Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area and Sample Collection
2.2. Analytical Methods
2.3. Data Analysis
2.4. Software and Tools
3. Results and Discussion
3.1. Concentration of PTE in A. bisporus Mushroom
3.2. PCA and Hierarchical Cluster Analysis
3.3. Health Risk Assessment of A. bisporus Mushroom
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou Fayssal, S.; Alsanad, M.A.; el Sebaaly, Z.; Ismail, A.I.H.; Sassine, Y.N. Valorization of Olive Pruning Residues through Bioconversion into Edible Mushroom Pleurotus Ostreatus (Jacq. Ex Fr.) P. Kumm. (1871) of Improved Nutritional Value. Scientifica 2020, 2020, 39503. [Google Scholar] [CrossRef] [PubMed]
- Alsanad, M.A.; Sassine, Y.N.; el Sebaaly, Z.; Abou Fayssal, S. Spent Coffee Grounds Influence on Pleurotus Ostreatus Production, Composition, Fatty Acid Profile, and Lignocellulose Biodegradation Capacity. CYTA-J. Food 2021, 19, 11–20. [Google Scholar] [CrossRef]
- Sinha, S.K.; Upadhyay, T.K.; Sharma, S.K. Heavy Metals Detection in White Button Mushroom (Agaricus bisporus) Cultivated in State of Maharashtra, India. Biochem. Cell. Arch. 2019, 19, 3501–3506. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Use of Sugar Mill Wastewater for Agaricus bisporus Cultivation: Prediction Models for Trace Metal Uptake and Health Risk Assessment. Environ. Sci. Pollut. Res. 2021, 28, 26923–26934. [Google Scholar] [CrossRef]
- Mohammadhasani, F.; Ahmadimoghadam, A.; Asrar, Z.; Mohammadi, S.Z. Growth Responses and Accumulation of Heavy Metals by Fungus Agaricus bisporus. Acta Bot. Hung. 2016, 59, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Goala, M.; Kumar, P.; Singh, J.; Kumar, P. Integration of Treated Agro-Based Wastewaters (TAWs) Management with Mushroom Cultivation. In Environmental Degradation: Causes and Remediation Strategies; Agro Environ Media-Agriculture and Ennvironmental Science Academy: Haridwar, India, 2020; pp. 63–75. [Google Scholar]
- Kumar, P.; Kumar, V.; Goala, M.; Singh, J.; Kumar, P. Integrated Use of Treated Dairy Wastewater and Agro-Residue for Agaricus bisporus Mushroom Cultivation: Experimental and Kinetics Studies. Biocatal. Agric. Biotechnol. 2021, 32, 101940. [Google Scholar] [CrossRef]
- Sithole, S.C.; Mugivhisa, L.L.; Amoo, S.O.; Olowoyo, J.O. Pattern and Concentrations of Trace Metals in Mushrooms Harvested from Trace Metal-Polluted Soils in Pretoria. S. Afr. J. Bot. 2017, 108, 315–320. [Google Scholar] [CrossRef]
- Birla Singh, K.; Taneja, S.K. Concentration of Zn, Cu and Mn in Vegetables and Meat Foodstuffs Commonly Available in Manipur: A North Eastern State of India. Electron. J. Environ. Agric. Food Chem. 2010, 9, 610–616. [Google Scholar]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C.; Canniatti-Brazaca, S.G. Heavy Metals in Vegetables and Potential Risk for Human Health. Sci. Agric. 2012, 69, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy Metal Bioaccumulation by Wild Edible Saprophytic and Ectomycorrhizal Mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef]
- Širić, I.; Poljak, M.; Tomić, D.; Markota, T.; Kos, I.; Kasap, A. Sadržaj Teških Metala i Bioakumulacijski Potencijal Nekih Samoniklih Jestivih Gljiva. Šumarski List 2016, 140, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Falandysz, J.; Mędyk, M.; Saba, M.; Zhang, J.; Wang, Y.; Li, T. Mercury in traditionally foraged species of fungi (macromycetes) from the karst area across Yunnan province in China. Appl. Microbiol. Biotechnol. 2020, 104, 9421–9432. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Mycoremediation Potential of Pleurotus Species for Heavy Metals: A Review. Bioresour. Bioprocess. 2017, 4, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of Wild-Grown Edible Mushrooms by Heavy Metals in a Former Mercury-Mining Area. J. Environ. Sci. Health Part B 2014, 49, 815–827. [Google Scholar] [CrossRef]
- Širić, I.; Falandysz, J. Contamination, Bioconcentration and Distribution of Mercury in Tricholoma Spp. Mushrooms from Southern and Northern Regions of Europe. Chemosphere 2020, 251, 126614. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Integrated Risk Information System, USEPA. Available online: https://www.epa.gov/iris (accessed on 3 April 2022).
