Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area and Mushroom Sampling
2.2. Heavy-Metal Analysis
2.3. Data Analysis
2.4. Software and Tools
3. Results and Discussion
3.1. Heavy Metal Levels in Collected Pleurotus spp.
3.2. Multivariate Analysis Results
3.3. Results of Health Risk Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, A.; Agrawal, K.; Verma, P. Fungi and Its By-Products in Food Industry: An Unexplored Area. In Microbial Products for Health, Environment and Agriculture; Springer: Singapore, 2021; pp. 103–120. [Google Scholar]
- Fortune Business Insights. Mushroom Market Size, Share & Industry Analysis, by Type, Form and Regional Forecast 2019-2026; Fortune Business Insights Pvt. Ltd.: Pune, India, 2020; Volume 21. [Google Scholar]
- Patra, A.; Mukherjee, A.K. Mushroom Mycetism—A Neglected and Challenging Medical Emergency in the Indian Subcontinent: A Road Map for Its Prevention and Treatment. Toxicon 2022, 217, 56–77. [Google Scholar] [CrossRef] [PubMed]
- Nagulwar, M.M.; More, D.R.; Mandhare, L.L. Nutritional Properties and Value Addition of Mushroom: A Review. Pharma Innov. J. 2020, 9, 395–398. [Google Scholar] [CrossRef]
- Pieroni, A.; Houlihan, L.; Ansari, N.; Hussain, B.; Aslam, S. Medicinal Perceptions of Vegetables Traditionally Consumed by South-Asian Migrants Living in Bradford, Northern England. J. Ethnopharmacol. 2007, 113, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef]
- Kumar, P.; Eid, E.M.; Al-Huqail, A.A.; Širić, I.; Adelodun, B.; Abou Fayssal, S.; Valadez-Blanco, R.; Goala, M.; Ajibade, F.O.; Choi, K.S.; et al. Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (Lentinula edodes) Mushroom Cultivated on Agro-Industrial Wastes. Horticulturae 2022, 8, 316. [Google Scholar] [CrossRef]
- Verma, R.K.; Pandro, V.; Mishra, S.N.; Raj, D.; Asaiya, A.J.K. Sal Forest: A Source of Wild Edible Mushrooms for Livelihood Support to Tribal People of Dindori District, Madhya Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 563–575. [Google Scholar] [CrossRef]
- Širić, I.; Kumar, P.; Eid, E.M.; Bachheti, A.; Kos, I.; Bedeković, D.; Mioč, B.; Humar, M. Occurrence and Health Risk Assessment of Cadmium Accumulation in Three Tricholoma Mushroom Species Collected from Wild Habitats of Central and Coastal Croatia. J. Fungi 2022, 8, 685. [Google Scholar] [CrossRef]
- Širić, I.; Kasap, A.; Bedeković, D.; Falandysz, J. Lead, Cadmium and Mercury Contents and Bioaccumulation Potential of Wild Edible Saprophytic and Ectomycorrhizal Mushrooms, Croatia. J. Environ. Sci. Health B 2017, 52, 156–165. [Google Scholar] [CrossRef]
- Orywal, K.; Socha, K.; Nowakowski, P.; Zon, W.; Kaczynski, P.; Mroczko, B.; Lozowicka, B.; Perkowski, M. Health Risk Assessment of Exposure to Toxic Elements Resulting from Consumption of Dried Wild-Grown Mushrooms Available for Sale. PLoS ONE 2021, 16, e0252834. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Eid, E.M.; Al-Huqail, A.A.; Adelodun, B.; Abou Fayssal, S.; Goala, M.; Arya, A.K.; Bachheti, A.; Andabaka, Ž.; et al. Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus Bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J. Fungi 2022, 8, 452. [Google Scholar] [CrossRef]
- Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H.; el Sebaaly, Z.; Najjar, R.; Sassine, Y.N. Effect of Olive Pruning Residues on Substrate Temperature and Production of Oyster Mushroom (Pleurotus ostreatus). Acta Hortic. 2021, 1327, 245–252. [Google Scholar] [CrossRef]
