Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates
2.2. Antifungals
2.3. Susceptibility Testing
2.4. Data Analysis
3. Results
3.1. Fungicide Activity against Wild-Type Aspergillus Isolates
3.2. Activity of Azole Fungicides against cyp51A Mutant Aspergillus
3.3. The Relative Susceptibility of wt and Mutant Isolates
3.4. Mefentriflucon Azole Displayed an Atypical Inhibition Pattern against Aspergillus
3.5. Activity of Non-Azole Fungicides and Azole Fungicide Metabolites against Aspergillus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lass-Flörl, C.; Mayr, A.; Aigner, M.; Lackner, M.; Orth-Höller, D. A nationwide passive surveillance on fungal infections shows a low burden of azole resistance in molds and yeasts in Tyrol, Austria. Infection 2018, 46, 701–704. [Google Scholar] [CrossRef] [Green Version]
- Risum, M.; Hare, R.K.; Gertsen, J.B.; Kristensen, L.; Johansen, H.K.; Helweg-Larsen, J.; Abou-Chakra, N.; Pressler, T.; Skov, M.; Jensen-Fangel, S.; et al. Azole-Resistant Aspergillus fumigatus Among Danish Cystic Fibrosis Patients: Increasing Prevalence and Dominance of TR34/L98H. Front. Microbiol. 2020, 11, 1850. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lee, D.G.; Choi, J.K.; Lee, H.J.; Kim, S.H.; Park, S.H.; Choi, S.M.; Choi, J.H.; Yoo, J.H.; Park, Y.J.; et al. Characteristics of culture-positive invasive pulmonary aspergillosis in patients with hematologic diseases: Comparison between Aspergillus fumigatus and non-fumigatus Aspergillus species. Medicine 2017, 96, e8841. [Google Scholar] [CrossRef]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Samson, R.A.; Peterson, S.W.; Frisvad, J.C.; Varga, J. New species in Aspergillus section Terrei. Stud. Mycol. 2011, 69, 39–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lass-Flörl, C.; Rath, P.-M.; Niederwieser, D.; Kofler, G.; Würzner, R.; Krezy, A.; Dierich, M.P. Aspergillus terreus infections in haematological malignancies: Molecular epidemiology suggests association with in-hospital plants. J. Hosp. Infect. 2000, 46, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, Z. Aspergillus species on stored products. Mycol. Pap. 1989, 161, 1–188. [Google Scholar]
- Leger, R.J.S.; Screen, S.E.; Shams-Pirzadeh, B. Lack of Host Specialization inAspergillus flavus. Appl. Environ. Microbiol. 2000, 66, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Denning, D.W.D.; Cadranel, J.; Beigelman-Aubry, C.; Ader, F.; Chakrabarti, A.; Blot, S.; Ullmann, A.J.; Dimopoulos, G.; Lange, C.; Ullman, A.; et al. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur. Respir. J. 2016, 47, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.T.; Dimondi, V.P.; Johnson, S.W.; Jones, T.M.; Drew, R.H. Role of isavuconazole in the treatment of invasive fungal infections. Ther. Clin. Risk Manag. 2016, 12, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.F.A.D.; Schalekamp, S.; van der Velden, W.J.F.M.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Lestrade, P.P.A.; Meis, J.F.; Melchers, W.J.G.; Verweij, P.E. Triazole resistance in Aspergillus fumigatus: Recent insights and challenges for patient management. Clin. Microbiol. Infect. 2019, 25, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Meis, J.F.; Chowdhary, A.; Rhodes, J.L.; Fisher, M.C.; Verweij, P.E. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.J.; van der Lee, H.A.; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 2012, 7, e31801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortensen, K.L.; Jensen, R.H.; Johansen, H.K.; Skov, M.; Pressler, T.; Howard, S.J.; Leatherbarrow, H.; Mellado, E.; Arendrup, M.C. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: A laboratory-based study with focus on Aspergillus fumigatus azole resistance. J. Clin. Microbiol. 2011, 49, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Buil, J.B.; Hare, R.K.; Zwaan, B.J.; Arendrup, M.C.; Melchers, W.J.G.; Verweij, P.E. The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus. PLoS Pathog. 2019, 15, e1007858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stensvold, C.R.; Jørgensen, L.N.; Arendrup, M.C. Azole-Resistant Invasive Aspergillosis: Relationship to Agriculture. Curr. Fungal Infect. Rep. 2012, 6, 178–191. [Google Scholar] [CrossRef]