- Pokhriyal, P.; Rehman, S.; Areendran, G.; Raj, K.; Pandey, R.; Kumar, M.; Sahana, M.; Sajjad, H. Assessing Forest Cover Vulnerability in Uttarakhand, India Using Analytical Hierarchy Process. Model. Earth Syst. Environ. 2020, 6, 821–831. [Google Scholar] [CrossRef]
- Kothiyal, G.; Singh, K.; Kumar, A.; Juyal, P.; Guleri, S. Wild Macrofungi (Mushrooms) Diversity Occurrence in the Forest of Uttarakhand, India. Biodiv. Res. 2019, 53, 7–32. [Google Scholar]
- FSI. Forest Survery of India: Uttarakhand, Technical Report; Land Use Statistics, Ministry of Agriculture: Dehradun, India, 2017.
- Sharma, V.P.; Annepu, S.K.; Gautam, Y.; Singh, M.; Kamal, S. Status of Mushroom Production in India. Mushroom Res. 2017, 26, 111–120. [Google Scholar]
- Bhatt, R.P.; Singh, U.; Uniyal, P. Healing Mushrooms of Uttarakhand Himalaya, India. Curr. Res. Environ. Appl. Mycol. 2018, 8, 1–23. [Google Scholar] [CrossRef]
- Gezahegn, W.W. Study of Heavy Metals Accumulation in Leafy Vegetables of Ethiopia. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 57–68. [Google Scholar] [CrossRef]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of Heavy Metal Content in Fruits and Vegetables Collected from Production and Market Sites in the Misurata Area of Libya. ISRN Anal. Chem. 2012, 2012, 827645. [Google Scholar] [CrossRef] [Green Version]
- Abrham, F. Analysis of Heavy Metal Concentration in Some Vegetables Using Atomic Absorption Spectroscopy. Pollution 2021, 7, 205–216. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Taghizadeh, M.; Cullen, P.J.; Frias, J.M.; Downey, G. Hyperspectral Imaging Combined with Principal Component Analysis for Bruise Damage Detection on White Mushrooms (Agaricus bisporus). J. Chemom. 2008, 22, 259–267. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- McCarthy, R.V.; McCarthy, M.M.; Ceccucci, W. Finding Associations in Data Through Cluster Analysis. In Applying Predictive Analytics; Springer: Cham, Switzerland, 2022; pp. 199–232. [Google Scholar]
- Xu, H.; Zhang, C. Development and Applications of GIS-Based Spatial Analysis in Environmental Geochemistry in the Big Data Era. Environ. Geochem. Health 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lion, G.N.; Olowoyo, J.O. Population Health Risk Due to Dietary Intake of Toxic Heavy Metals from Spinacia Oleracea Harvested from Soils Collected in and around Tshwane. S. Afr. J. Bot. 2013, 88, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Tucaković, I.; Barišić, D.; Grahek, Ž.; Kasap, A.; Širić, I. 137 Cs in Mushrooms from Croatia Sampled 15--30 Years after Chernobyl. J. Environ. 2018, 181, 147–151. [Google Scholar] [CrossRef]
