β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism and Strain Conservation
2.2. Production of β-Xylosidase Activity
2.3. Enzymatic Assays
2.4. β-Xylosidase SRBX1 Purification
2.5. β-Xylosidase SRBX1 Characterization
2.6. Xylanase SRXL1 and β-Xylosidase SRBX1 Synergism in Hemicellulose Degradation
3. Results
3.1. Production of β-Xylosidase Activity
3.2. β-Xylosidase SRBX1 Purification and Characterization
3.3. Xylanase SRXL1 and β-Xylosidase SRBX1 Synergism in Hemicellulose Degradation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Soto, D.; Velez-Haro, J.M.; León-Ramírez, C.G.; Galán-Vásquez, E.; Chávez-Munguía, B.; Ruiz-Herrera, J. Multicellular growth of the Basidiomycota phytopathogen fungus Sporisorium reilianum induced by acid conditions. Folia Microbiol. 2020, 65, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Matyac, C.A.; Kommedahl, T. Factors affecting the development of head smut caused by Sphacelotheca reiliana on corn. Phytopathology 1985, 75, 577–581. [Google Scholar] [CrossRef]
- Ghareeb, H.; Becker, A.; Iven, T.; Feussner, I.; Schirawski, J. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol. 2011, 156, 2037–2052. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cervantes, J.; Hernández-Domínguez, E.M.; Tellez-Tellez, M.; Mandujano-González, V.; Mercado-Flores, Y.; Diaz-Godinez, G. Stenocarpella maydis and Sporisorium reilianum: Two pathogenic fungi of maize. In Fungal Pathogenicity; Sultan, S., Ed.; IntechOpen: London, UK, 2016; pp. 45–60. [Google Scholar] [CrossRef]
- Mack, H.J.; Baggettt, J.R.; Koepsell, P.A. Effects of cultural practices on the incidence of head smut in sweet corn. HortScience 1984, 19, 77–78. [Google Scholar] [CrossRef]
- Mercado-Flores, Y.; Cárdenas-Álvarez, I.O.; Rojas-Olvera, A.V.; Pérez-Camarillo, J.P.; Leyva-Mir, S.G.; Anducho-Reyes, M.A. Application of Bacillus subtilis in the biological control of the phytopathogenic fungus Sporisorium reilianum. Biol. Control 2014, 76, 36–40. [Google Scholar] [CrossRef]
- Martinez, C.; Roux, C.; Jauneau, A.; Dargent, R. The biological cycle of Sporisorium reilianum f. sp. zeae: An overview using microscopy. Mycologia 2002, 94, 505–514. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, L.; Dong, X.; Di, H.; Zhang, J.; Yao, M.; Dong, L.; Zeng, X.; Liu, X.; Wang, Z.; et al. Analysis of cytology and expression of resistance genes in maize infected with Sporisorium reilianum. Plant Dis. 2019, 103, 2100–2107. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, J.; Wei, L.; Zhang, N.; Xing, Y.; Zuo, X.; Chao, Q.; Tan, G.; Xua, M. Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. J. Crop. Prod. 2015, 3, 87–95. [Google Scholar] [CrossRef]
- López-Malvar, A.; Butrón, A.; Samayoa, L.F.; Figueroa-Garrido, D.J.; Malvar, R.A.; Santiago, R. Genome-wide association analysis for maize stem cell wall-bound hydroxycinnamates. BMC Plant. Biol. 2019, 19, 519. [Google Scholar] [CrossRef]
- Santibáñez, L.; Henríquez, C.; Corro-Tejeda, R.; Bernal, S.; Armijo, B.; Salazar, O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr. Polym. 2021, 251, 117118. [Google Scholar] [CrossRef]
- Walton, J.D. Deconstructing the Cell Wall. Plant Physiol. 1994, 104, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Annis, S.L.; Goodwin, P.H. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 1997, 103, 1–14. [Google Scholar] [CrossRef]
- King, B.C.; Waxman, K.D.; Nenni, N.V.; Walker, L.P.; Bergstrom, G.C.; Gibson, D.M. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol. Biofuels 2011, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Viikari, L. Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses. Appl. Biochem. Biotech. 2014, 174, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef]
- Bastawde, K. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 1992, 8, 353–368. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A. Xylanases: An overview. Br. Biotechnol. J. 2013, 3, 1–28. [Google Scholar] [CrossRef]
- Álvarez-Cervantes, J.; Domínguez-Hernández, E.M.; Mercado-Flores, Y.; Díaz-Godínez, G. Mycosphere Essay 10: Properties and characteristics of microbial xylanases. Mycosphere 2016, 7, 1600–1619. [Google Scholar] [CrossRef]