- Sassine, Y.N.; Naim, L.; el Sebaaly, Z.; Abou Fayssal, S.; Alsanad, M.A.; Yordanova, M.H. Nano Urea Effects on Pleurotus Ostreatus Nutritional Value Depending on the Dose and Timing of Application. Sci. Rep. 2021, 11, 5588. [Google Scholar] [CrossRef] [PubMed]
- Abou Fayssal, S.; el Sebaaly, Z.; Alsanad, M.A.; Najjar, R.; Yordanova, M.H.; Sassine, Y.N. Combined Effect of Olive Pruning Residues and Spent Coffee Grounds on Pleurotus Ostreatus Production, Composition, and Nutritional Value. PLoS ONE 2021, 16, e0255794. [Google Scholar] [CrossRef] [PubMed]
- Sithole, S.C.; Agboola, O.O.; Mugivhisa, L.L.; Amoo, S.O.; Olowoyo, J.O. Elemental Concentration of Heavy Metals in Oyster Mushrooms Grown on Mine Polluted Soils in Pretoria, South Africa. J. King Saud Univ. Sci. 2022, 34, 101763. [Google Scholar] [CrossRef]
- Mleczek, M.; Budka, A.; Siwulski, M.; Mleczek, P.; Budzyńska, S.; Proch, J.; Gąsecka, M.; Niedzielski, P.; Rzymski, P. A Comparison of Toxic and Essential Elements in Edible Wild and Cultivated Mushroom Species. Eur. Food Res. Technol. 2021, 247, 1249–1262. [Google Scholar] [CrossRef]
- Harihar, A.; Pandav, B.; Goyal, S.P. Density of Leopards (Panthera Pardus) in the Chilla Range of Rajaji National Park, Uttarakhand, India. Mammalia 2009, 73, 68–71. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, R. Feeding Behaviour of Wild Asian Elephants (Elephas maximus) in the Rajaji National Park. J. Am. Sci. 2008, 4, 34–48. [Google Scholar]
- Kothiyal, G.; Singh, K.; Kumar, A.; Juyal, P.; Guleri, S. Wild Macrofungi (Mushrooms) Diversity Occurrence in the Forest of Uttarakhand, India. Biodiv. Res. 2019, 53, 7–32. [Google Scholar]
- Singh, G.; Mishra, N.; Thakural, L.N.; Kumar, S. Statistical Downscaling of Climate Change Scenarios of Rainfall in Haridwar District of Uttarakhand, India. In Smart Technologies for Energy, Environment and Sustainable Development; Springer: Singapore, 2022; pp. 131–142. [Google Scholar]
- Rajarathnam, S.; Bano, Z. Pleurotus Mushrooms. Part I A. Morphology, Life Cycle, Taxonomy, Breeding, and Cultivation. C R C Crit. Rev. Food Sci. Nutr. 1987, 26, 157–223. [Google Scholar] [CrossRef]
- Kumari, B.; Sharma, V.P.; Barh, A.; Upadhyay, R.C. Mushroom Wealth of India; M/S Bishen Singh Mahendra Pal Singh: Dehradun, India, 2022. [Google Scholar]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of Heavy Metal Content in Fruits and Vegetables Collected from Production and Market Sites in the Misurata Area of Libya. ISRN Anal. Chem. 2012, 2012, 827645. [Google Scholar] [CrossRef]
- Abrham, F.; Gholap, A.V. Analysis of Heavy Metal Concentration in Some Vegetables Using Atomic Absorption Spectroscopy. Pollution 2021, 7, 205–216. [Google Scholar]
- Lion, G.N.; Olowoyo, J.O. Population Health Risk Due to Dietary Intake of Toxic Heavy Metals from Spinacia Oleracea Harvested from Soils Collected in and around Tshwane, South Africa. South Afr. J. Bot. 2013, 88, 178–182. [Google Scholar] [CrossRef]
- Mahabadi, M. Assessment of Heavy Metals Contamination and the Risk of Target Hazard Quotient in Some Vegetables in Isfahan. Pollution 2020, 6, 69–78. [Google Scholar]
- Sinha, S.K.; Upadhyay, T.K.; Sharma, S.K. Heavy Metals Detection in White Button Mushroom (Agaricus bisporus) Cultivated in State of Maharashtra, India. Biochem. Cell Arch. 2019, 19, 3501–3506. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System. Available online: https://www.epa.gov/iris (accessed on 31 August 2022).