- Mahabadi, M. Assessment of Heavy Metals Contamination and the Risk of Target Hazard Quotient in Some Vegetables in Isfahan. Pollution 2020, 6, 69–78. [Google Scholar] [CrossRef]
- Zhong, T.; Xue, D.; Zhao, L.; Zhang, X. Concentration of Heavy Metals in Vegetables and Potential Health Risk Assessment in China. Environ. Geochem. Health 2018, 40, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in Fungal Virulence. FEMS Microbiol. Rev. 2018, 42, fux050. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kaur, N.; Shri, R.; Singh, A.P.; Dhingra, G.S. Proximate Composition and Element Contents of Selected Species of Ganoderma with Reference to Dietary Intakes. Environ. Monit. Assess. 2020, 192, 270. [Google Scholar] [CrossRef]
- Gaur, T.; Rao, P.B.; Kushwaha, K.P.S. Nutritional and Anti-Nutritional Components of Some Selected Edible Mushroom Species. Indian J. Nat. Prod. Resour. 2016, 7, 155–161. [Google Scholar]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy Metals in Agricultural Soils from a Typical Township in Guangdong Province, China: Occurrences and Spatial Distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Buruleanu, L.C.; Radulescu, C.; Antonia Georgescu, A.; Dulama, I.D.; Nicolescu, C.M.; Lucian Olteanu, R.; Stanescu, S.G. Chemometric Assessment of the Interactions Between the Metal Contents, Antioxidant Activity, Total Phenolics, and Flavonoids in Mushrooms. Anal. Lett. 2019, 52, 1195–1214. [Google Scholar] [CrossRef]
- Širić, I.; Kasap, A.; Bedeković, D.; Falandysz, J. Lead, Cadmium and Mercury Contents and Bioaccumulation Potential of Wild Edible Saprophytic and Ectomycorrhizal Mushrooms, Croatia. J. Environ. Sci. Health Part B 2017, 52, 156–165. [Google Scholar] [CrossRef]
- Bosiacki, M.; Siwulski, M.; Sobieralski, K.; Krzebietke, S. The Content of Selected Heavy Metals in Fruiting Bodies of Agaricus bisporus (Lange) Imbach. Wild Growing in Poland. J. Elem. 2018, 23, 875–886. [Google Scholar] [CrossRef]
- Tandon, S.; Joshi, R.K.; Sand, N.K. Monitoring of Organochlorine Pesticides in Water Collected from District Haridwar and Dehradun of Uttarakhand. Pestic. Res. J. 2010, 22, 19–22. [Google Scholar]
- Igbiri, S.; Udowelle, N.A.; Ekhator, O.C.; Asomugha, R.N.; Igweze, Z.N.; Orisakwe, O.E. Edible Mushrooms from Niger Delta, Nigeria with Heavy Metal Levels of Public Health Concern: A Human Health Risk Assessment. Recent Pat. Food Nutr. Agric. 2018, 9, 31–41. [Google Scholar] [CrossRef]