- Gisi, U. Assessment of selection and resistance risk for demethylation inhibitor fungicides in Aspergillus fumigatus in agriculture and medicine: A critical review. Pest Manag. Sci. 2014, 70, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Fraaije, B.; Atkins, S.; Hanley, S.; Macdonald, A.; Lucas, J. The Multi-Fungicide Resistance Status of Aspergillus fumigatus Populations in Arable Soils and the Wider European Environment. Front. Microbiol. 2020, 11, 599233. [Google Scholar] [CrossRef]
- Vermeulen, E.; Lagrou, K.; Verweij, P.E. Azole resistance in Aspergillus fumigatus: A growing public health concern. Curr. Opin. Infect. Dis. 2013, 26, 493–500. [Google Scholar] [CrossRef]
- Zhang, J.; Lopez Jimenez, L.; Snelders, E.; Debets, A.J.M.; Rietveld, A.G.; Zwaan, B.J.; Verweij, P.E.; Schoustra, S.E. Dynamics of Aspergillus fumigatus in azole-fungicide-containing plant waste, the Netherlands, 2016–2017. Appl. Environ. Microbiol. 2021, 87, e02295-20. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Lucas, J.A.; Arendrup, M.C.; Bowyer, P.; Brinkmann, A.J.F.; Denning, D.W.; Dyer, P.S.; Fisher, M.C.; Geenen, P.L.; Gisi, U.; et al. The one health problem of azole resistance in Aspergillus fumigatus: Current insights and future research agenda. Fungal Biol. Rev. 2020. [Google Scholar] [CrossRef]
- Bueid, A.; Howard, S.J.; Moore, C.B.; Richardson, M.D.; Harrison, E.; Bowyer, P.; Denning, D.W. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 2010, 65, 2116–2118. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Soto-Debran, J.C.; Medina, N.; Lucio, J.; Mellado, E.; Alastruey-Izquierdo, A. Molecular identification, antifungal susceptibility testing, and mechanisms of azole resistance in Aspergillus species received within a surveillance program on antifungal resistance in Spain. Antimicrob. Agents Chemother. 2019, 63, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermida-Alava, K.; Brito Devoto, T.; Sautua, F.; Gordó, M.; Scandiani, M.; Formento, N.; Luque, A.; Carmona, M.; Cuestas, M.L. Antifungal susceptibility profile and molecular identification of Cyp51C mutations in clinical and environmental isolates of Aspergillus flavus from Argentina. Mycoses 2021, 64, 95–101. [Google Scholar] [CrossRef]
- Sharma, C.; Kumar, R.; Kumar, N.; Masih, A.; Gupta, D.; Chowdhary, A. Investigation of Multiple Resistance Mechanisms in Voriconazole-Resistant Aspergillus flavus Clinical Isolates from a Chest Hospital Surveillance in Delhi, India. Antimicrob. Agents Chemother. 2018, 62, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, R.A.; Rudramurthy, S.M.; Meis, J.F.; Mouton, J.W.; Chakrabarti, A. A Novel Y319H Substitution in CYP51C Associated with Azole Resistance in Aspergillus flavus. Antimicrob. Agents Chemother. 2015, 59, 6615–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucio, J.; Gonzalez-Jimenez, I.; Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Pelaez, T.; Alcazar-Fuoli, L.; Mellado, E. Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes 2020, 11, 1217. [Google Scholar] [CrossRef]
