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Abstract: Plants harbor a variety of fungal symbionts both above- and belowground, yet little is
known about how these fungi interact within hosts, especially in a world where resource availability
is changing due to human activities. Systemic vertically transmitted endophytes such as Epichloë spp.
may have particularly strong effects on the diversity and composition of later-colonizing symbionts
such as root fungal endophytes, especially in primary successional systems. We made use of a
long-term field experiment in Great Lakes sand dunes to test whether Epichloë colonization of the
dune-building grass, Ammophila breviligulata, could alter fungal root endophyte species richness or
community composition in host plants. We also tested whether nitrogen addition intensified the
effects of Epichlöe on the root endophyte community. We found that Epichloë increased richness
of root endophytes in Ammophila by 17% overall, but only shifted community composition of root
endophytes under nitrogen-enriched conditions. These results indicate that Epichlöe acts as a key
species within Ammophila, changing richness and composition of the root mycobiome and integrating
above- and belowground mycobiome interactions. Further, effects of Epichloë on root endophyte
communities were enhanced by N addition, indicating that this fungal species may become even
more important in future environments.

Keywords: Epichloë; Ammophila; Fusarium; dark septate endophytes; nitrogen deposition; global
change; fertilizer

1. Introduction

The plant mycobiome includes a wide variety of fungal symbionts located within
the above- and belowground tissues of host plants. Shifts in the mycobiome due to biotic
interactions among fungal taxa can alter host plant growth, stress tolerance, and nutrient
uptake [1]. Vertically transmitted, systemic Clavicipitaceous endophytes such as Epichlöe
spp. may have particularly strong effects on the mycobiome of their host plants, as they
have priority effects within a plant host and may influence assembly of later-colonizing,
horizontally transmitted fungi in both above- and belowground tissues [2]. However,
effects of Epichlöe on the plant mycobiome are not consistent. For example, Epichlöe has
been shown both to reduce [3] and increase colonization of roots by arbuscular mycorrhizal
fungi (AMF) [4–7]. Epichlöe has also had mixed effects on leaf endophytes in a variety of
host plant species [8–10]. Epichlöe effects on root endophyte (non-AMF) communities are
not well-understood, but seem minimal in the few studies that have examined them [11–13].
However, the magnitude of the effect of Epichlöe on mycobiome composition may depend
on environmental conditions and resource availability (e.g., [14,15]), both of which are
shifting in the Anthropocene [16,17].

Anthropogenic nitrogen (N) enrichment may be a particularly influential aspect of
global change on fungal interactions and mycobiome community composition, as resource
availability directly impacts plant-fungal associations [18]. Activities associated with
agriculture, industry, wastewater, and fossil fuel combustion has more than doubled rates
of nitrogen input into the terrestrial nitrogen cycle [19], and atmospheric N deposition is
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expected to increase globally by 250% over the next century [19,20]. Nitrogen enrichment
is known to directly influence mycobiome composition within plant organs, for example
by reducing root mycobiome diversity [21–23]. Aboveground, N addition is associated
with decreased foliar endophyte diversity [24,25]. The few studies that have explored
N enrichment effects on Epichlöe showed that N addition enhanced Epichlöe benefits to
hosts [16,26]. For example, increasing soil N improved the alleviation of drought stress
provided by endophytes to some grasses [27]. However, it is unclear whether N availability
alters above-belowground fungal interactions within host plants.

Changes in N availability may be particularly impactful on mycobiomes of plants
in low nutrient primary successional ecosystems such as Great Lakes sand dunes. The
U.S. Great Lakes coastal region has high N enrichment due to agricultural, atmospheric,
and point-source inputs [28]. For example, atmospheric N deposition concentration lev-
els, especially of NH4

+, into Great Lakes ecosystems have increased 400% from historic
levels [29,30] while dissolved inorganic N in Great Lakes coastal wetlands has risen as a
direct result of row-crop agriculture in the region [28]. The dominant dune-building grass
in this region, Ammophila breviligulata (hereafter Ammophila) harbors a variety of fungal
symbionts including the systemic endophyte, Epichlöe amarillans (hereafter Epichlöe) [31],
which is found in approximately one third of natural Ammophila populations in the Great
Lakes [32–35] and in almost all nursery stock used for dune restoration work [36]. This
provides an ideal system to examine effects of Epichlöe and N enrichment on other aspects
of the plant mycobiome.

