Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prevalence of Colletotrichum on Feral Weeds
2.2. Plant Characteristics Associated with Prevalence
2.3. Experimental Field Study of Coinfection between Yams and Weeds
2.4. Statistical Analyses
3. Results
3.1. Prevalence of Colletotrichum on Feral Weeds
3.2. Plant Characteristics Associated with Prevalence
3.3. Experimental Field Study of Coinfection Between Yams and Weeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schreinemachers, P.; Tipraqsa, P. Agricultural Pesticides and Land Use Intensification in High, Middle and Low Income Countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Agriculture and Greenhouse Gases, a Common Tragedy. A Review. Agron. Sustain. Dev. 2013, 33, 275–289. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Valenzuela, H. Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture. Horticulturae 2016, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Gage, K.L.; Schwartz-Lazaro, L.M. Shifting the Paradigm: An Ecological Systems Approach to Weed Management. Agriculture 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Blackman, G.; Templeman, W.G. The Nature of the Competition between Cereal Crops and Annual Weeds. J. Agric. Sci. 1938, 28, 247–271. [Google Scholar] [CrossRef]
- Smith, R.G.; Mortensen, D.A.; Ryan, M.R. A New Hypothesis for the Functional Role of Diversity in Mediating Resource Pools and Weed–Crop Competition in Agroecosystems. Weed Res. 2010, 50, 37–48. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Walsh, M.; Chauhan, B.S. Weed Management Using Crop Competition in Australia. Crop. Prot. 2017, 95, 8–13. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating Crop Yield Losses through Weed Diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Burnside, O.C.; Wiens, M.J.; Holder, B.J.; Weisberg, S.; Ristau, E.A.; Johnson, M.M.; Cameron, J.H. Critical Periods for Weed Control in Dry Beans (Phaseolus vulgaris). Weed Sci. 1998, 46, 301–306. [Google Scholar] [CrossRef]
- Van Heemst, H.D.J. The Influence of Weed Competition on Crop Yield. Agric. Syst. 1985, 18, 81–93. [Google Scholar] [CrossRef]
- Wicks, G.; Johnston, D.; Nuland, D.; Kinbacher, E. Competition between Annual Weeds and Sweet Spanish Onions. Weed Sci. 1973, 21, 436–439. [Google Scholar] [CrossRef]
- Ryan, M.R.; Smith, R.G.; Mirsky, S.B.; Mortensen, D.A.; Seidel, R. Management Filters and Species Traits: Weed Community Assembly in Long-Term Organic and Conventional Systems. Weed Sci. 2010, 58, 265–277. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An Ecological Future for Weed Science to Sustain Crop Production and the Environment. A Review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Navas, M.-L. Trait-Based Approaches to Unravelling the Assembly of Weed Communities and Their Impact on Agro-Ecosystem Functioning: Functional Structure of Weeds. Weed Res. 2012, 52, 479–488. [Google Scholar] [CrossRef]
- Ehrmann, J.; Ritz, K. Plant: Soil Interactions in Temperate Multi-Cropping Production Systems. Plant Soil 2014, 376, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.-P.; Navas, M.-L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple Cropping Systems as Drivers for Providing Multiple Ecosystem Services: From Concepts to Design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.; Helgason, T.; Hodge, A. Nutritional Exchanges in the Arbuscular Mycorrhizal Symbiosis: Implications for Sustainable Agriculture. Fungal Biol. Rev. 2011, 25, 68–72. [Google Scholar] [CrossRef]
