The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2
Abstract
:1. Introduction
2. Case
3. Discussion
- -
- -
- -
- -
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buckley, H.R.; van Uden, N. Five new Candida species. Mycopathol. Mycol. Appl. 1968, 36, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, E.E.B.; El-Zubeir, I.E.M. Chemical Composition and Microbial Load of Set Yoghurt from Fresh and Recombined Milk Powder in Khartoum State, Sudan. Int. J. Dairy Sci. 2011, 6, 172–180. [Google Scholar] [CrossRef]
- Zaragoza, S.; Galanternik, L.; Vazquez, M.; Teper, A.; Córdoba, S.; Finquelievich, J. 318 Candida blankii: New agent in cystic fibrosis airways? J. Cyst. Fibros. 2015, 14, S140. [Google Scholar] [CrossRef]
- Al-Haqqan, A.; Al-Sweih, N.; Ahmad, S.; Khan, S.; Joseph, L.; Varghese, S.; Khan, Z. Azole-resistant Candida blankii as a newly recognized cause of bloodstream infection. New Microbes New Infect. 2018, 26, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Stielow, J.B.; Upadhyaya, G.; Singh, P.K.; Singh, A.; Meis, J.F. Candida blankii: An emerging yeast in an outbreak of fungaemia in neonates in Delhi, India. Clin. Microbiol. Infect. 2020, 26, 648.e645–648.e648. [Google Scholar] [CrossRef]
- De Almeida, J.N., Jr.; Campos, S.V.; Thomaz, D.Y.; Thomaz, L.; de Almeida, R.K.G.; Del Negro, G.M.B.; Gimenes, V.F.; Grenfell, R.C.; Motta, A.L.; Rossi, F.; et al. Candida blankii: An emergent opportunistic yeast with reduced susceptibility to antifungals. Emerg. Microbes Infect. 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Kollu, V.S.; Kalagara, P.K.; Islam, S.; Gupte, A. A Report of Candida blankii Fungemia and Possible Endocarditis in an Immunocompetent Individual and the Review of Literature. Cureus 2021, 13, e14945. [Google Scholar] [CrossRef]
- Ferreira, C.; Viana, S.D.; Reis, F. Is Gut Microbiota Dysbiosis a Predictor of Increased Susceptibility to Poor Outcome of COVID-19 Patients? An Update. Microorganisms 2021, 9, 53. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef] [Green Version]
- Rutsaert, L.; Steinfort, N.; Van Hunsel, T.; Bomans, P.; Naesens, R.; Mertes, H.; Dits, H.; Van Regenmortel, N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef]
- Fekkar, A.; Neofytos, D.; Nguyen, M.H.; Clancy, C.J.; Kontoyiannis, D.P.; Lamoth, F. COVID-19-associated pulmonary aspergillosis (CAPA): How big a problem is it? Clin. Microbiol. Infect. 2021, 27, 1376–1378. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102146. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, F.; Najeeb, H.; Naeem, A.; Dapke, K.; Phadke, R.; Asghar, M.S.; Shah, S.M.I.; De Berardis, D.; Ullah, I. COVID-19 Associated Mucormycosis: A Systematic Review from Diagnostic Challenges to Management. Diseases 2021, 9, 65. [Google Scholar] [CrossRef]
- de Almeida, J.N., Jr.; Francisco, E.C.; Hagen, F.; Brandao, I.B.; Pereira, F.M.; Presta Dias, P.H.; de Miranda Costa, M.M.; de Souza Jordao, R.T.; de Groot, T.; Colombo, A.L. Emergence of Candida auris in Brazil in a COVID-19 Intensive Care Unit. J. Fungi 2021, 7, 220. [Google Scholar] [CrossRef]
- Villanueva-Lozano, H.; Trevino-Rangel, R.J.; Gonzalez, G.M.; Ramirez-Elizondo, M.T.; Lara-Medrano, R.; Aleman-Bocanegra, M.C.; Guajardo-Lara, C.E.; Gaona-Chavez, N.; Castilleja-Leal, F.; Torre-Amione, G.; et al. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin. Microbiol. Infect. 2021, 27, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Ventoulis, I.; Sarmourli, T.; Amoiridou, P.; Mantzana, P.; Exindari, M.; Gioula, G.; Vyzantiadis, T.A. Bloodstream Infection by Saccharomyces cerevisiae in Two COVID-19 Patients after Receiving Supplementation of Saccharomyces in the ICU. J. Fungi 2020, 6, 98. [Google Scholar] [CrossRef]
- De Almeida, J.N., Jr.; Moreno, L.; Francisco, E.C.; Marques, G.N.; Mendes, A.V.; Barberino, M.G.; Colombo, A.L. Trichosporon asahii superinfections in critically ill COVID-19 patients overexposed to antimicrobials and corticosteroids. Mycoses 2021, 64, 817–822. [Google Scholar] [CrossRef]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. J. Antimicrob. Chemother. 2020, 75, 1194–1205. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. Environmental Candida auris and the Global Warming Emergence Hypothesis. mBio 2021, 12, e00360-21. [Google Scholar] [CrossRef]