Here, we evaluated the effects of Epichlöe and N addition on community composition
of fungal root endophytes associated with Ammophila in a long-term experiment within
the Great Lakes dunes. Specifically, we asked: Does colonization of the host grass by
Epichlöe alter root fungal endophyte species richness or community composition? Fur-
thermore, if so, does N addition intensify the effects of Epichlöe on the root endophyte
community? While very little is known about how Epichlöe interacts with root endophyte
communities in general, earlier work in this dune system showed that Epichlöe reduced
diversity of other root-associated fungal communities (AMF) in Ammophila [14]. AMF and
non-mycorrhizal root endophyte communities often show opposing responses to chang-
ing conditions [37–40] (although also see [41]), and so we expected that root endophyte
richness would increase in response to Epichlöe presence. By enhancing the plant-Epichlöe
symbiosis, we also expected that N addition would strengthen the effects of Epichlöe on
root endophyte diversity and composition. Alternatively, N enrichment could act as an
environmental filter that limits which fungal species can colonize plant hosts, or could
enhance dominance of certain taxa at the expense of mycobiome biodiversity, independent
of Epichlöe [21–23,42]. Our findings provide some of the first evidence that Epichlöe can
increase root endophyte richness in host plants, and that nitrogen enrichment strengthens
the effects of Epichlöe on root endophyte community composition.

2. Methods
2.1. Experimental Design

In May 2010, we established a factorial field experiment on a bare dune blowout
approximately 200 m from the shoreline of Lake Michigan in Leelanau State Park, Michigan,
USA (45.8109640 N, 85.8345780 W). To manipulate the presence or absence of Epichloë
in Ammophila, we used endophyte-free seeds collected from nearby dunes, germinated
seedlings of Ammophila in the lab, and either artificially inoculated seedlings with Epichloë
(E+) or sham inoculated them with sterile water (E−) (see details in [34]). Plants were
clonally propagated in a greenhouse and then transported to the field. Into 90 2 m × 2 m
plots, we transplanted 25 E+ or 25 E− Ammophila plants and monitored plots yearly from
2010–2020. Because plants can sometimes lose Epichloë symbionts over time [35,43], we
used commercial immunoblot kits (Phytoscreen: Agrinostics, Watkinsville, GA, USA) to
assess treatment reliability in two tillers per plot in 2019. Any inconclusive assay results
were followed up with microscopy to confirm presence or absence of hyphae within leaf
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tissue. 91% of E+ treatment plot tillers maintained evidence of Epichloë infection, while 89%
of E− plot tillers still lacked Epichloë.

In 2016 we introduced N addition treatments to a subset of 60 plots in the long-term
experiment (30 E+ and 30 E− plots). One third of plots (10 each E+ and E−) received a
low level of N (0.5 g NH4

+ m−2), corresponding to N deposition rates in the nearby urban
centers of the Midwest [30], another third received high levels of N (10 g NH4

+ m−2),
comparable to global N addition experiments [44], and the last set of plots received no
added fertilizer (control). We added N as urea slow-release fertilizer (ESN Urea coated
fertilizer: Nutrient Ltd., New Madrid MO, USA), applied twice yearly: once in May at the
beginning of the growing season, and again mid-season in July. Due to COVID-19 travel
restrictions, we were unable to apply fertilizer in May 2020, but treatments resumed as
planned in July 2020.