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179, 191–199. [Google Scholar] [CrossRef]
- Kumari, S.; Kothari, R.; Kumar, V.; Kumar, P.; Tyagi, V.V. Kinetic Assessment of Aerobic Composting of Flower Waste Generated from Temple in Jammu, India: A Lab-Scale Experimental Study. Environ. Sustain. 2021, 4, 393–400. [Google Scholar] [CrossRef]
- Wiłkomirski, B.; Sudnik-Wójcikowska, B.; Galera, H.; Wierzbicka, M.; Malawska, M. Railway Transportation as a Serious Source of Organic and Inorganic Pollution. Water Air Soil Pollut. 2011, 218, 333–345. [Google Scholar] [CrossRef]
- Kupka, D.; Kania, M.; Pietrzykowski, M.; Łukasik, A.; Gruba, P. Multiple Factors Influence the Accumulation of Heavy Metals (Cu, Pb, Ni, Zn) in Forest Soils in the Vicinity of Roadways. Water Air Soil Pollut. 2021, 232, 194. [Google Scholar] [CrossRef]
- Fergus, C. The Science of Spring Water. Res. Penn State 2002, 23. Available online: https://www.psu.edu/news/research/story/science-spring-water/ (accessed on 1 September 2022).
- Gebrelibanos, M.; Megersa, N.; Taddesse, A.M. Levels of Essential and Non-Essential Metals in Edible Mushrooms Cultivated in Haramaya, Ethiopia. Int. J. Food Contam. 2016, 3, 2. [Google Scholar] [CrossRef]
- WHO. Exposure to Cadmium: A Major Public Health Concern; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Darren, G.; Paul, M. SPSS for Windows Step by Step: A Simple Guide and Reference; Pearson Education, Inc.: Boston, MA, USA, 1999; p. 386. [Google Scholar]
- Sarikurkcu, C.; Akata, I.; Tepe, B. Metal Concentration and Health Risk Assessment of Eight Russula Mushrooms Collected from Kizilcahamam-Ankara, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 15743–15754. [Google Scholar] [CrossRef] [PubMed]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; Barbero, F.G. Toxic Elements and Trace Elements in Macrolepiota Procera Mushrooms from Southern Spain and Northern Morocco. J. Food Compos. Anal. 2022, 108, 104419. [Google Scholar] [CrossRef]
- Leung, A.O.W.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy Metals Concentrations of Surface Dust from E-Waste Recycling and Its Human Health Implications in Southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Pecina, V.; Valtera, M.; Trávníčková, G.; Komendová, R.; Novotný, R.; Brtnický, M.; Juřička, D. Vertical Distribution of Mercury in Forest Soils and Its Transfer to Edible Mushrooms in Relation to Tree Species. Forests 2021, 12, 539. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Bouziane, H.; López-Castillo, J.G.; Palma, M.; Barbero, F.G. Exposure to Essential and Toxic Elements via Consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae Mushrooms from Southern Spain and Northern Morocco. J. Fungi 2022, 8, 545. [Google Scholar] [CrossRef]
