COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic
Abstract
1. Introduction
2. Epidemiology
3. Pathogenesis
4. Clinical Manifestations
5. Microbiologic Investigation
6. Laboratory and Radiologic Findings
7. Diagnosis
8. Treatment
9. Outcome
10. COVID-19 Associated with Cryptococcosis among HIV Patients
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Ko, W.C.; Hsueh, P.R. Global epidemiology of coronavirus disease 2019 (COVID-19): Disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int. J. Antimicrob. Agents. 2020, 55, 105946. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://covid19.who.int/ (accessed on 10 October 2022).
- Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.-H.; Hsueh, S.-C.; Yen, M.-Y.; Ko, W.-C.; Hsueh, P.-R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020, 53, 404–412. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Miao, Q.; Ma, Y.; Ling, Y.; Jin, W.; Su, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Chen, H.; Yuan, J.; et al. Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: A cohort study in Shanghai. J. Microbiol. Immunol. Infect. 2021, 54, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Parrill, A.; Tsao, T.; Dong, V.; Huy, N.T. SARS-CoV-2-induced immunodysregulation and the need for higher clinical suspicion for co-infection and secondary infection in COVID-19 patients. J. Microbiol. Immunol. Infect. 2021, 54, 105–108. [Google Scholar] [CrossRef]
- Chao, C.M.; Lai, C.C.; Yu, W.L. COVID-19 associated mucormycosis—An emerging threat. J. Microbiol. Immunol. Infect. 2022, 55, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wu, C.J.; Lee, Y.C.; Liu, W.L. COVID-19 associated with concomitant mucormycosis and aspergillosis. J. Microbiol. Immunol. Infect. 2022, 55, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Yu, W.L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021, 54, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Seaton, R.A.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef] [PubMed]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Regalla, D.; VanNatta, M.; Alam, M.; Malek, A.E. COVID-19-associated Cryptococcus infection (CACI): A review of literature and clinical pearls. Infection 2022, 50, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S. Pulmonary cryptococcosis after recovery from COVID-19 in an immunocompetent patient: A rare case report. Medicine 2022, 101, e30143. [Google Scholar] [CrossRef]
- Chastain, D.B.; Kung, V.M.; Golpayegany, S.; Jackson, B.T.; Franco-Paredes, C.; Barahona, L.V.; Thompson, G.R., III; Henao-Martinez, A.F. Cryptococcosis among hospitalised patients with COVID-19: A multicentre research network study. Mycoses 2022, 65, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.J.; Megharaj, C.; Patil, S.; Rani, P.K. Cryptococcus laurentii endogenous endophthalmitis post COVID-19 infection. BMJ Case Rep. 2022, 15, e246637. [Google Scholar] [CrossRef]
- Chastain, D.B.; Henao-Martínez, A.F.; Dykes, A.C.; Steele, G.M.; Stoudenmire, L.L.; Thomas, G.M.; Kung, V.; Franco-Paredes, C. Missed opportunities to identify cryptococcosis in COVID-19 patients: A case report and literature review. Ther. Adv. Infect. Dis. 2022, 9, 20499361211066363. [Google Scholar] [CrossRef]
- Cafardi, J.; Haas, D.; Lamarre, T.; Feinberg, J. Opportunistic Fungal Infection Associated with COVID-19. Open Forum Infect. Dis. 2021, 8, ofab016. [Google Scholar] [CrossRef]
- Gamon, E.; Tammena, D.; Wattenberg, M.; Augenstein, T. Rare superinfection in a COVID-19 patient-A chronology. Anaesthesist 2022, 71, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, H.; Sivasubramanian, G. Cryptococcus neoformans Meningoencephalitis in an Immunocompetent Patient after COVID-19 Infection. Case Rep. Infect. Dis. 2021, 2021, 5597473. [Google Scholar] [CrossRef]
