannert, C. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol. Microbiol. 2009, 72, 1181–1195. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, H.P.; Sprecher, E.; Abraham, W.R. 6-Protoilludene, the major volatile metabolite from Ceratocystis piceae liquid cultures. Phytochemistry 1986, 25, 1979–1980. [Google Scholar] [CrossRef]
- Kirschner, R.; Oberwinkler, F. A new Ophiostoma species associated with bark beetles infesting Norway spruce. Can. J. Bot. 1999, 77, 247–252. [Google Scholar] [CrossRef]
- Azeem, M.; Rajarao, G.K.; Terenius, O.; Nordlander, G.; Nordenhem, H.; Nagahama, K.; Norin, E.; Borg-Karlson, A.K. A fungal metabolite masks the host plant odor for the pine weevil (Hylobius abietis). Fung. Ecol. 2015, 13, 103–111. [Google Scholar] [CrossRef]
- De Sena Filho, J.G.; Quin, M.B.; Spakowicz, D.J.; Shaw, J.J.; Kucera, K.; Dunican, B.; Strobel, S.A.; Schmidt-Dannert, C. Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway. Fung. Biol. 2016, 120, 1050–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quin, M.B.; Flynn, C.M.; Schmidt-Dannert, C. Traversing the fungal terpenome. Nat. Prod. Rep. 2014, 31, 1449–1473. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Orban, A.; Shukal, S.; Birk, F.; Too, H.P.; Rühl, M. Agrocybe aegerita serves as a gateway for identifying sesquiterpene biosynthetic enzymes in higher fungi. ACS Chem. Biol. 2020, 15, 1268–1277. [Google Scholar] [CrossRef]
- Chow, J.Y.; Tian, B.X.; Ramamoorthy, G.; Hillerich, B.S.; Seidel, R.D.; Almo, S.C.; Jacobson, M.P.; Poulter, C.D. Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus. Proc. Natl. Acad. Sci. USA 2015, 18, 5661–5666. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
g334 | CCCAGTGCATCCATGTTGTA | CTGGCTGTCAATCACACACT |
g1826 | GCAACCCATCGCGGATATAA | ATCAGGAAGGTGCGCATAAG |
g1880 | TCACCACCATGTTCGACTTT | CCTGTCGATCACGCACATAC |
g2958 | CGACAAACCCGATACTCCAAATA | GGTCTGTAGAGAAGCATGTACC |
g4529 | AGGAGGTGGTTGCTACTTTG | GGTAGCGCGACAGTAAGTATAG |
g5920 | GGCACCCAGCGAAGATTTAT | CACGACGAAGAGCGATGTATG |
g6053 | GTTGTGGCGTCTCGGATATT | GGCTCGACGTCGTTGTATT |
g7586 | TCGACTGCTGCCCAATAAAT | GTGCTGTTCGACTTTGCTTTAG |
g10283 | GATGGATTGGGATACTGGGTTC | GAGCGTAACCCAACGAGATT |
act1 | ACAACCATGTTCCCCGGTATCT | TTCGCTCAGGAGGAGCAACAAT |
cis1 | CAAATTCGTGCCGAGCATGG | ACCCGTCCCAGATGAGAGCA |
tef1 | GGCAACTTATTGTTGCTGTGAACAA | GACCTTCTTGATAAAGTTGGAGGTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezediokpu, M.N.; Krause, K.; Kunert, M.; Hoffmeister, D.; Boland, W.; Kothe, E. Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum. J. Fungi 2022, 8, 555. https://doi.org/10.3390/jof8060555
Ezediokpu MN, Krause K, Kunert M, Hoffmeister D, Boland W, Kothe E. Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum. Journal of Fungi. 2022; 8(6):555. https://doi.org/10.3390/jof8060555
Chicago/Turabian StyleEzediokpu, Marycolette Ndidi, Katrin Krause, Maritta Kunert, Dirk Hoffmeister, Wilhelm Boland, and Erika Kothe. 2022. "Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum" Journal of Fungi 8, no. 6: 555. https://doi.org/10.3390/jof8060555
APA StyleEzediokpu, M. N., Krause, K., Kunert, M., Hoffmeister, D., Boland, W., & Kothe, E. (2022). Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum. Journal of Fungi, 8(6), 555. https://doi.org/10.3390/jof8060555