Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.2. Root Endophyte Isolation & Identification
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porras-Alfaro, A.; Bayman, P. Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu. Rev. Phytopathol. 2011, 49, 291–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumpponen, A.; Trappe, J. Dark Septate Endophytes: A Review of Facultative Biotrophic Root-Colonizing Fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Mack, K.M.L.; Rudgers, J.A. Balancing Multiple Mutualists: Asymmetric Interactions among Plants, Arbuscular Mycorrhizal Fungi, and Fungal Endophytes. Oikos 2008, 117, 310–320. [Google Scholar] [CrossRef]
- Victoria Novas, M.; Iannone, L.J.; Godeas, A.M.; Cabral, D. Positive Association between Mycorrhiza and Foliar Endophytes in Poa Bonariensis, a Native Grass. Mycol. Prog. 2008, 8, 75. [Google Scholar] [CrossRef]
- Vignale, M.V.; Iannone, L.J.; Scervino, J.M.; Novas, M.V. Epichloë Exudates Promote in Vitro and in Vivo Arbuscular Mycorrhizal Fungi Development and Plant Growth. Plant Soil 2018, 422, 267–281. [Google Scholar] [CrossRef]
- Terlizzi, N.L.; Rodríguez, M.A.; Iannone, L.J.; Lanari, E.; Novas, M.V. Epichloë Endophyte Affects the Root Colonization Pattern of Belowground Symbionts in a Wild Grass. Fungal Ecol. 2022, 57–58, 101143. [Google Scholar] [CrossRef]
- Novas, M.V.; Cabral, D.; Godeas, A.M. Interaction between Grass Endophytes and Mycorrhizas in Bromus Setifolius from Patagonia, Argentina. Symbiosis 2005, 40, 23–30. [Google Scholar]
- Konig, J.; Guerreiro, M.; Persoh, D.; Begerow, D.; Krauss, J. Knowing Your Neighbourhood- the Effects of Epichloe Endophytes on Foliar Fungal Assemblages in Perennial Ryegrass in Dependence of Season and Land-Use Intensity. PeerJ 2018, 6, e4660. [Google Scholar] [CrossRef] [Green Version]
- Zabalgogeazcoa, I.; Gundel, P.E.; Helander, M.; Saikkonen, K. Non-Systemic Fungal Endophytes in Festuca Rubra Plants Infected by Epichloë Festucae in Subarctic Habitats. Fungal Divers. 2013, 60, 25–32. [Google Scholar] [CrossRef]
- Nissinen, R.; Helander, M.; Kumar, M.; Saikkonen, K. Heritable Epichloë Symbiosis Shapes Fungal but Not Bacterial Communities of Plant Leaves. Sci. Rep. 2019, 9, 5253. [Google Scholar] [CrossRef] [Green Version]
- Vandergrift, R.; Roy, B.; Pfeifer-Meister, L.; Johnson, B.; Bridgham, S. The Herbaceous Landlord: Integrating the Effects of Symbiont Consortia within a Single Host. PeerJ 2015, 3, e1379. [Google Scholar] [CrossRef]
- Slaughter, L.C.; McCulley, R.L. Aboveground Epichloë Coenophiala–Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters. Microb. Ecol. 2016, 72, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Aldana, B.; San Emeterio, L.; Zabalgogeazcoa, I. A Survey of Culturable Fungal Endophytes From Festuca Rubra Subsp. Pruinosa, a Grass From Marine Cliffs, Reveals a Core Microbiome. Front. Microbiol. 2019, 9, 3321. [Google Scholar] [CrossRef] [PubMed]
- Bell-Dereske, L.; Gao, X.; Masiello, C.A.; Sinsabaugh, R.L.; Emery, S.M.; Rudgers, J.A. Plant–Fungal Symbiosis Affects Litter Decomposition during Primary Succession. Oikos 2017, 126, 801–811. [Google Scholar] [CrossRef]