- Khatib, M.Y.; Ahmed, A.A.; Shaat, S.B.; Mohamed, A.S.; Nashwan, A.J. Cryptococcemia in a patient with COVID-19: A case report. Clin. Case. Rep. 2021, 9, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, V.C.; Perosa, A.H.; de Souza Luna, L.K.; Conte, D.D.; Nascimento, O.A.; Ota-Arakaki, J.; Bellei, N. Detected SARS-CoV-2 in Ascitic Fluid Followed by Cryptococcemia: A Case Report. SN Compr. Clin. Med. 2020, 2, 2414–2418. [Google Scholar] [CrossRef]
- Thyagarajan, R.V.; Mondy, K.E.; Rose, D.T. Cryptococcus neoformans blood stream infection in severe COVID-19 pneumonia. IDCases 2021, 26, e01274. [Google Scholar] [CrossRef]
- Heller, H.M.; Gonzalez, R.G.; Edlow, B.L.; Ard, K.L.; Gogakos, T. Case 40-2020: A 24-Year-Old Man with Headache and COVID-19. N. Eng. J. Med. 2020, 383, 2572–2580. [Google Scholar] [CrossRef]
- Abohelwa, M.; Del Rio-Pertuz, G.; Parmar, K.; Morataya, C.; Siddique, S.; Duangkham, S.; Nugent, K.M. Pulmonary cryptococcosis in the 2019 novel coronavirus, when the coinfection affects the mortality. In TP47. TP047 Covid and Ards Case Reports; American Thoracic Society: New York, NY, USA, 2021; p. A2461. [Google Scholar]
- Alegre-González, D.; Herrera, S.; Bernal, J.; Soriano, A.; Bodro, M. Disseminated Cryptococcus neoformans infection associated to COVID-19. Med. Mycol. Case. Rep. 2021, 34, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Traver, E.C.; Malavé Sánchez, M. Pulmonary aspergillosis and cryptococcosis as a complication of COVID-19. Med. Mycol. Case. Rep. 2022, 35, 22–25. [Google Scholar] [CrossRef]
- Thota, D.R.; Ray, B.; Hasan, M.; Sharma, K. Cryptococcal Meningoencephalitis during Convalescence from Severe COVID-19 Pneumonia. Neurohospitalist 2022, 12, 96–99. [Google Scholar] [CrossRef]
- Karnik, K.; Wu, Y.; Ruddy, S.; Quijano-Rondan, B.; Urban, C.; Turett, G.; Yung, L.; Prasad, N.; Yoon, J.; Segal-Maurer, S. Fatal case of disseminated cryptococcal infection and meningoencephalitis in the setting of prolonged glucocorticoid use in a COVID-19 positive patient. IDCases 2022, 27, e01380. [Google Scholar] [CrossRef]
- Gil, Y.; Gil, Y.D.; Markou, T. The Emergence of Cryptococcemia in COVID-19 Infection: A Case Report. Cureus 2021, 13, e19761. [Google Scholar] [CrossRef]
- Woldie, I.L.; Brown, I.G.; Nwadiaro, N.F.; Patel, A.; Jarrar, M.; Quint, E.; Khokhotva, V.; Hugel, N.; Winger, M.; Briskin, A. Autoimmune Hemolytic Anemia in a 24-Year-Old Patient With COVID-19 Complicated by Secondary Cryptococcemia and Acute Necrotizing Encephalitis: A Case Report and Review of Literature. J. Med. Cases 2020, 11, 362–365. [Google Scholar] [CrossRef]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; et al. Association between Administration of IL-6 Antagonists and Mortality among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [PubMed]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
- Lin, W.T.; Hung, S.H.; Lai, C.C.; Wang, C.Y.; Chen, C.H. The effect of tocilizumab on COVID-19 patient mortality: A systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2021, 96, 107602. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, W.C.; Hsu, C.K.; Chao, C.M.; Lai, C.C. Clinical efficacy and safety of Janus kinase inhibitors for COVID-19: A systematic review and meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2021, 99, 108027. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Coates, C.J.; Seoane, P.I.; Garelnabi, M.; Taylor-Smith, L.M.; Monteith, P.; MacLeod, C.L.; Escaron, C.J.; Brown, G.D.; Hall, R.A.; et al. Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages. J. Immunol. 2018, 200, 3539–3546. [Google Scholar] [CrossRef]