2.2. Root Endophyte Isolation & Identification

In July 2020, we excavated roots from 2 randomly chosen visibly healthy Ammophila
tiller clumps per plot in the N addition experiment (n = 60 plots). These tillers with
attached roots were kept at 4 ◦C and transported on ice back to the lab at the University
of Louisville for processing. One root segment per tiller was cut from each Ammophila
plant and surface-sterilized using standard methods. In brief, roots were soaked in 95%
ethanol for one minute then in a 1% bleach solution for two minutes. Root samples
were then washed with 70% ethanol for two minutes, then rinsed with autoclaved water
3 times. After surface-sterilization of each plant root, five 3–5 mm root segments were
chosen haphazardly and plated tip first into Petri dishes containing 2% malt extract agar
(MEA) + 10 mL Penicillin-Streptomycin to decrease risk of bacterial contamination. Plates
were then sealed with parafilm and stored in a cabinet at room temperature. Plates were
monitored for approximately two weeks for fungal growth. A subset of plates was stored
at 4 ◦C to reduce spread of fast-growing endophytes and encourage growth of slower-
emerging fungi. There were no differences in taxa seen between room temperature vs.
refrigerated plates, so room temperature fungal cultures were used for this study. Emergent
hyphae were sub-cultured onto new MEA plates to isolate individual taxa. Isolates were
allowed to grow until the colony covered the agar plate. Isolates were then grouped
into morphotypes based on color and mycelial growth patterns. Once morphotypes were
determined, at least one isolate from each morphotype group was identified using Sanger
sequencing of the fungal ITS region (see below). For common morphotypes, multiple
representative fungal isolates were sequenced. Fungal isolates were also vouchered in
sterile water for long-term storage.

To verify that our morphotype designations were accurately grouped and to taxo-
nomically identify fungal isolates, we extracted DNA and conducted polymerase chain
reaction (PCR) using Sigma Aldrich Extract-N-Amp™ Plant Tissue PCR Kits [45]. We
used ITS1F and LR3 primers to amplify the nuclear ribosomal internal transcribed spacer
region and 5.8S gene (ITSrDNA) and approximately 600 bp of the adjacent large ribosomal
subunit (LSUrDNA) [46]. Each 20 µL reaction included 4 mL molecular-grade water, 10 µL
PCR Ready Mix (includes buffer, salts, dNTPs, and Taq polymerase), 1 µL ITS1F primer,
1 µL LR3 primer, and 4 µL template DNA. Amplification was done using BioRad T100
Thermal Cycler. The thermocycler settings were conducted as follows: initial three minutes
of denaturation at 95 ◦C, followed by 37 cycles (30 s of denaturation at 95 ◦C, 30 s of
annealing at 55 ◦C, and two minutes of elongation at 72 ◦C. and 10 min final extension
at 72 ◦C). To confirm successful gene amplification, gel electrophoresis using SYBR Safe
(Invitrogen) produced single bands for all products as well as no bands for negative con-
trols. PCR products were enzymatically cleaned using Illustra ExoProStar (Cytiva Life
Sciences) following the manufacturer’s protocol. Purified PCR samples were then sent to
Eurofins Genomics (Louisville, Kentucky) for Sanger sequencing of both forward (ITS1F)
and reverse (LR3) reads.
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We used Sequencher v. 5.4 (Gene Codes Corporation, Ann Arbor, MI, USA) to assem-
ble sequences into operational taxonomic units (OTUs) according to 97% ITS sequence
similarity, with a minimum of 40% overlap. We used the NCBI Basic Local Alignment
Search Tool (BLAST) [47] and the Ribosomal Database Project (RDP) Bayesian Classifier
with both the Warcup [48] and UNITE [48] ITS training sets to obtain best match taxonomic
names for each OTU (Table S1). Sequence data are archived at GenBank under accession
numbers OP679885-OP679925.

2.3. Statistical Analysis

To analyze shifts in root fungal endophyte species richness in response to Epichloë
presence and N addition, we conducted treatment level comparisons using a general
linear mixed-effects model, with nitrogen addition treatment, Epichloë presence and their
interaction as fixed effects and spatial plot level factors (row and column) as random effects.
Neither row, column, nor their interactions with plot level factors were significant (data not
shown), so they were removed from the model for subsequent analyses to better identify
main treatment effects. These analyses were performed using R version 1.4.1106.

We used a two-factor PERMANOVA to analyze changes in root fungal endophyte
community composition [49], with N addition treatment and Epichloë presence or absence,
and the interaction between the two treatments as fixed effects. Using a binary community
matrix comprised of presence and absence of OTUs, we performed a PERMANOVA using
the Bray–Curtis distance metric with 9999 permutations under a reduced model with Type
III sum of squares. Singleton taxa were excluded from this analysis to improve resolution.
Heterogeneity of the community in response to the different treatment factors was tested
using PERMDISP [50]. To visualize differences in root endophyte communities, we then
conducted a nonmetric multidimensional scaling (NMDS) ordination [51] with Bray–Curtis
dissimilarity measures. Finally, a SIMPER (similarity percentages species contribution)
analysis was used to determine which fungal species contributed most to differences in
community composition among treatment combinations [52]. The PERMANOVA and
NMDS ordination were conducted in R using the VEGAN package [53]. PERMDISP and
SIMPER analyses were conducted in Primer v. 6 [54].