Site Name | Code | Samples Collected in Two Years | Latitude (N) ^ | Longitude (E) ^ | Elevation (m) |
---|---|---|---|---|---|
Chilla Forest Colony | CF | P. ostreatus (n = 5); P. djamor (n = 4) | 29°57′46.57″ | 78°11′41.59″ | 296 |
Chandi Devi Forest | CD | P. ostreatus (n = 5); P. djamor (n = 5) | 29°56′10.38″ | 78°10′56.72″ | 517 |
Bheemgoda Barrage Forest | BF | P. ostreatus (n = 4); P. djamor (n = 5) | 29°57′20.73″ | 78°11′10.16″ | 333 |
Sureshwari Devi Forest | SD | P. ostreatus (n = 5); P. djamor (n = 5) | 29°58′70.49″ | 78° 6′26.45″ | 315 |
Rishikesh Canal Road | RC | P. ostreatus (n = 5); P. djamor (n = 5) | 29°58′58.16″ | 78°14′20.12″ | 328 |
Mansa Devi Forest | MD | P. ostreatus (n = 5); P. djamor (n = 5) | 29°57′24.01″ | 78° 9′56.09″ | 440 |
Sapt Rishi Ghat | SR | P. ostreatus (n = 5); P. djamor (n = 2) | 29°58′40.43″ | 78°11′18.52″ | 299 |
BHEL Forest Colony | BF | P. ostreatus (n = 5); P. djamor (n = 4) | 29°57′9.92″ | 78° 6′22.65″ | 304 |
Devpura Forest Colony | DF | P. ostreatus (n = 5); P. djamor (n = 2) | 29°56′25.96″ | 78° 8′14.40″ | 322 |
Bijnor Canal Road | BC | P. ostreatus (n = 5); P. djamor (n = 2) | 29°55′90.43″ | 78°10′27.73″ | 286 |
Sampling Site | Pleurotus spp. | Heavy-Metal Concentration (mg/kg Dry Weight) | |||||
---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Fe | Mn | Zn | ||
Chilla Forest Colony | P. ostreatus | 0.06 ± 0.02 ab | 0.81 ± 0.14 b | 14.10 ± 1.20 b | 29.76 ± 1.53 c | 9.33 ± 0.20 c | 13.56 ± 0.62 a |
P. djamor | 0.05 ± 0.01 b | 0.73 ± 0.05 b | 12.08 ± 0.08 a | 30.20 ± 0.86 c | 8.14 ± 0.15 b | 14.09 ± 0.40 a | |
Chandi Devi Forest | P. ostreatus | 0.10 ± 0.03 bc | 0.57 ± 0.07 a | 17.90 ± 1.04 cd | 25.01 ± 3.17 ab | 10.36 ± 1.10 c | 18.64 ± 1.56 c |
P. djamor | 0.07 ± 0.02 ab | 0.42 ± 0.08 a | 15.05 ± 0.49 bc | 23.19 ± 2.02 a | 8.99 ± 0.72 b | 16.03 ± 1.10 b | |
Bheemgoda Barrage Forest | P. ostreatus | 0.11 ± 0.03 c | 0.75 ± 0.09 b | 14.43 ± 0.32 b | 30.86 ± 1.38 c | 7.80 ± 0.43 | 19.70 ± 0.98 c |
P. djamor | 0.09 ± 0.01 c | 0.38 ± 0.02 a | 15.09 ± 0.75 b | 27.74 ± 0.84 bc | 8.64 ± 0.27 b | 13.50 ± 2.15 a | |
Sureshwari Devi Forest | P. ostreatus | 0.03 ± 0.01 a | 0.84 ± 0.10 bc | 13.52 ± 0.61 ab | 28.04 ± 2.03 c | 10.93 ± 1.09 c | 16.27 ± 1.53 b |
P. djamor | Bdl | 0.45 ± 0.15 a | 14.19 ± 0.87 b | 24.82 ± 4.20 ab | 7.55 ± 0.14 a | 15.01 ± 1.07 b | |
Rishikesh Canal Road | P. ostreatus | 0.13 ± 0.02 c | 0.92 ± 0.03 c | 15.06 ± 0.16 bc | 31.56 ± 1.64 c | 10.70 ± 0.81 c | 18.65 ± 1.94 c |
P. djamor | 0.08 ± 0.02 ab | 0.64 ± 0.07 b | 14.15 ± 0.90 b | 32.07 ± 1.98 c | 9.07 ± 0.29 c | 15.71 ± 0.62 b | |
Mansa Devi Forest | P. ostreatus | 0.09 ± 0.01 c | 0.89 ± 0.08 c | 16.21 ± 0.19 c | 21.88 ± 0.43 a | 8.31 ± 0.37 b | 17.10 ± 0.78 b |