- Zhong, R.; Xia, C.; Ju, Y.; Zhang, X.; Duan, T.; Nan, Z.; Li, C. A Foliar Epichloë Endophyte and Soil Moisture Modified Belowground Arbuscular Mycorrhizal Fungal Biodiversity Associated with Achnatherum Inebrians. Plant Soil 2021, 458, 105–122. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Emery, S.M.; Rudgers, J.A. Fungal Symbionts Alter Plant Responses to Global Change. Am. J. Bot. 2013, 100, 1445–1457. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M. Direct and Indirect Effects of Climate Change on Soil Microbial and Soil Microbial-Plant Interactions: What Lies Ahead? Ecosphere 2015, 6, art130. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Lamarque, J.F.; Dentener, F.; McConnell, J.; Ro, C.U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Dalsoren, S.; Doherty, R.; et al. Multi-Model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes. Atmos. Chem. Phys. 2013, 13, 7997–8018. [Google Scholar] [CrossRef] [Green Version]
- Treseder, K.K. A Meta-Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef]
- Emery, S.M.; Reid, M.L.; Bell-Dereske, L.; Gross, K.L. Soil Mycorrhizal and Nematode Diversity Vary in Response to Bioenergy Crop Identity and Fertilization. GCB Bioenergy 2017, 9, 1644–1656. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Geng, Q.; Zhang, H.; Bian, C.; Chen, H.Y.H.; Jiang, D.; Xu, X. Global Negative Effects of Nutrient Enrichment on Arbuscular Mycorrhizal Fungi, Plant Diversity and Ecosystem Multifunctionality. New Phytol. 2021, 229, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- Oono, R.; Black, D.; Slessarev, E.; Sickler, B.; Strom, A.; Apigo, A. Species Diversity of Fungal Endophytes across a Stress Gradient for Plants. New Phytol. 2020, 228, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Henning, J.A.; Kinkel, L.; May, G.; Lumibao, C.Y.; Seabloom, E.W.; Borer, E.T. Plant Diversity and Litter Accumulation Mediate the Loss of Foliar Endophyte Fungal Richness Following Nutrient Addition. Ecology 2021, 102, e03210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, Y.; Ge, X.; Shi, X.; Fan, X.; Dong, K.; Chen, L.; Zhao, N.; Gao, Y.; Ren, A. The Beneficial Effect of Epichloë Endophytes on the Growth of Host Grasses Was Affected by Arbuscular Mycorrhizal Fungi, Pathogenic Fungi and Nitrogen Addition. Environ. Exp. Bot. 2022, 201, 104979. [Google Scholar] [CrossRef]
- Ren, A.Z.; Li, X.; Han, R.; Yin, L.J.; Wei, M.Y.; Gao, Y.B. Benefits of a Symbiotic Association with Endophytic Fungi Are Subject to Water and Nutrient Availability in Achnatherum Sibiricum. Plant Soil 2011, 346, 363. [Google Scholar] [CrossRef]
- Morrice, J.A.; Danz, N.P.; Regal, R.R.; Kelly, J.R.; Niemi, G.J.; Reavie, E.D.; Hollenhorst, T.; Axler, R.P.; Trebitz, A.S.; Cotter, A.M.; et al. Human Influences on Water Quality in Great Lakes Coastal Wetlands. Environ. Manag. 2008, 41, 347–357. [Google Scholar] [CrossRef]
- Foley, T.A.; Betterton, E.A. Nitrogen Dry Deposition to Lake Superior and Lake Michigan. J. Great Lakes Res. 2019, 45, 224–239. [Google Scholar] [CrossRef]
- Du, E.; de Vries, W.; Galloway, J.N.; Hu, X.; Fang, J. Changes in Wet Nitrogen Deposition in the United States between 1985 and 2012. Environ. Res. Lett. 2014, 9, 095004. [Google Scholar] [CrossRef]
- Drake, I.; White, J.F.; Belanger, F.C. Identification of the Fungal Endophyte of Ammophila Breviligulata (American Beachgrass) as Epichloë Amarillans. PeerJ 2018, 2018, e4300. [Google Scholar] [CrossRef] [PubMed]
- Emery, S.M.; Rudgers, J.A. Biotic and Abiotic Predictors of Ecosystem Engineering Traits of the Dune Building Grass, Ammophila Breviligulata. Ecosphere 2014, 5, 1–18. [Google Scholar] [CrossRef]
- Rudgers, J.A.; Bell-Dereske, L.; Crawford, K.M.; Emery, S.M. Fungal Symbiont Effects on Dune Plant Diversity Depend on Precipitation. J. Ecol. 2015, 103, 219–230. [Google Scholar] [CrossRef]
- Emery, S.M.; Bell-Dereske, L.; Rudgers, J.A. Fungal Symbiosis and Precipitation Alter Traits and Dune Building by the Ecosystem Engineer, Ammophila Breviligulata. Ecology 2015, 96, 927–935. [Google Scholar] [CrossRef] [PubMed]