- Paul, R.A.; Rudramurthy, S.M.; Dhaliwal, M.; Singh, P.; Ghosh, A.K.; Kaur, H.; Varma, S.; Agarwal, R.; Chakrabarti, A. Voriconazole resistance in clinical and environmental isolates of Aspergillus flavus—frequency and investigation into the role of multidrug efflux pumps. Antimicrob. Agents Chemother. 2018, 62, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukai, Y.; Kuroiwa, M.; Kurihara, N.; Naruse, H.; Homma, T.; Maki, H.; Naito, A. Contributions of yap1 Mutation and Subsequent atrF Upregulation to Voriconazole Resistance in Aspergillus flavus. Antimicrob. Agents Chemother. 2018, 62, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.M.N.; Nguyen, P.T.; Van Le, T.; Nguyen, H.L.P.; Nguyen, B.N.T.; Nguyen, B.P.T.; Nguyen, T.A.; Chen, S.C.A.; Barrs, V.R.; Halliday, C.L.; et al. Drug-resistant aspergillus flavus is highly prevalent in the environment of Vietnam: A new challenge for the management of aspergillosis? J. Fungi 2020, 6, 296. [Google Scholar] [CrossRef]
- Hong, S.-B.; Go, S.-J.; Shin, H.-D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Jensen, R.H.; Grif, K.; Skov, M.; Pressler, T.; Johansen, H.K.; Lass-Flörl, C. In vivo emergence of aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I Alteration. J. Infect. Dis. 2012, 206, 981–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Guinea, J.; Cuenca-Estrella, M.; Lagrou, K.; Howard, S.J. EUCAST technical note on isavuconazole breakpoints for Aspergillus, itraconazole breakpoints for Candida and updates for the antifungal susceptibility testing method documents. Clin. Microbiol. Infect. 2016, 22, 571.e1-4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.; van Dijk, K.; Hagen, F.; van der Beek, M.T.; Kampinga, G.A.; Zoll, J.; et al. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. MBio 2017, 8, e00791-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Moreno, C.; Lavergne, R.-A.; Hagen, F.; Morio, F.; Meis, J.F.; Le Pape, P. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci. Rep. 2017, 7, 45631. [Google Scholar] [CrossRef] [PubMed]
- Hare, R.K.; Gertsen, J.B.; Astvad, K.M.T.; Degn, K.B.; Løkke, A.; Stegger, M.; Andersen, P.S.; Kristensen, L.; Arendrup, M.C. In Vivo Selection of a Unique Tandem Repeat Mediated Azole Resistance Mechanism (TR120) in Aspergillus fumigatus cyp51A, Denmark. Emerg. Infect. Dis. 2019, 25, 577–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, O.; Tünnermann, J.; Dudakova, A.; Tangwattanachuleeporn, M.; Weig, M.; Groß, U.; Hoberg, N.; Geibel, S.; Vogel, E.; Büntzel, J.; et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob. Agents Chemother. 2015, 59, 4356–4359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prigitano, A.; Esposto, M.C.; Romanò, L.; Auxilia, F.; Tortorano, A.M. Azole-resistant Aspergillus fumigatus in the Italian environment. J. Glob. Antimicrob. Resist. 2019, 16, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Nelson-Sathi, S.; Singh, A.; Radhakrishna Pillai, M.; Chowdhary, A. Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. Fungal Genet. Biol. 2019, 132, 103265. [Google Scholar] [CrossRef]
- Sharma, C.; Hagen, F.; Moroti, R.; Meis, J.F.; Chowdhary, A. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: Is it de novo or environmentally acquired? J. Glob. Antimicrob. Resist. 2015, 3, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Leonardelli, F.; Theill, L.; Nardin, M.E.; Macedo, D.; Dudiuk, C.; Mendez, E.; Gamarra, S.; Garcia-Effron, G. First itraconazole resistant Aspergillus fumigatus clinical isolate harbouring a G54E substitution in Cyp51Ap in South America. Rev. Iberoam. Micol. 2017, 34, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Riat, A.; Plojoux, J.; Gindro, K.; Schrenzel, J.; Sanglard, D. Azole Resistance of Environmental and Clinical Aspergillus fumigatus Isolates from Switzerland. Antimicrob. Agents Chemother. 2018, 62, e02088-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangwattanachuleeporn, M.; Minarin, N.; Saichan, S.; Sermsri, P.; Mitkornburee, R.; Groß, U.; Chindamporn, A.; Bader, O. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med. Mycol. 2017, 55, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanvoine, A.; Rocchi, S.; Reboux, G.; Crini, N.; Crini, G.; Millon, L. Azole-resistant Aspergillus fumigatus in sawmills of Eastern France. J. Appl. Microbiol. 2017, 123, 172–184. [Google Scholar] [CrossRef]