- Wisler, G.C.; Norris, R.F. Interactions between Weeds and Cultivated Plants as Related to Management of Plant Pathogens. Weed Sci. 2005, 53, 914–917. [Google Scholar] [CrossRef]
- Gilbert, G.S.; Parker, I.M. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective. Annu. Rev. Phytopathol. 2016, 54, 549–578. [Google Scholar] [CrossRef] [PubMed]
- Raid, R.; Pennypacker, S. Weeds as Hosts for Colletotrichum Coccodes. Plant Dis. 1987, 71, 643–646. [Google Scholar] [CrossRef]
- Frare, G.; Couto, H.; Ciampi-Guillardi, M.; Amorim, L. The Causal Agent of Citrus Postbloom Fruit Drop, Colletotrichum acutatum, Can Survive on Weeds. Australas. Plant Pathol. 2016, 45, 339–346. [Google Scholar] [CrossRef]
- Winch, J.E.; Newhook, F.J.; Jackson, G.V.H.; Cole, J.S. Studies of Colletotrichum gloeosporioides Disease on Yam, Dioscorea alata, in Solomon Islands. Plant Pathol. 1984, 33, 467–477. [Google Scholar] [CrossRef]
- Alleyne, A.T.; O’Garro, L.W.; Delauney, A.J. Yam Anthracnose in the English-Speaking Islands of the Eastern Caribbean—Successes and Research Advances in Disease Management. Trop. Agric. 2001, 75, 53–57. [Google Scholar]
- Penet, L.; Guyader, S.; Pétro, D.; Salles, M.; Bussière, F. Direct Splash Dispersal Prevails over Indirect and Subsequent Spread during Rains in Colletotrichum gloeosporioides Infecting Yams. PLoS ONE 2014, 9, e115757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frézal, L.; Jacqua, G.; Neema, C. Adaptation of a Fungal Pathogen to Host Quantitative Resistance. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Abang, M.M.; Asiedu, R.; Hoffmann, P.; Wolf, G.A.; Mignouna, H.D.; Winter, S. Pathogenic and Genetic Variability among Colletotrichum gloeosporioides Isolates from Different Yam Hosts in the Agroecological Zones in Nigeria. J. Phytopathol. 2006, 154, 51–61. [Google Scholar] [CrossRef]
- Cornet, D.; Sierra, J.; Tournebize, R.; Ney, B. Yams (Dioscorea Spp.) Plant Size Hierarchy and Yield Variability: Emergence Time Is Critical. Eur. J. Agron. 2014, 55, 100–107. [Google Scholar] [CrossRef]
- Cornet, D.; Sierra, J.; Tournebize, R.; Gabrielle, B.; Lewis, F.I. Bayesian Network Modeling of Early Growth Stages Explains Yam Interplant Yield Variability and Allows for Agronomic Improvements in West Africa. Eur. J. Agron. 2016, 75, 80–88. [Google Scholar] [CrossRef]
- Penet, L.; Cornet, D.; Blazy, J.-M.; Alleyne, A.; Barthe, E.; Bussière, F.; Guyader, S.; Pavis, C.; Pétro, D. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers’ Strategies, Networks, and Disease Experience. Front. Plant. Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penet, L.; Barthe, E.; Alleyne, A.; Blazy, J.M. Disease Risk Perception and Diversity of Management Strategies by Farmers: The Case of Anthracnose Caused by Colletotrichum gloeosporioides on Water Yams (Dioscorea alata) in Guadeloupe. Crop. Prot. 2016, 88, 7–17. [Google Scholar] [CrossRef]
- Von Arx, J. Kultur-Und Infektionsversuche Mit Einigen Colletotrichum-Arten. Tijdschr. Over Plantenziekten 1957, 63, 171–190. [Google Scholar]
- Fournet, J. Illustrated Flora of the Phanerogamae of Guadeloupe and Martinique; INRA: Paris, France, 1978. [Google Scholar]
- Sierra, J.; Causeret, F.; Diman, J.-L.; Publicol, M.; Desfontaines, L.; Cavalier, A.; Chopin, P. Observed and Predicted Changes in Soil Carbon Stocks under Export and Diversified Agriculture in the Caribbean. The Case Study of Guadeloupe. Agric. Ecosyst. Environ. 2015, 213, 252–264. [Google Scholar] [CrossRef]
- Ripoche, A.; Jacqua, G.; Bussière, F.; Guyader, S.; Sierra, J. Survival of Colletotrichum gloeosporioides (Causal Agent of Yam Anthracnose) on Yam Residues Decomposing in Soil. Appl. Soil Ecol. 2008, 38, 270–278. [Google Scholar] [CrossRef]