P. djamor | 0.07 ± 0.01 b | 0.77 ± 0.04 c | 13.62 ± 1.35 a | 25.29 ± 1.05 ab | 7.18 ± 0.11 a | 19.58 ± 0.25 c | |
Sapt Rishi Ghat | P. ostreatus | 0.11 ± 0.03 bc | 0.96 ± 0.05 c | 18.40 ± 0.46 d | 29.67 ± 0.57 c | 10.11 ± 0.22 c | 16.39 ± 2.38 b |
P. djamor | 0.05 ± 0.01 b | 0.62 ± 0.12 b | 15.10 ± 1.10 b | 30.16 ± 1.32 c | 9.75 ± 0.45 c | 17.22 ± 0.70 b | |
BHEL Forest Colony | P. ostreatus | 0.13 ± 0.02 cd | 1.04 ± 0.02 d | 17.21 ± 0.84 cd | 25.64 ± 1.88 b | 9.42 ± 0.60 c | 20.84 ± 0.58 c |
P. djamor | 0.10 ± 0.03 c | 0.85 ± 0.03 c | 16.12 ± 1.32 c | 22.92 ± 3.05 a | 8.09 ± 0.44 a | 15.58 ± 1.39 b | |
Devpura Forest Colony | P. ostreatus | 0.11 ± 0.02 c | 0.79 ± 0.14 b | 15.88 ± 0.78 b | 26.78 ± 1.19 b | 10.25 ± 0.97 c | 18.24 ± 0.66 c |
P. djamor | 0.08 ± 0.01 c | 0.57 ± 0.09 b | 16.26 ± 0.35 c | 23.08 ± 3.60 a | 8.58 ± 0.48 b | 12.02 ± 2.04 a | |
Bijnor Canal Road | P. ostreatus | 0.16 ± 0.02 d | 1.14 ± 0.17 c | 19.20 ± 0.40 d | 35.66 ± 0.94 cd | 12.05 ± 0.51 d | 22.10 ± 0.71 d |
P. djamor | 0.11 ± 0.04 c | 0.95 ± 0.09 c | 16.07 ± 0.69 c | 32.02 ± 1.55 c | 11.32 ± 0.35 bc | 18.90 ± 1.20 c | |
Minimum | P. ostreatus | 0.03 | 0.57 | 13.52 | 21.88 | 7.80 | 13.56 |
P. djamor | 0.05 | 0.38 | 12.08 | 22.92 | 7.18 | 12.02 | |
Maximum | P. ostreatus | 0.16 | 1.14 | 19.20 | 35.66 | 12.05 | 22.10 |
P. djamor | 0.11 | 0.95 | 16.26 | 32.07 | 11.32 | 19.58 | |
Median | P. ostreatus | 0.11 | 0.87 | 16.05 | 28.86 | 10.18 | 18.44 |
P. djamor | 0.08 | 0.63 | 15.07 | 26.52 | 8.61 | 15.65 | |
Mean | P. ostreatus | 0.10 | 0.87 | 16.19 | 28.49 | 9.93 | 18.15 |
P. djamor | 0.08 | 0.64 | 14.77 | 27.15 | 8.73 | 15.76 | |
SD | P. ostreatus | 0.04 | 0.16 | 1.94 | 3.89 | 1.26 | 2.46 |
P. djamor | 0.02 | 0.19 | 1.30 | 3.74 | 1.18 | 2.34 | |
Skewness | P. ostreatus | −0.68 | −0.16 | 0.17 | 0.13 | −0.21 | −0.23 |
P. djamor | 0.05 | 0.17 | −0.85 | 0.18 | 1.07 | 0.22 | |
Kurtosis | P. ostreatus | 0.82 | 0.62 | −1.31 | 0.31 | −0.02 | 0.23 |
P. djamor | −0.70 | −0.97 | 0.62 | −1.88 | 1.76 | −0.35 | |
Safe Limit [28,29] | - | 0.10 | 2.30 | 40.00 | 425.00 | 30.00 | 50.00 |
Sampling Site | Pleurotus spp. | Target Hazard Quotient (THQ) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Fe | Mn | Zn | ||||||||
Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | ||
Chilla Forest Colony | P. ostreatus | 0.065 | 0.028 | 0.141 | 0.060 | 0.182 | 0.078 | 0.023 | 0.010 | 0.360 | 0.154 | 0.024 | 0.010 |
P. djamor | 0.054 | 0.023 | 0.132 | 0.056 | 0.156 | 0.067 | 0.023 | 0.010 | 0.314 | 0.135 | 0.025 | 0.011 | |
Chandi Devi Forest | P. ostreatus | 0.108 | 0.046 | 0.099 | 0.042 | 0.230 | 0.099 | 0.019 | 0.008 | 0.400 | 0.171 | 0.034 | 0.014 |
P. djamor | 0.076 | 0.032 | 0.076 | 0.032 | 0.194 | 0.083 | 0.018 | 0.008 | 0.347 | 0.149 | 0.029 | 0.012 | |