- Yang, X.; Shi, P.; Huang, H.; Luo, H.; Wang, Y.; Zhang, W.; Yao, B. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem. 2014, 148, 381–387. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Schirawski, J.; Mannhaupt, G.; Münch, K.; Brefort, T.; Schipper, K.; Doehlemann, G.; Di Stasio, M.; Rössel, N.; Mendoza-Mendoza, A.; Pester, D.; et al. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 2010, 330, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cervantes, J.; Díaz-Godínez, G.; Mercado-Flores, Y.; Gupta, V.K.; Anducho-Reyes, M.A. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Sci. Rep. 2016, 6, 24010. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cervantes, J.; Hernández-Domínguez, E.M.; Arana-Cuenca, A.; Díaz-Godínez, G.; Mercado-Flores, Y. Purification and characterization of xylanase SRXL1 from Sporisorium reilianum grown in submerged and solid-state fermentation. BioResources 2013, 8, 5309–5318. [Google Scholar] [CrossRef][Green Version]
- Pérez-Rodríguez, J.; Téllez-Jurado, A.; Álvarez-Cervantes, J.; Ibarra, J.A.; Jaramillo-Loranca, B.E.; Anducho-Reyes, M.A.; Mercado-Flores, Y. Study of the intracellular xylanolytic activity of the phytopathogenic fungus Sporisorium reilianum. Mycoscience 2020, 61, 76–84. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, N.; Zhang, Q.; Xu, Q.; Zhong, T.; Zhang, K.; Xu, M. Transcriptome profiles of Sporisorium reilianum during the early infection of resistant and susceptible maize isogenic lines. J. Fungi 2021, 7, 150. [Google Scholar] [CrossRef] [PubMed]
- Sarch, C.; Suzuki, H.; Master, E.R.; Wang, W. Kinetics and regioselectivity of three GH62 α-L-arabinofuranosidases from plant pathogenic fungi. Biochim Biophys. Acta. Gen. Subj. 2019, 1863, 1070–1078. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Huy, N.D.; Thayumanavan, P.; Kwon, T.H.; Park, S.M. Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium. J. Biosci. Bioeng. 2013, 116, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Wyman, C.E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol. Prog. 2009, 25, 302–314. [Google Scholar] [CrossRef]
- Chávez, R.; Bull, P.; Eyzaguirre, J. The xylanolytic enzyme system from the genus Penicillium. J. Biotechnol. 2006, 123, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Knob, A.; Terrasan, C.R.F.; Carmona, E.C. β-Xylosidases from filamentous fungi: An overview. World J. Microbiol. Biotechnol. 2010, 26, 389–407. [Google Scholar] [CrossRef]
- Saha, B.C. Purification and properties of an extracellular beta-xylosidase from a newly isolated Fusarium proliferatum. Bioresour. Technol. 2003, 90, 33–38. [Google Scholar] [CrossRef]
- Suzuki, S.; Fukuoka, M.; Ookuchi, H.; Sano, M.; Ozeki, K.; Nagayoshi, E.; Takii, Y.; Matsushita, M.; Tada, S.; Kusumoto, K.; et al. Characterization of Aspergillus oryzae glycoside hydrolase family 43 beta-xylosidase expressed in Escherichia coli. J. Biosci. Bioeng. 2010, 109, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Katapodis, P.; Nerinckx, W.; Claeyssens, M.; Christakopoulos, P. Purification and characterization of a thermostable intracellular b-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochem. 2006, 41, 2402–2409. [Google Scholar] [CrossRef]
- Guerfali, M.; Gargouri, A.; Belghith, H. Talaromyces thermophilus beta-D-xylosidase: Purification, characterization and xylobiose synthesis. Appl. Biochem. Biotechnol. 2008, 150, 267–279. [Google Scholar] [CrossRef]
- Knob, A.; Carmona, E.C. Cell-associated acid beta-xylosidase production by Penicillium sclerotiorum. New Biotechnol. 2009, 26, 60–67. [Google Scholar] [CrossRef]
- Hayashi, S.; Ohno, T.; Ito, M.; Yokoi, H. Purification and properties of the cell-associated beta-xylosidase from Aureobasidium. J. Ind. Microbiol. Biotech. 2001, 26, 276–279. [Google Scholar] [CrossRef] [PubMed]
- de Vargas Andrade, S.; de Moraes, M.D.L.T.; Terenzi, H.F.; Jorge, J.A. Effect of carbon source on the biochemical properties of β-xylosidases produced by Aspergillus versicolor. Process Biochem. 2004, 39, 1931–1938. [Google Scholar] [CrossRef]
- Magalhães, P.O.; Ferraz, A.; Milagres, A.F. Enzymatic properties of two beta-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. J. Appl. Microbiol. 2006, 101, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Rao, U.S.; Murthy, S.K. The effects of beta-mercaptoethanol and sodium dodecyl sulfate on the Humicola insolens beta-glucosidase. Biochem. Int. 1991, 23, 343–348. [Google Scholar]