- Levitz, S.M. Receptor-mediated recognition of Cryptococcus neoformans. Nihon. Ishinkin. Gakkai. Zasshi. 2002, 43, 133–136. [Google Scholar] [CrossRef]
- Kitai, Y.; Sato, K.; Tanno, D.; Yuan, X.; Umeki, A.; Kasamatsu, J.; Kanno, E.; Tanno, H.; Hara, H.; Yamasaki, S.; et al. Role of Dectin-2 in the Phagocytosis of Cryptococcus neoformans by Dendritic Cells. Infect. Immun. 2021, 89, e0033021. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.M.; Kelly, R.M.; Lee, C.K.; Levitz, S.M. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun. 2008, 76, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Syme, R.M.; Spurrell, J.C.; Amankwah, E.K.; Green, F.H.; Mody, C.H. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 2002, 70, 5972–5981. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.K.; Schlesinger, L.S.; Levitz, S.M. Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 2002, 168, 2872–2879. [Google Scholar] [CrossRef]
- Lizarazo, J.; Castañeda, E. Central Nervous System Cryptococcosis due to Cryptococcus gattii in the Tropics. Curr. Trop. Med. Rep. 2022, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Tirado, F.H.; Onken, M.D.; Cooper, J.A.; Klein, R.S.; Doering, T.L. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio 2017, 8, e02183-16. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, X.; Du, W.; Meng, Y.; Li, Y.; Sun, T.; Liang, Q.; Li, C.; Suo, C.; Gao, X.; et al. Comparative miRNA transcriptomics of macaques and mice reveals MYOC is an inhibitor for Cryptococcus neoformans invasion into the brain. Emerg. Microbes. Infect. 2022, 11, 1572–1585. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Lei Zhao, L.X.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- Moon, C. Fighting COVID-19 exhausts T cells. Nat. Rev. Immunol. 2020, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 2020, 20, 529–536. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.J.; Cheng, H.; Kao, Y.H.; Wang, Y.-H.; Chiu, C.-C.; Chialng, W.-F.; Kuo, C.-C.; Chuu, C.-P.; Wu, K.-A. Comparison of laboratory diagnosis, clinical manifestation, and management of pulmonary cryptococcosis: Report of the clinical scenario and literature review. Clin. Chim. Acta 2022, 524, 78–83. [Google Scholar] [CrossRef]
- Xie, L.X.; Chen, Y.S.; Liu, S.Y.; Shi, Y.X. Pulmonary cryptococcosis: Comparison of CT findings in immunocompetent and immunocompromised patients. Acta Radiol. 2015, 56, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yan, Y.; Wang, Y.; Liu, X.; Su, X. Plain and contrast-enhanced chest computed tomography scan findings of pulmonary cryptococcosis in immunocompetent patients. Exp. Ther. Med. 2017, 14, 4417–4424. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yu, L.; Luo, J.; Shen, J.; Wang, D.; Kuang, P.; Fu, G. Characterization of Clinical and CT Manifestations of Pulmonary Cryptococcosis with Consolidation. Arch. Iran. Med. 2021, 24, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Saag, M.S.; Graybill, R.J.; Larsen, R.A.; Pappas, P.G.; Perfect, J.R.; Powderly, W.G.; Sobel, J.D.; Dismukes, W.E. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2000, 30, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.-H.; et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50, 291–322. [Google Scholar] [CrossRef]
- Štingl, J.; Hylmarová, J.; Lengerová, M.; Maláska, J.; Stašek, J. Cryptococcal Pneumonia: An Unusual Complication in a COVID-19 Patient. Diagnostics 2022, 12, 1944. [Google Scholar] [CrossRef]