Bheemgoda Barrage Forest | P. ostreatus | 0.119 | 0.051 | 0.130 | 0.056 | 0.186 | 0.080 | 0.024 | 0.010 | 0.301 | 0.129 | 0.036 | 0.015 |
P. djamor | 0.097 | 0.042 | 0.068 | 0.029 | 0.194 | 0.083 | 0.021 | 0.009 | 0.334 | 0.143 | 0.024 | 0.010 | |
Sureshwari Devi Forest | P. ostreatus | 0.032 | 0.014 | 0.146 | 0.063 | 0.174 | 0.075 | 0.022 | 0.009 | 0.422 | 0.181 | 0.029 | 0.013 |
P. djamor | 0.000 | 0.000 | 0.081 | 0.035 | 0.183 | 0.078 | 0.019 | 0.008 | 0.292 | 0.125 | 0.027 | 0.012 | |
Rishikesh Canal Road | P. ostreatus | 0.141 | 0.060 | 0.160 | 0.069 | 0.194 | 0.083 | 0.024 | 0.010 | 0.413 | 0.177 | 0.034 | 0.014 |
P. djamor | 0.087 | 0.037 | 0.115 | 0.049 | 0.182 | 0.078 | 0.025 | 0.011 | 0.350 | 0.150 | 0.028 | 0.012 | |
Mansa Devi Forest | P. ostreatus | 0.097 | 0.042 | 0.155 | 0.066 | 0.209 | 0.089 | 0.017 | 0.007 | 0.321 | 0.138 | 0.031 | 0.013 |
P. djamor | 0.076 | 0.032 | 0.139 | 0.059 | 0.175 | 0.075 | 0.020 | 0.008 | 0.277 | 0.119 | 0.035 | 0.015 | |
Sapt Rishi Ghat | P. ostreatus | 0.119 | 0.051 | 0.167 | 0.072 | 0.237 | 0.102 | 0.023 | 0.010 | 0.390 | 0.167 | 0.030 | 0.013 |
P. djamor | 0.054 | 0.023 | 0.112 | 0.048 | 0.194 | 0.083 | 0.023 | 0.010 | 0.377 | 0.161 | 0.031 | 0.013 | |
BHEL Forest Colony | P. ostreatus | 0.141 | 0.060 | 0.181 | 0.077 | 0.222 | 0.095 | 0.020 | 0.008 | 0.364 | 0.156 | 0.038 | 0.016 |
P. djamor | 0.108 | 0.046 | 0.153 | 0.066 | 0.208 | 0.089 | 0.018 | 0.008 | 0.312 | 0.134 | 0.028 | 0.012 | |
Devpura Forest Colony | P. ostreatus | 0.119 | 0.051 | 0.137 | 0.059 | 0.204 | 0.088 | 0.021 | 0.009 | 0.396 | 0.170 | 0.033 | 0.014 |
P. djamor | 0.087 | 0.037 | 0.103 | 0.044 | 0.209 | 0.090 | 0.018 | 0.008 | 0.331 | 0.142 | 0.022 | 0.009 | |
Bijnor Canal Road | P. ostreatus | 0.173 | 0.074 | 0.198 | 0.085 | 0.247 | 0.106 | 0.028 | 0.012 | 0.465 | 0.199 | 0.040 | 0.017 |
P. djamor | 0.119 | 0.051 | 0.171 | 0.073 | 0.207 | 0.089 | 0.025 | 0.011 | 0.437 | 0.187 | 0.034 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Bachheti, R.K.; Bachheti, A.; Ajibade, F.O.; Kumar, V.; Taher, M.A.; Eid, E.M. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park. J. Fungi 2022, 8, 1007. https://doi.org/10.3390/jof8101007
Širić I, Kumar P, Adelodun B, Abou Fayssal S, Bachheti RK, Bachheti A, Ajibade FO, Kumar V, Taher MA, Eid EM. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park. Journal of Fungi. 2022; 8(10):1007. https://doi.org/10.3390/jof8101007
Chicago/Turabian StyleŠirić, Ivan, Pankaj Kumar, Bashir Adelodun, Sami Abou Fayssal, Rakesh Kumar Bachheti, Archana Bachheti, Fidelis O. Ajibade, Vinod Kumar, Mostafa A. Taher, and Ebrahem M. Eid. 2022. "Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus spp.) Collected from Rajaji National Park" Journal of Fungi 8, no. 10: 1007. https://doi.org/10.3390/jof8101007