3. Results

We identified a total of 23 OTUs and 11 singleton taxa in our study (Figure S1). Root
endophyte species richness increased by 17% when Epichloë was present within the host
grass (Table 1, Figure 1). However, N addition had no significant main or interactive effects
on root endophyte richness (Table 1).

Table 1. Statistical results from analyses of root fungal endophyte species richness (GLM), community
composition (PERMANOVA), and community heterogeneity (PERMDISP). Statistically significant
results are indicated in bold and by an asterisk (* p < 0.10, ** p < 0.05).

Richness Composition Heterogeneity

Factor F p Pseudo-F p Pseudo-F p

Epichloë 3.71 0.06 * 0.96 0.43 0.19 0.71
N addition 0.51 0.60 2.57 0.01 ** 0.68 0.57

Epichloë × N add 0.35 0.71 1.80 0.06 * 2.52 0.07 *

In contrast, root endophyte community composition was affected by N addition,
especially where Epichloë was present, as indicated by the presence or absence of overlap
in treatments within the ordination (Table 1, Figure 2). Pairwise comparisons showed
significant differences between all N treatments for E+ plants, and no significant differences
between N treatments for E− plants (Table S2).
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Epichloë and N addition also interacted to affect heterogeneity among root endophyte
communities within treatments, as shown by the PERMDISP analysis (Table 1) and NMDS
ordination, where decrease in oval size corresponds to decreased heterogeneity (Figure 2).
Pairwise contrasts (Table S2) indicated that low and high levels of N addition reduced
root endophyte community heterogeneity in Ammophila roots by 32–36% compared to
plants in the control treatment, but only when Epichloë was absent. N addition had no
effects on heterogeneity when Epichloë was present. In control N treatments, Epichloë
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presence reduced heterogeneity of root endophyte communities by 43% compared to plants
lacking Epichloë.

Finally, The SIMPER analysis indicated that two taxa, Microdochium bolleyi and Fusar-
ium sp., were common taxa within root endophyte communities across all treatments
(Table S3). Fusarium sp., along with Leptosphaeria sp., Cadophora sp., and Sarocladium strictum
showed reduced occurrences in response to N addition, while a different Fusarium sp. and
Acremonium sp. increased in frequency in response to N addition (Table S4).

4. Discussion

Epichloë influenced belowground mycobiome diversity and composition in this dune
grass system, especially under N-enriched conditions, providing moderate evidence that
Epichloë may act as a key species restructuring the above- and belowground mycobiome
of host plants. Several potential explanations exist for why root fungal endophyte com-
munities increased in richness in response to Epichloë infection. It might be expected
that Epichloë would suppress root endophyte diversity due to its ability to produce sys-
temic alkaloids [55–57] which directly inhibit growth of other fungal species, including
pathogens [4,5,57–60]. However, indirect effects of Epichloë on its plant host may override
direct mycobiome interactions to improve conditions for root endophyte communities.
Within the harsh sand dune environment specific to our study, Epichloë acts as a mutualist,
increasing Ammophila survival, vegetative growth, and belowground biomass [14,34,61].
In other systems, Epichloë can improve rhizosphere characteristics including soil fertility,
root morphology, soil nutrients, and organic carbon [62,63]. By increasing habitat space
in roots and improving belowground conditions, Epichloë may indirectly facilitate root
endophyte diversity. The other studies that have demonstrated no effects of Epichloë on root
endophyte communities were conducted in less extreme habitats such as agricultural fields
and prairies [11,12], where indirect effects of Epichloë on host plants may be less important.

Epichloë infection also altered root endophyte community composition in Ammophila,
especially under N-enriched conditions; while under ambient conditions, the presence
of Epichloë caused root fungal endophyte communities to converge across plots. These
findings suggest that Epichloë acts a filter to restructure the endophyte communities that
colonize Ammophila roots, possibly by altering the physical or chemical environment of
host plants, such as root exudate chemistry [64,65]. Plant mycobiome composition can
be strongly influenced by plant secondary metabolites [66,67], and Epichloë is known
for enhancing alkaloid production inside host plants [68]. Alkaloids are nitrogen-rich
secondary metabolites, so adding nitrogen could alter Epichloë’s ability to produce these
chemicals within hosts, either positively [69–71] or negatively [72] (but see [73] where no
effect was found), which could induce a strong filter on root endophyte species composition.