Case (Country) | Age | Sex | Underlying Disease | COVID-19 Severity | Use of Corticosteroid for COVID-19 | Cryptococcal Infection | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sites of Involvement | Diagnosis | Pathogen | Treatment | Outcome | Timing of Diagnosis, Day | ||||||
Abohelwa et al. [28] (USA) | 78 | F | HTN, DM | Severe | NA | Pulmonary | Tracheal aspirate Cx | C. neoformans | FLZ | Dead | NA |
Alegre-Gonz’alez et al. [29] (Spain) | 78 | M | HTN, DM, CKD | Severe | Yes | Disseminated | Blood Cx, CSF Cx, CSF CrAg | C. neoformans | L-AmB + FC -> FLZ | Dead | D75 |
Cafardi et al. [21] (USA) | 78 | M | HTN, COPD | Severe | Yes | Pulmonary | BAL Cx, | C. neoformans | L-AmB -> ISZ | Dead | D22 |
Chastain et al. [20] (USA) | 70+ | M | HTN, COPD, CKD, CAD, stroke, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Choi et al. [17] (Korea) | 46 | M | Nil | Mild | NA | Pulmonary | BAL Cx and Cr Ag | C. neoformans | FLZ | Alive | D90 |
Deepa et al. [19] (India) | 50+ | M | DM | NA | Yes | Ocular | Vitreous Cx | C. laurentii | FLZ + Intravitreal VCZ | Alive | NA |
Gamon et al. [22] (German) | 55 | M | Dilated cardiomyopathy | Severe | Yes | Pulmonary | Respiratory specimen Cx | C. neoformans | L-AmB -> FLZ | Alive | D13 |
Ghanem et al. [23] (USA) | 73 | F | None | Severe | Yes | Meningeal | CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D7 |
Gil et al. [33] (USA) | 59 | M | HTN, DM, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | L-AmB -> FLZ | Alive | D33 |
Heller et al. [27] (USA) | 24 | M | HIV | Mild | No | Meningeal | CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D5 |
Karnik et al. [32] (USA) | 57 | M | HTN | Severe | Yes | Disseminated | Blood Cx, CSF Cx and CrAg | C. neoformans | L-AmB + FC | Dead | D36 |
Khatib et al. [24] (Qatar) | 60 | M | HTN, DM, ischemia heart disease | Severe | Yes | Disseminated | Blood Cx | C. neoformans | L-AmB + FC | Dead | D48 |
Passarelli et al. [25] (Brazil) | 75 | M | HTN, renal transplant | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Thota et al. [31] (USA) | 76 | F | HTN | Severe | Yes | Disseminated | Blood Cx, CSF Cx and CrAg | C. neoformans | L-AmB + FC -> FLZ | Alive | D49 |
Thyagarajan et al. [26] (USA) | 75 | M | DM, HTN, obesity | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | Postmortem |
Traver et al. [30] (USA) | 59 | M | COPD, DM, CHF, liver cirrhosis, obesity | Severe | Yes | Pulmonary | BAL Cx | C. neoformans | L-AmB + FC -> FLZ | Dead | D10 |
Woldie et al. [34] (Canada) | 24 | M | Autoimmune hemolytic anemia | Severe | Yes | Disseminated | Blood Cx | C. neoformans | Nil | Dead | D23 |
Štingl et al. [35] (Czech) | 60 | M | HTN | Severe | Yes | Pulmonary | BAL Cx, CrAg | C. neoformans | L-Amb + FLZ | Dead | D22 |
● CNS disease |
|
● Isolated pulmonary disease |
|
● Isolated cryptococcemia |
- Treat like CNS disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, K.-S.; Lai, C.-C.; Yu, W.-L.; Chao, C.-M. COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. J. Fungi 2022, 8, 1111. https://doi.org/10.3390/jof8101111
Chan K-S, Lai C-C, Yu W-L, Chao C-M. COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. Journal of Fungi. 2022; 8(10):1111. https://doi.org/10.3390/jof8101111
Chicago/Turabian StyleChan, Khee-Siang, Chih-Cheng Lai, Wen-Liang Yu, and Chien-Ming Chao. 2022. "COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic" Journal of Fungi 8, no. 10: 1111. https://doi.org/10.3390/jof8101111
APA StyleChan, K.-S., Lai, C.-C., Yu, W.-L., & Chao, C.-M. (2022). COVID-19 Associated with Cryptococcosis: A New Challenge during the Pandemic. Journal of Fungi, 8(10), 1111. https://doi.org/10.3390/jof8101111