- Karataş, A. Effects of Different Agro-Industrial Waste as Substrates on Proximate Composition, Metals, and Mineral Contents of Oyster Mushroom (Pleurotus Ostreatus). Int. J. Food Sci. Technol. 2022, 57, 1429–1439. [Google Scholar] [CrossRef]
Site Code | Site Name (Vegetable Market) | District | Longitude | Latitude | Elevation (m) |
---|---|---|---|---|---|
M1 | Jwalapur Sabji Mandi | Haridwar | 78.10285 | 29.91545 | 281 |
M2 | Dehradun Sabji Mandi | Dehradun | 78.03421 | 30.31900 | 659 |
M3 | Pauri Garhwal Sabji Mandi | Pauri Garhwal | 78.79454 | 30.22143 | 626 |
M4 | Tehri Garhwal Sabji Mandi | Tehri Garhwal | 78.43813 | 30.38010 | 1050 |
M5 | Uttarkashi Bus Stand | Uttarkashi | 78.43798 | 30.72878 | 1141 |
M6 | Rudraprayag Bridge Market | Rudraprayag | 78.98489 | 30.28644 | 723 |
M7 | Chamoli Gopeshwar Market | Chamoli | 79.31739 | 30.41037 | 1474 |
M8 | Almora Chandni Chowk | Almora | 79.66361 | 29.60164 | 1602 |
M9 | Nainital Bus Stand | Nainital | 79.46428 | 29.37957 | 1936 |
M10 | Udham Singh Nagar Rudrapur | Udham Singh Nagar | 79.40320 | 28.97121 | 215 |
M11 | Champawat Naad Bora | Champawat | 80.08405 | 29.33380 | 1691 |
M12 | Bageshwar Saryu Bridge | Bageshwar | 79.77404 | 29.83861 | 877 |
M13 | Pithoragarh Bus Stand | Pithoragarh | 80.21207 | 29.58334 | 1503 |
M14 | Lansdown Trishakti Chowk | Pauri Garhwal | 78.68650 | 29.83720 | 1687 |
M15 | Bironkhal | Pauri Garhwal | 79.02541 | 29.84294 | 1545 |
Site Code | Potentially Toxic Elements (PTE) Concentration (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Fe | Pb | Mn | Ni | Zn | |
M1 | 0.08 ± 0.01 | 20.35 ± 0.16 | 18.26 ± 0.08 | 48.28 ± 0.62 | 0.08 ± 0.01 | 26.35 ± 0.15 | 1.65 ± 0.10 | 42.34 ± 1.52 |
M2 | 0.06 ± 0.01 | 15.19 ± 0.28 | 13.69 ± 0.56 | 49.35 ± 0.45 | 0.08 ± 0.01 | 20.84 ± 0.37 | 1.51 ± 0.23 | 40.07 ± 0.80 |
M3 | 0.09 ± 0.01 | 16.02 ± 0.42 | 10.36 ± 1.30 | 48.16 ± 0.28 | 0.06 ± 0.02 | 17.18 ± 0.40 | 1.07 ± 0.09 | 37.20 ± 2.43 |
M4 | 0.07 ± 0.01 | 19.46 ± 0.80 | 14.21 ± 0.96 | 42.03 ± 1.34 | 0.01 ± 0.03 | 20.07 ± 0.24 | 0.68 ± 0.06 | 41.93 ± 1.30 |
M5 | 0.05 ± 0.01 | 18.08 ± 1.07 | 17.82 ± 0.25 | 37.28 ± 2.70 | 0.03 ± 0.02 | 16.66 ± 0.16 | 0.47 ± 0.07 | 34.45 ± 0.65 |
M6 | 0.06 ± 0.02 | 19.06 ± 0.71 | 14.67 ± 0.30 | 41.73 ± 1.08 | 0.03 ± 0.01 | 24.50 ± 0.70 | 0.39 ± 0.05 | 36.85 ± 1.05 |
M7 | 0.04 ± 0.03 | 14.38 ± 1.02 | 15.44 ± 0.46 | 40.26 ± 0.55 | 0.04 ± 0.02 | 18.15 ± 1.30 | 0.66 ± 0.12 | 40.10 ± 0.30 |
M8 | 0.07 ± 0.01 | 15.10 ± 0.45 | 15.35 ± 0.27 | 31.82 ± 0.38 | 0.07 ± 0.01 | 15.94 ± 0.83 | 0.90 ± 0.16 | 34.42 ± 2.73 |
M9 | 0.09 ± 0.01 | 14.72 ± 0.30 | 14.84 ± 0.02 | 20.10 ± 3.91 | 0.01 ± 0.01 | 16.49 ± 0.32 | 0.65 ± 0.10 | 36.00 ± 0.50 |