- Arnau, G.; Bhattacharjee, R.; Mn, S.; Chair, H.; Malapa, R.; Lebot, V.; Abraham, K.; Perrier, X.; Petro, D.; Penet, L.; et al. Understanding the Genetic Diversity and Population Structure of Yam (Dioscorea alata L.) Using Microsatellite Markers. PLoS ONE 2017, 12, e0174150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Gilbert, G.S. Evolutionary Ecology of Plant Diseases in Natural Ecosystems. Annu. Rev. Phytopathol. 2002, 40, 13–43. [Google Scholar] [CrossRef] [Green Version]
- Zadoks, J.; Anderson, P.; Savary, S. An eco-regional perspective of crop protection problems. In Eco-Regional Approaches for Sustainable Land Use and Food Production; Springer: Berlin/Heidelberg, Germany, 1995; pp. 437–452. [Google Scholar]
- Walsh, M.; Newman, P.; Powles, S. Targeting Weed Seeds In-Crop: A New Weed Control Paradigm for Global Agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef] [Green Version]
Weed Species | Botanical Family | Prevalence of C. gloeosporioides | Prevalence of C. truncatum |
---|---|---|---|
Alocasia macrorrhiza | Araceae | 0.8 * | 0 |
Bidens alba | Asteraceae | 0.6 * | 0 |
Emilia fosbergii | Asteraceae | 0.17 | 0.08 |
Erechtites hieracifolia | Asteraceae | 0.4 | 0.2 |
Cleome rutidosperma | Capparidaceae | 0.2 | 0 |
Commelina diffusa | Commelinaceae | 0.2 | 0 |
Ipomea ipocea | Convolvulaceae | 0 | 0 |
Ipomea quamoclit | Convolvulaceae | 0.2 | 0.2 |
Ipomea setifera | Convolvulaceae | 0.4 | 0.8 |
Euphorbia heterophylla | Euphorbiaceae | 0.2 | 0 |
Chamaesyce Hirta | Euphorbiaceae | 0.4 | 0.2 |
Euphorbia sp. | Euphorbiaceae | 0 | 0 |
Phyllanthus urinaria | Euphorbiaceae | 0.2 | 0.8 |
Calopogonium mucunoides | Fabaceae | 0 | 0 |
Canavalia esculenta | Fabaceae | 0 | 0 |
Crotalaria retusa | Fabaceae | 0 | 0 |
Indigofera sp. | Fabaceae | 0.8 * | 0.8 |
Indigofera spicata | Fabaceae | 0.6 * | 0.6 |
Macroptilium lathyroides | Fabaceae | 0 | 0 |
Teramnus labialis | Fabaceae | 0.4 | 0.4 |
Vigna unguiculata | Fabaceae | 0.4 | 0 |
Spigelia anthelmia | Loganiaceae | 0.8 * | 0.4 |
Malachra fasciata | Malvaceae | 0.6 * | 0.2 |
Sida rhombifolia | Malvaceae | 0.6 * | 0.6 |
Mimosa pudica | Mimosaceae | 0.2 | 0 |
Ludwigia octovalvis | Oenotheraceae | 0.4 | 0.2 |
Passiflora sp. | Passifloraceae | 0.8 * | 0.8 |
Passiflora foetida | Passifloraceae | 0.6 * | 0.6 |
Datura stramonium | Solanaceae | 0.6 * | 0 |
Melochia pyramidata | Sterculiaceae | 0 | 0 |
Stachytarfeta jamaicensis | Verbenaceae | 0 | 0.2 |
Dependent (Pathogen Source) | Sum of Squares | Df | F Value | p-Value |
---|---|---|---|---|
local yams | 3413.1 | 1 | 4.4882 | 0.0483 * |
local weeds | 3014.2 | 1 | 3.9637 | 0.0618 |
weeds in vinicity | 380.2 | 1 | 0.5000 | 0.4885 |
local yams x local weeds | 70.6 | 1 | 0.0928 | 0.7641 |
local yamsx weeds (vinicity) | 3404.2 | 1 | 4.4766 | 0.0485 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dentika, P.; Ozier-Lafontaine, H.; Penet, L. Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics. J. Fungi 2021, 7, 283. https://doi.org/10.3390/jof7040283
Dentika P, Ozier-Lafontaine H, Penet L. Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics. Journal of Fungi. 2021; 7(4):283. https://doi.org/10.3390/jof7040283
Chicago/Turabian StyleDentika, Pauline, Harry Ozier-Lafontaine, and Laurent Penet. 2021. "Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics" Journal of Fungi 7, no. 4: 283. https://doi.org/10.3390/jof7040283
APA StyleDentika, P., Ozier-Lafontaine, H., & Penet, L. (2021). Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics. Journal of Fungi, 7(4), 283. https://doi.org/10.3390/jof7040283