- Garcia-Campayo, V.; Wood, T.M. Purification and characterization of a beta-D-xylosidase from the anaerobic rumen fungus Neocallimastix frontalis. Carbohydr. Res. 1993, 242, 229–245. [Google Scholar] [CrossRef]
- Saha, B.C. Purification and characterization of an extracellular beta-xylosidase from a newly isolated Fusarium verticillioides. J. Ind. Microbiol. Biotechnol. 2001, 27, 241–245. [Google Scholar] [CrossRef]
- Kim, Y.A.; Yoon, K.H. Characterization of a Paenibacillus woosongensis beta-Xylosidase/alpha-Arabinofuranosidase produced by recombinant Escherichia coli. J. Microbiol. Biotechnol. 2010, 20, 1711–1716. [Google Scholar]
- Rohman, A.; Dijkstra, B.W.; Puspaningsih, N. β-Xylosidases: Structural diversity, catalytic mechanism, and inhibition by monosaccharides. Int. J. Mol. Sci. 2019, 20, 5524. [Google Scholar] [CrossRef]
- Zhou, J.; Bao, L.; Chang, L.; Liu, Z.; You, C.; Lu, H. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett. Appl. Microbiol. 2012, 54, 79–87. [Google Scholar] [CrossRef]
- Hult, K.; Berglund, P. Enzyme promiscuity: Mechanism and applications. Trends Biotechnol. 2007, 25, 231–238. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Huang, W.J.; Hu, S.C.; Zhang, H.L.; Wang, H.; Zhang, J.X.; Lin, H.H.; Chen, Y.Z.; Zou, Q.; Ji, Z.L. A global characterization and identification of multifunctional enzymes. PLoS ONE 2012, 7, e38979. [Google Scholar] [CrossRef] [PubMed]
- Somera, A.F.; Pereira, M.G.; Souza-Guimarães, L.H.; Polizeli, M.; Terenzi, H.F.; Melo Furriel, R.P.; Jorge, J.A. Effect of glycosylation on the biochemical properties of beta-xylosidases from Aspergillus versicolor. J. Microbiol. 2009, 47, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Kobata, A. Structures and functions of the sugar chains of glycoproteins. Eur. J. Biochem. 1992, 209, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels 2011, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef]
- Tuncer, M.; Ball, A.S. Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. J. Appl. Microbiol. 2003, 94, 1030–1035. [Google Scholar] [CrossRef]
- Zheng, F.; Basit, A.; Zhuang, H.; Chen, J.; Zhang, J.; Chen, W. Biochemical characterization of a novel acidophilic β-xylanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of beechwood xylan. Front. Microbiol. 2022, 13, 998160. [Google Scholar] [CrossRef]
- Golgeri, M.D.B.; Mulla, S.I.; Bagewadi, Z.K.; Tyagi, S.; Hu, A.; Sharma, S.; Bilal, M.; Bharagava, R.N.; Ferreira, L.; Gurumurthy, D.M.; et al. A systematic review on potential microbial carbohydrases: Current and future perspectives. Crit Rev. Food Sci. Nutr. 2022, 5, 1–18. [Google Scholar] [CrossRef]
- Yajima, W.; Liang, Y.; Kav, N.N. Gene disruption of an arabinofuranosidase/beta-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Mol. Plant Microbe Interact. 2009, 22, 783–789. [Google Scholar] [CrossRef]
Purification Step | Volume (mL) | Total Protein (mg) | Total Activity (mU) | Specific Activity (mU/mg) | Yield (%) | Purification (Fold) |
---|---|---|---|---|---|---|
Crude extract | 1 | 209 | 5.6 | 0.027 | 100 | 1 |
Gel filtration | 2 | 0.3 | 4.8 | 16 | 85.7 | 592.6 |
Substrate | Enzymatic Activity (%) |
---|---|
ρ-nitrophenyl β-D-xylanopiranoside | 100.0 ± 0.0 |
ρ-Nitrophenyl α-L-arabinofuranoside | 15.5 ± 0.8 |
ρ-nitrophenyl β-D-glucopyranoside | 0.0 ± 0.0 |
Birch xylan | 0.0 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado-Flores, Y.; Téllez-Jurado, A.; Lopéz-Gil, C.I.; Anducho-Reyes, M.A. β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose. J. Fungi 2022, 8, 1295. https://doi.org/10.3390/jof8121295
Mercado-Flores Y, Téllez-Jurado A, Lopéz-Gil CI, Anducho-Reyes MA. β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose. Journal of Fungi. 2022; 8(12):1295. https://doi.org/10.3390/jof8121295
Chicago/Turabian StyleMercado-Flores, Yuridia, Alejandro Téllez-Jurado, Carlos Iván Lopéz-Gil, and Miguel Angel Anducho-Reyes. 2022. "β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose" Journal of Fungi 8, no. 12: 1295. https://doi.org/10.3390/jof8121295
APA StyleMercado-Flores, Y., Téllez-Jurado, A., Lopéz-Gil, C. I., & Anducho-Reyes, M. A. (2022). β-Xylosidase SRBX1 Activity from Sporisorium reilianum and Its Synergism with Xylanase SRXL1 in Xylose Release from Corn Hemicellulose. Journal of Fungi, 8(12), 1295. https://doi.org/10.3390/jof8121295