- David, A.S.; Bell-Dereske, L.P.; Emery, S.M.; McCormick, B.M.; Seabloom, E.W.; Rudgers, J.A. Testing for Loss of Epichloë and Non-Epichloid Symbionts under Altered Rainfall Regimes. Am. J. Bot. 2019, 106, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Emery, S.M.; Rudgers, J.A. Ecological Assessment of Dune Restorations in the Great Lakes Region. Restor. Ecol. 2010, 18, 184–194. [Google Scholar] [CrossRef]
- Gehring, C.; Sevanto, S.; Patterson, A.; Marias Ulrich, D.; Kuske, C. Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by Experimental Drought and Warming. Front. Plant Sci. 2020, 11, 582574. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; French, K. Soil Nutrients Differentially Influence Root Colonisation Patterns of AMF and DSE in Australian Plant Species. Symbiosis 2021, 83, 209–223. [Google Scholar] [CrossRef]
- Gibert, A.; Hazard, L. Endophyte Infection of Festuca Eskia Enhances Seedling Survival to Drought and Cutting at the Expense of Clonal Expansion. J. Plant Ecol. 2011, 4, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Bueno de Mesquita, C.P.; Sartwell, S.A.; Ordemann, E.V.; Porazinska, D.L.; Farrer, E.C.; King, A.J.; Spasojevic, M.J.; Smith, J.G.; Suding, K.N.; Schmidt, S.K. Patterns of Root Colonization by Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes across a Mostly-Unvegetated, High-Elevation Landscape. Fungal Ecol. 2018, 36, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Menoyo, E.; Teste, F.P.; Ferrero, M.A.; Lugo, M.A. Associations between Fungal Root Endophytes and Grass Dominance in Arid Highlands. Fungal Ecol. 2020, 45, 100924. [Google Scholar] [CrossRef]
- Sternhagen, E.C.; Black, K.L.; Hartmann, E.D.L.; Shivega, W.G.; Johnson, P.G.; McGlynn, R.D.; Schmaltz, L.C.; Asheim Keller, R.J.; Vink, S.N.; Aldrich-Wolfe, L. Contrasting Patterns of Functional Diversity in Coffee Root Fungal Communities Associated with Organic and Conventionally Managed Fields. Appl. Environ. Microbiol. 2020, 86, e00052-20. [Google Scholar] [CrossRef] [PubMed]
- Rudgers, J.A.; Afkhami, M.E.; Rúa, M.A.; Davitt, A.J.; Hammer, S.; Huguet, V.M. A Fungus among Us: Broad Patterns of Endophyte Distribution in the Grasses. Ecology 2009, 90, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Borer, E.T.; Harpole, W.S.; Adler, P.B.; Lind, E.M.; Orrock, J.L.; Seabloom, E.W.; Smith, M.D. Finding Generality in Ecology: A Model for Globally Distributed Experiments. Methods Ecol. Evol. 2014, 5, 65–73. [Google Scholar] [CrossRef]
- U’Ren, J.M.; Miadlikowska, J.; Zimmerman, N.B.; Lutzoni, F.; Stajich, J.E.; Arnold, A.E. Contributions of North American Endophytes to the Phylogeny, Ecology, and Taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol. Phylogenet. Evol. 2016, 98, 210–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, A.E.; Henk, D.A.; Eells, R.L.; Lutzoni, F.; Vilgalys, R. Diversity and Phylogenetic Affinities of Foliar Fungal Endophytes in Loblolly Pine Inferred by Culturing and Environmental PCR. Mycologia 2007, 99, 185–206. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Qiong, W.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J. A New Method for Non-parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- McCune, B.P.; Grace, J. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. Primer, Version 6.1. 10: User Manual and Tutorial; Primer-E: Plymouth, UK, 2009. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-7. 2020. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 29 September 2022).