- Salmanton-Garcia, J.; Sprute, R.; Stemler, J.; Bartoletti, M.; Dupont, D.; Valerio, M.; Garcia-Vidal, C.; Falces-Romero, I.; Machado, M.; de la Villa, S.; et al. COVID-19-Associated Pulmonary Aspergillosis, March-August 2020. Emerg. Infect. Dis. 2021, 27, 1077–1086. [Google Scholar] [CrossRef]
- Moser, D.; Biere, K.; Han, B.; Hoerl, M.; Schelling, G.; Chouker, A.; Woehrle, T. COVID-19 Impairs Immune Response to Candida albicans. Front. Immunol. 2021, 12, 640644. [Google Scholar] [CrossRef] [PubMed]
Patient (Reference) | Age at Dx | Sex | Location of Case | Medical History/Comorbidities | Infection Site | Susceptibilities of Strain(s) μg/mL | Treatment Modality | Patient Outcome |
---|---|---|---|---|---|---|---|---|
1 (3) | 14 y | M | Argentina | Cystic fibrosis | Respiratory colonization leading to respiratory failure | <0.13 for amphotericin B, fluconazole, voriconazole, itraconazole, posaconazole, anidulafungin and caspofungin | Itraconazole 200 mg daily → 100 mg | Recovered |
2 (12) | 16 y | F | Brazil | Cystic fibrosis status post bilateral lung transplantation | Fungemia | Fluconazole: 16 Voriconazole: 0.5 Amphotericin B: 0.25–0.5 Anidulafungin: 0.25–1 Micafungin: 0.5–1 | Micafungin 100 mg daily × 14 days | Recovered |
3 (4) | 27 w ** | M | India | Preterm birth, necrotizing enterocolitis | Fungemia | Fluconazole: 12–16 Voriconazole: 0.19–0.38 Itraconazole: 0.75 Posaconazole: 0.5–0.75 Amphotericin B: 0.19–0.38 Caspofungin: 0.25–0.5 Micafungin: 0.125 Anidulafungin: 0.19 | Amphoteicin B and caspofungin | Deceased |
4 (5) | 2–3 d ** | M | India | VLBW, IUGR, sepsis, CVC, severe asphyxiation, mech vent, venous thrombosis | Fungemia | Mean MICs of isolates Fluconazole: 8 Isavuconazole: 0.07 Posaconazole: 0.13 Itraconazole: 0.18 Voriconazole: 0.25 Anidulafungin: 2 Micafungin: 0.06 | Fluconazole × 10 days * | Deceased |
5 (5) | 2–3 d ** | M | India | LBW, IUGR, sepsis | Fungemia | Fluconazole × 14 days * | Recovered | |
6 (5) | 2–3 d ** | F | India | Preterm, LBW, sepsis | Fungemia | Fluconazole × 14 days * | Recovered | |
7 (5) | 2–3 d ** | F | India | Preterm, LBW, IUGR | Fungemia | Fluconazole × 12 days * | Recovered | |
8 (5) | 2–3 d ** | F | India | VLBW, sepsis, severe asphyxiation, CVC, mech vent, hypoglycemia | Fungemia | Fluconazole × 6 days * | Deceased | |
9 (5) | 2–3 d ** | M | India | Early preterm, ELBW, severe asphyxiation, CVC, sepsis, mech vent | Fungemia | Fluconazole × 10 days * | Deceased | |
10 (5) | 2–3 d ** | M | India | Early preterm, VLBW, sepsis, hypoglycemia, severe asphyxiation, CVC, mech vent | Fungemia | Fluconazole × 10 days * | Recovered | |
11 (5) | 2–3 d ** | M | India | Severe asphyxiation, hypoglycemia, mech vent, CVC | Fungemia | Fluconazole × 5 days * | Deceased | |
12 (5) | 2–3 d ** | M | India | Early preterm, ELBW, severe asphyxia, sepsis, CVC, mech vent | Fungemia | Fluconazole × 21 days * | Recovered | |
13 (7) | 63 y | M | USA | HTN, HLD, DM2, sepsis, perinephric abscess, endocarditis with new embolic strokes | Fungemia | Fluconazole: 16 Itraconazole: 0.5 Posaconazole: 1 Voriconazole: 0.250 Amphotericin B: 0.5 Anidulafungin: 0.250 Caspofungin: 1 Micafungin: 0.120 5-Flucytosine: <0.06 | Amphotericin B and micafungin × 12w, then voriconazole suppression × 9m | Recovered |
14 (our case) | 76 y | F | USA | HTN, DM2, peripheral artery disease, HFpEF | Fungemia | Fluconazole: 256 Itraconazole: 1 Voriconazole: 8 Posaconazole: 2 Caspofungin: 0.25 Micafungin: 0.5 Amphotericin B: 0.064 | Voriconazole | Deceased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirchin, R.; Czeresnia, J.M.; Orner, E.P.; Chaturvedi, S.; Murphy, K.; Nosanchuk, J.D. The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2. J. Fungi 2022, 8, 166. https://doi.org/10.3390/jof8020166
Mirchin R, Czeresnia JM, Orner EP, Chaturvedi S, Murphy K, Nosanchuk JD. The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2. Journal of Fungi. 2022; 8(2):166. https://doi.org/10.3390/jof8020166
Chicago/Turabian StyleMirchin, Ryan, Jonathan M. Czeresnia, Erika P. Orner, Sudha Chaturvedi, Kerry Murphy, and Joshua D. Nosanchuk. 2022. "The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2" Journal of Fungi 8, no. 2: 166. https://doi.org/10.3390/jof8020166
APA StyleMirchin, R., Czeresnia, J. M., Orner, E. P., Chaturvedi, S., Murphy, K., & Nosanchuk, J. D. (2022). The Continuing Emergence of Candida blankii as a Pathogenic Fungus: A New Case of Fungemia in a Patient Infected with SARS-CoV-2. Journal of Fungi, 8(2), 166. https://doi.org/10.3390/jof8020166