M10 | 0.09 ± 0.01 | 16.05 ± 0.21 | 12.73 ± 0.15 | 28.13 ± 0.56 | 0.06 ± 0.01 | 18.76 ± 0.60 | 1.30 ± 0.24 | 31.08 ± 0.78 |
M11 | 0.09 ± 0.01 | 13.29 ± 0.59 | 13.08 ± 0.80 | 34.19 ± 0.10 | 0.07 ± 0.01 | 21.30 ± 1.30 | 1.10 ± 0.08 | 35.19 ± 1.35 |
M12 | 0.08 ± 0.02 | 10.23 ± 0.28 | 19.70 ± 0.11 | 27.32 ± 0.43 | 0.02 ± 0.01 | 23.42 ± 0.45 | 1.66 ± 0.19 | 33.87 ± 0.82 |
M13 | 0.05 ± 0.01 | 19.75 ± 0.14 | 17.36 ± 1.09 | 43.12 ± 0.22 | 0.03 ± 0.02 | 25.10 ± 0.20 | 1.32 ± 0.14 | 34.03 ± 0.42 |
M14 | 0.02 ± 0.01 | 18.03 ± 0.53 | 16.02 ± 0.26 | 30.54 ± 0.70 | 0.05 ± 0.01 | 17.05 ± 0.36 | 1.54 ± 0.08 | 32.30 ± 0.36 |
M15 | 0.06 ± 0.01 | 13.45 ± 0.42 | 12.55 ± 0.08 | 38.27 ± 0.86 | 0.06 ± 0.02 | 18.16 ± 0.30 | 0.87 ± 0.12 | 35.74 ± 0.10 |
Mean ± SD | 0.07 ± 0.02 | 16.21 ± 2.87 | 15.07 ± 2.48 | 37.37 ± 8.59 | 0.05 ± 0.02 | 20.00 ± 3.44 | 1.05 ± 0.43 | 36.37 ± 3.39 |
CV (%) | 31.40 | 17.68 | 16.48 | 23.00 | 51.05 | 17.20 | 40.97 | 9.32 |
K-W | 0.047 | 0.001 | 0.002 | 0.003 | 0.042 | 0.009 | 0.025 | 0.019 |
SL | 0.10 | 20.00 | 40.00 | 425.00 | 0.20 | 30.00 | 1.50 | 50.00 |
Reference | [3] | [3] | [3] | [18] | [18] | [18] | [3] | [3] |
Potentially Toxic Elements (PTE) | Principal Components | |
---|---|---|
PC1 | PC2 | |
Variance (%) | 74.70 | 11.29 |
Eigenvalue | 83.47 | 12.61 |
Cd | −0.01 | −0.02 |
Cr | 0.15 | 0.19 |
Cu | −0.03 | 0.55 |
Fe | 0.93 | −0.16 |
Pb | 0.01 | −0.01 |
Mn | 0.17 | 0.79 |
Ni | 0.03 | 0.04 |
Zn | 0.26 | 0.01 |
Site | Age Group | Target Hazard Quotient (THQ) | Health Risk Index (HRI) ^ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Fe | Pb | Mn | Ni | Zn | |||
M1 | Child | 0.0033 | 0.1413 | 0.0101 | 0.0014 | 0.0001 | 0.0392 | 0.0098 | 0.0029 | 0.2082 |
Adult | 0.0008 | 0.0323 | 0.0021 | 0.0003 | 0.0001 | 0.0090 | 0.0022 | 0.0007 | 0.0474 | |
M2 | Child | 0.0025 | 0.1055 | 0.0075 | 0.0015 | 0.0001 | 0.0310 | 0.0090 | 0.0028 | 0.1599 |
Adult | 0.0006 | 0.0241 | 0.0016 | 0.0003 | 0.0001 | 0.0071 | 0.0021 | 0.0006 | 0.0364 | |
M3 | Child | 0.0038 | 0.1113 | 0.0079 | 0.0014 | 0.0001 | 0.0256 | 0.0064 | 0.0026 | 0.1590 |
Adult | 0.0009 | 0.0254 | 0.0012 | 0.0003 | 0.0001 | 0.0058 | 0.0015 | 0.0006 | 0.0357 | |
M4 | Child | 0.0029 | 0.1351 | 0.0097 | 0.0013 | 0.0001 | 0.0299 | 0.0040 | 0.0029 | 0.1858 |
Adult | 0.0007 | 0.0309 | 0.0016 | 0.0003 | 0.0001 | 0.0068 | 0.0009 | 0.0007 | 0.0419 | |
M5 | Child | 0.0021 | 0.1256 | 0.0090 | 0.0011 | 0.0001 | 0.0248 | 0.0028 | 0.0024 | 0.1677 |
Adult | 0.0005 | 0.0287 | 0.0020 | 0.0003 | 0.0001 | 0.0057 | 0.0006 | 0.0005 | 0.0383 | |