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; Primer-E: Plymouth, UK, 2008; pp. 1–214. [Google Scholar]
- Guerre, P. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë. Toxins (Basel) 2015, 7, 773–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikkonen, K.; Gundel, P.E.; Helander, M. Chemical Ecology Mediated by Fungal Endophytes in Grasses. J. Chem. Ecol. 2013, 39, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Young, C.A.; Pan, J.; Florea, S.; Takach, J.E.; Panaccione, D.G.; Farman, M.L.; Webb, J.S.; Jaromczyk, J.; Charlton, N.D.; et al. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae. Toxins (Basel) 2013, 5, 1064–1088. [Google Scholar] [CrossRef] [PubMed]
- Card, S.D.; Bastias, D.; Caradus, J.R. Antagonism to Plant Pathogens by Epichloë Fungal Endophytes—A Review. Plants 2021, 10, 1997. [Google Scholar] [CrossRef]
- Pérez, L.I.; Gundel, P.E.; Zabalgogeazcoa, I.; Omacini, M. An Ecological Framework for Understanding the Roles of Epichloë Endophytes on Plant Defenses against Fungal Diseases. Fungal Biol. Rev. 2020, 34, 115–125. [Google Scholar] [CrossRef]
- Roberts, E.L.; Ferraro, A. Rhizosphere Microbiome Selection by Epichloë Endophytes of Festuca Arundinacea. Plant Soil 2015, 396, 229–239. [Google Scholar] [CrossRef]
- Emery, S.M.; Doran, P.J.; Legge, J.T.; Kleitch, M.; Howard, S. Aboveground and Belowground Impacts Following Removal of the Invasive Species Baby’s Breath (Gypsophila Paniculata) on Lake Michigan Sand Dunes. Restor. Ecol. 2013, 21, 506–514. [Google Scholar] [CrossRef]
- Wang, J.; Hou, W.; Christensen, M.J.; Li, X.; Xia, C.; Li, C.; Nan, Z. Role of Epichloë Endophytes in Improving Host Grass Resistance Ability and Soil Properties. J. Agric. Food Chem. 2020, 68, 6944–6955. [Google Scholar] [CrossRef]
- Lee, K.; Missaoui, A.; Mahmud, K.; Presley, H.; Lonnee, M. Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms 2021, 9, 2186. [Google Scholar] [CrossRef]
- Patchett, A.; Newman, J.A. Comparison of Plant Metabolites in Root Exudates of Lolium Perenne Infected with Different Strains of the Fungal Endophyte Epichloë Festucae Var. Lolii. J. Fungi 2021, 7, 148. [Google Scholar] [CrossRef]
- Rasmussen, S.; Parsons, A.J.; Newman, J.A. Metabolomics Analysis of the Lolium Perenne–Neotyphodium Lolii Symbiosis: More than Just Alkaloids? Phytochem. Rev. 2009, 8, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Plants and Endophytes: Equal Partners in Secondary Metabolite Production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Grossman, R.B.; Nagabhyru, P.; Faulkner, J.R.; Mallik, U.P. Loline Alkaloids: Currencies of Mutualism. Phytochemistry 2007, 68, 980–996. [Google Scholar] [CrossRef] [PubMed]
- Rottinghaus, G.E.; Garner, G.B.; Cornell, C.N.; Ellis, J.L. HPLC Method for Quantitating Ergovaline in Endophyte-Infested Tall Fescue: Seasonal Variation of Ergovaline Levels in Stems with Leaf Sheaths, Leaf Blades, and Seed Heads. J. Agric. Food Chem. 1991, 39, 112–115. [Google Scholar] [CrossRef]
- Krauss, J.; Harri, S.A.; Bush, L.; Husi, R.; Bigler, L.; Power, S.A.; Muller, C.B. Effects of Fertilizer, Fungal Endophytes and Plant Cultivar on the Performance of Insect Herbivores and Their Natural Enemies. Funct. Ecol. 2007, 21, 107–116. [Google Scholar] [CrossRef]
- Lane, G.; Tapper, B.; Davies, E.; Hume, D.; Latch, G.; Barker, D.; Easton, H.; Rolston, P. Effect of Growth Conditions on Alkaloid Concentrations in Perennial Ryegrass Naturally Infected with Endophyte; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Rasmussen, S.; Parsons, A.J.; Bassett, S.; Christensen, M.J.; Hume, D.E.; Johnson, L.J.; Johnson, R.D.; Simpson, W.R.; Stacke, C.; Voisey, C.R.; et al. High Nitrogen Supply and Carbohydrate Content Reduce Fungal Endophyte and Alkaloid Concentration in Lolium Perenne. New Phytol. 2007, 173, 787–797. [Google Scholar] [CrossRef]
- Bylin, A.G.; Hume, D.E.; Card, S.D.; Mace, W.J.; Lloyd-West, C.M.; Huss-Danell, K. Influence of Nitrogen Fertilization on Growth and Loline Alkaloid Production of Meadow Fescue (Festuca Pratensis) Associated with the Fungal Symbiont Neotyphodium Uncinatum. Botany 2014, 92, 370–376. [Google Scholar] [CrossRef]