We were able to identify several fungal taxa responsible for the shifts in root endo-
phyte community composition. Both Microdochium bolleyi and Fusarium sp. were common
taxa within root endophyte communities across all treatments. This Fusarium sp. best
matched with Fusarium fujikuroi in the BLAST database (99.82% match), though we rec-
ognize that species designations within Fusarium usually require a tef1 sequence, which
we did not have. Microdochium bolleyi is a common dark septate endophyte, primarily of
grasses [74–76], including dune grasses of the Pacific Northwest [77]. A recent study found
no effects of Epichloë exudates on M. bolleyi growth in an in vitro assay [6], which our field
results support. However, F. fujikuroi (putative) was suppressed by Epichloë presence in
N-enriched conditions, along with Sarocladium strictum, Leptosphaeria sp., and Cadophora
sp. While the functions of many root endophytes are unknown, Fusarium fujikuroi has been
classified in other systems as an asymptomatic nonobligate root symbiont best known for
its gibberellin production [78,79] and has been found in other marine and coastal systems,
along with S. strictum [80]. Since Epichloë is known to stimulate gibberellin production
in both seeds and plants [81], any benefits that F. fujikuroi provides to hosts may become
redundant. Sarocladium, Leptosphaeria and Cadophora are common root endophyte gen-
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era [82,83] with functions ranging from commensal to parasitic to saprophytic, making
generalizations difficult.

Two taxa increased in abundance in response to N addition for Epichloë colonized
plants: Fusarium sporotrichioides (putative) and Acremonium sp. Fusarium sporotrichioides is a
known pathogen of maize and an opportunistic pathogen of other cereal crops [84,85]. In
agricultural systems, N fertilization often increases abundance of this and related Fusarium
spp., possibly due to changes in plant N-metabolism (e.g., [86]). This may explain why
increased N availability increased the occurrence of this species in Ammophila roots. Acremo-
nium species may act as potential mutualists by increasing root growth in host plants [87],
and so may hold a functionally similar role to Epichloë. While very little is known about root
endophyte biology, especially in non-agricultural systems, these species-specific responses
provide some insights into how Epichloë may filter mycobiome communities.

In conclusion, by manipulating the presence of Epichloë in a long-term experiment, we
found moderate evidence that this systemic endophyte is acting as a key species within
Ammophila, changing diversity and composition of the root mycobiome and integrating
above- and belowground mycobiome interactions. Further, effects of Epichloë on root
endophyte communities were enhanced by N addition, indicating that this fungal species
may become even more important in future environments. Ammophila is widely used in
coastal dune restorations, and the importance of plant-fungal symbioses for restoration
efforts are starting to be recognized [88]. Future work should address the consequences
of such shifts in mycobiome communities for host plants, as intentional manipulation of
mycobiome interactions may improve future restoration efforts in changing environments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof8111142/s1, Table S1. Comparison of different fungal databases
(UNITE, Warcup, BLAST) to identify fungal root endophyte OTUs detected within the study to
taxon. Percentages listed in the table are indicative of close matches for designated taxa. For UNITE
and Warcup, the percentages given in brackets indicates confidence thresholds whereas BLAST
displays the percent identity compared to its best match. OTUs beginning with S indicate singleton
taxa. Table S2. Pairwise comparisons of community composition (PERMANOVA) and heterogeneity
(PERMDISP) between N-addition treatments within each Epichloë treatment. Table S3. Similarity
Percentages (SIMPER) Analysis results, showing taxon contributions to community composition
similarity within each Epichloë × N addition treatment, up to 90% cumulative composition. Table S4.
Similarity Percentages (SIMPER) Analysis results, showing root endophyte taxon average frequencies
and their contribution to community differences among N addition treatments when Epichloë was
present. Figure S1. Heatmap displaying presence/absence of fungal root endophyte OTUs within
each Epichloë and N-addition treatment.
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