M6 | Child | 0.0025 | 0.1324 | 0.0095 | 0.0012 | 0.0001 | 0.0365 | 0.0023 | 0.0026 | 0.1869 |
Adult | 0.0006 | 0.0303 | 0.0017 | 0.0003 | 0.0001 | 0.0083 | 0.0005 | 0.0006 | 0.0422 | |
M7 | Child | 0.0017 | 0.0999 | 0.0071 | 0.0012 | 0.0001 | 0.0270 | 0.0039 | 0.0028 | 0.1436 |
Adult | 0.0004 | 0.0228 | 0.0018 | 0.0003 | 0.0001 | 0.0062 | 0.0009 | 0.0006 | 0.0329 | |
M8 | Child | 0.0029 | 0.1049 | 0.0075 | 0.0009 | 0.0001 | 0.0237 | 0.0054 | 0.0024 | 0.1478 |
Adult | 0.0007 | 0.0240 | 0.0017 | 0.0002 | 0.0001 | 0.0054 | 0.0012 | 0.0005 | 0.0338 | |
M9 | Child | 0.0038 | 0.1022 | 0.0073 | 0.0006 | 0.0001 | 0.0245 | 0.0039 | 0.0025 | 0.1448 |
Adult | 0.0009 | 0.0234 | 0.0017 | 0.0001 | 0.0001 | 0.0056 | 0.0009 | 0.0006 | 0.0331 | |
M10 | Child | 0.0038 | 0.1115 | 0.0080 | 0.0008 | 0.0001 | 0.0279 | 0.0077 | 0.0022 | 0.1619 |
Adult | 0.0009 | 0.0255 | 0.0014 | 0.0002 | 0.0001 | 0.0064 | 0.0018 | 0.0005 | 0.0366 | |
M11 | Child | 0.0038 | 0.0923 | 0.0066 | 0.0010 | 0.0001 | 0.0317 | 0.0065 | 0.0024 | 0.1444 |
Adult | 0.0009 | 0.0211 | 0.0015 | 0.0002 | 0.0001 | 0.0072 | 0.0015 | 0.0006 | 0.0330 | |
M12 | Child | 0.0033 | 0.0710 | 0.0051 | 0.0008 | 0.0001 | 0.0349 | 0.0099 | 0.0024 | 0.1274 |
Adult | 0.0008 | 0.0162 | 0.0022 | 0.0002 | 0.0001 | 0.0080 | 0.0023 | 0.0005 | 0.0302 | |
M13 | Child | 0.0021 | 0.1372 | 0.0098 | 0.0013 | 0.0001 | 0.0374 | 0.0079 | 0.0024 | 0.1979 |
Adult | 0.0005 | 0.0313 | 0.0020 | 0.0003 | 0.0001 | 0.0085 | 0.0018 | 0.0005 | 0.0450 | |
M14 | Child | 0.0008 | 0.1252 | 0.0089 | 0.0009 | 0.0001 | 0.0254 | 0.0092 | 0.0022 | 0.1727 |
Adult | 0.0002 | 0.0286 | 0.0018 | 0.0002 | 0.0001 | 0.0058 | 0.0021 | 0.0005 | 0.0393 | |
M15 | Child | 0.0025 | 0.0934 | 0.0067 | 0.0011 | 0.0001 | 0.0270 | 0.0052 | 0.0025 | 0.1385 |
Adult | 0.0006 | 0.0213 | 0.0014 | 0.0003 | 0.0001 | 0.0062 | 0.0012 | 0.0006 | 0.0315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Kumar, V.; Eid, E.M.; AL-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. https://doi.org/10.3390/jof8050452
Kumar P, Kumar V, Eid EM, AL-Huqail AA, Adelodun B, Abou Fayssal S, Goala M, Arya AK, Bachheti A, Andabaka Ž, et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. Journal of Fungi. 2022; 8(5):452. https://doi.org/10.3390/jof8050452
Chicago/Turabian StyleKumar, Pankaj, Vinod Kumar, Ebrahem M. Eid, Arwa A. AL-Huqail, Bashir Adelodun, Sami Abou Fayssal, Madhumita Goala, Ashish Kumar Arya, Archana Bachheti, Željko Andabaka, and et al. 2022. "Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India" Journal of Fungi 8, no. 5: 452. https://doi.org/10.3390/jof8050452