- David, A.S.; Sajeet, H.; Kurt, L.; Joanne, L.; Anna, L.; Mei, W.; Kerrie, B.; Igor, G.V.; Joseph, W.S.; Georgiana, M. Draft Genome Sequence of Microdochium Bolleyi, a Dark Septate Fungal Endophyte of Beach Grass. Genome Announc. 2016, 4, e00270-16. [Google Scholar] [CrossRef] [Green Version]
- Mandyam, K.; Loughin, T.; Jumpponen, A. Isolation and Morphological and Metabolic Characterization of Common Endophytes in Annually Burned Tallgrass Prairie. Mycologia 2010, 102, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Knapp, D.G.; Imrefi, I.; Boldpurev, E.; Csíkos, S.; Akhmetova, G.; Berek-Nagy, P.J.; Otgonsuren, B.; Kovács, G.M. Root-Colonizing Endophytic Fungi of the Dominant Grass Stipa Krylovii From a Mongolian Steppe Grassland. Front. Microbiol. 2019, 10, 2565. [Google Scholar] [CrossRef]
- David, A.S.; Seabloom, E.W.; May, G. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem. Microb. Ecol. 2016, 71, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Avalos, J.; Cerda-Olmedo, E.; Reyes, F.; Barrero, F.A. Gibberellins and Other Metabolites of Fusarium Fujikuroi and Related Fungi. Curr. Org. Chem. 2007, 11, 721–737. [Google Scholar] [CrossRef]
- Bacon, C.W.; Hinton, D.M. Symptomless Endophytic Colonization of Maize by Fusarium Moniliforme. Can. J. Bot. 1996, 74, 1195–1202. [Google Scholar] [CrossRef]
- Fuentes, M.; Quinones, R. Carbon Utilization Profile of the Filamentous Fungal Species Fusarium Fujikuroi, Penicillium Decumbens and Sarocladium Strictum Isolated from Marine Coastal Environments. Mycologia 2016, 108, 1069–1081. [Google Scholar] [CrossRef]
- Bastías, D.A.; Gianoli, E.; Gundel, P.E. Fungal Endophytes Can Eliminate the Plant Growth–Defence Trade-Off. New Phytol. 2021, 230, 2105–2113. [Google Scholar] [CrossRef]
- Junker, C.; Draeger, S.; Schulz, B. A Fine Line—Endophytes or Pathogens in Arabidopsis Thaliana. Fungal Ecol. 2012, 5, 657–662. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Dugassa-Gobena, D.; Vidal, S. Influence of an Endophytic Fungus on Host Plant Selection by a Polyphagous Moth via Volatile Spectrum Changes. Arthropod. Plant. Interact. 2008, 2, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Yli-Mattila, T. Ecology and Evolution of Toxigenic Fusarium Species in Cereals in Northern Europe and Asia. J. Plant Pathol. 2010, 92, 7–18. [Google Scholar]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Martin, R.A.; Macleod, J.A.; Caldwell, C.D. Influences of Production Inputs on Incidence of Infection by Fusarium Species on Cereal Seed. Plant Dis. 1991, 75, 784–788. [Google Scholar] [CrossRef]
- Ndinga-Muniania, C.; Mueller, R.C.; Kuske, C.R.; Porras-Alfaro, A. Seasonal Variation and Potential Roles of Dark Septate Fungi in an Arid Grassland. Mycologia 2021, 113, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Farrer, E.C.; Van Bael, S.A.; Clay, K.; Smith, M.K.H. Plant-Microbial Symbioses in Coastal Systems: Their Ecological Importance and Role in Coastal Restoration. Estuaries Coasts 2022, 45, 1805–1822. [Google Scholar] [CrossRef]
Richness | Composition | Heterogeneity | ||||
---|---|---|---|---|---|---|
Factor | F | p | Pseudo-F | p | Pseudo-F | p |
Epichloë | 3.71 | 0.06 * | 0.96 | 0.43 | 0.19 | 0.71 |
N addition | 0.51 | 0.60 | 2.57 | 0.01 ** | 0.68 | 0.57 |
Epichloë × N add | 0.35 | 0.71 | 1.80 | 0.06 * | 2.52 | 0.07 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garces, K.R.; Sage, H.E.; Christian, N.; Emery, S.M. Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. J. Fungi 2022, 8, 1142. https://doi.org/10.3390/jof8111142
Garces KR, Sage HE, Christian N, Emery SM. Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. Journal of Fungi. 2022; 8(11):1142. https://doi.org/10.3390/jof8111142
Chicago/Turabian StyleGarces, Kylea R., Haley E. Sage, Natalie Christian, and Sarah M. Emery. 2022. "Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World" Journal of Fungi 8, no. 11: 1142. https://doi.org/10.3390/jof8111142
APA StyleGarces, K. R., Sage, H. E., Christian, N., & Emery, S. M. (2022). Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. Journal of Fungi, 8(11), 1142. https://doi.org/10.3390/jof8111142