- Dauchy, C.; Bautin, N.; Nseir, S.; Reboux, G.; Wintjens, R.; Le Rouzic, O.; Sendid, B.; Viscogliosi, E.; Le Pape, P.; Arendrup, M.C.; et al. Emergence of Aspergillus fumigatus azole resistance in azole-naïve patients with chronic obstructive pulmonary disease and their homes. Indoor Air 2018, 28, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, D.; Wu, R.; Dong, S.; Wang, F.; Ju, C.; Yu, S.; Xu, S.; Fang, H.; Yu, Y. Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental Aspergillus fumigatus Isolates from China. Antimicrob. Agents Chemother. 2020, 64, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.E.; Warrilow, A.G.S.; Cools, H.J.; Martel, C.M.; Nes, W.D.; Fraaije, B.A.; Lucas, J.A.; Kelly, D.E.; Kelly, S.L. Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Appl. Environ. Microbiol. 2011, 77, 1460–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Conclusion on the Peer Review of Prothioconazole; EFSA Scientific Report; EFSA: Parma, Italy, 2007; Volume 106, pp. 1–98. [Google Scholar]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 29–92. [Google Scholar]
Fungicide Class and Compound | A. fumigatus | A. terreus | A. flavus | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATCC 204305 * | Wild-Type (n = 7) a | TR34/ L98H | TR34(3)/L98H | TR46/Y121F/T289A | TR120/F46Y/ M172V/ E427K | G432S | G54A | G54R | M220K | M220R | Wild-Type (n = 7) b | G51A | M217I | Y491H | ATCC 204304 * | Wild-Type (n = 2) b | |
Triazole fungicides | |||||||||||||||||
Prothioconazole | >32 (32->32) | >32 (4->32) | >32 | >32 | >32 | >32 | 32 | >32 | >32 | 32 | >32 | >32 (>32) | >32 | >32 | >32 | >32 | >32 |
Mefentrifluconazole | >32 (16->32) | >32 (32->32) | >32 | >32 | >32 | >32 | >32 | >32 | >32 | >32 | >32 | 8 (1->32) | >32 | >32 | >32 | >32 | >32 |
Paclobutrazole | 32 (16–32) | 16 (16) | >32 | >32 | >32 | >32 | 32 | 32 | >32 | 32 | >32 | 8 (1–32) | 8 | 32 | 32 | 8 | 8; 16 |
Epoxiconazole | 16 (8–16) | 8 (4–16) | >32 | >32 | >32 | >32 | >32 | 16 | 16 | >32 | 16 | 2 (1–4) | 16 | >32 | 8 | 16 (8–16) | 8; 16 |
Propiconazole | 8 (4–16) | 8 (4–8) | >32 | >32 | >32 | >32 | >32 | 16 | 8 | 16 | 16 | 2 (1–8) | 16 | >32 | 8 | 16 (16–32) | 16; 32 |
Tebuconazole | 4 (4–8) | 4 (2–4) | 32 | >32 | >32 | 32 | 32 | 4 | 32 | 8 | 8 | 2 (1–8) | 16 | 32 | 8 | 8 (4–8) | 4; 8 |
Difenoconazole | 4 (2–16) | 2 (1–4) | >32 | >32 | >32 | 32 | 16 | 4 | 2 | 8 | 8 | 0.5 (0.125–2) | 4 | 4 | 2 | 8 (4–16) | 8;16 |
Metconazole | 0.25 (0.25–0.5) | 0.25 (0.25) | 2 | 2 | 16 | 1 | 1 | 0.5 | 8 | 0.5 | 0.5 | 0.5 (0.125–1) | 1 | 2 | 2 | 2 (2–4) | 2; 4 |
Prothioconazole-desthio | 0.125 (0.06–0.125) | 0.06 (0.06–0.125) | 0.125 | 0.25 | 1 | 0.125 | 0.125 | 0.125 | 4 | 0.125 | 0.125 | 0.5 (0.125–0.5) | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 |
Imidazole fungicides | |||||||||||||||||
Prochloraz | 0.5 | 0.25 (0.25–0.5) | 2 | 2 | 32 | 1 | 2 | 0.5 | 8 | 0.5 | 2 | 0.5 (0.25–4) | 2 | 4 | 4 | 1 | 1 |
Imazalil | 0.25 (0.25–0.5) | 0.25 (0.125–0.5) | 4 | 8 | 32 | 2 | 4 | 1 | 2 | 0.5 | 0.5 | 0.5 (0.125–1) | 2 | 2 | 1 | 2 (1–2) | 1; 2 |
Medical triazoles | |||||||||||||||||
Itraconazole | 0.25 (0.25–0.5) | 0.25 (0.125–0.5) | >32 | >32 | 0.5 | >32 | >32 | >32 | >32 | >32 | >32 | 0.25 (0.06–0.5) | >32 | >32 | 1 | 0.125 (0.125–0.25) | 0.125; 0.25 |
Posaconazole | 0.125 (0.06–0.125) | 0.125 (0.03–0.125) | 2 | 1 | 0.5 | 1 | 1 | 4 | >32 | 2 | 0.5 | 0.125 (0.06–0.25) | 0.5 | 0.5 | 0.5 | 0.125 (0.125–0.25) | 0.125 |
Isavuconazole | 1 (1–2) | 1 (0.5–1) | 8 | 16 | >32 | 4 | 8 | 1 | 16 | 2 | 2 | 1 (0.25–4) | 2 | 8 | 4 | 1 (1–2) | 1; 2 |
Voriconazole | 1 (0.5–2) | 1 (0.25–1) | 8 | 8 | >32 | 2 | 4 | 1 | 8 | 2 | 1 | 0.5 (0.25–1) | 2 | 4 | 4 | 1 | 1 |
Fungicide metabolites | |||||||||||||||||
1,2,4-Triazole | >16 (>16) | >16 (>16) | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 (>16) | >16 | >16 | >16 | >16 (>16) | >16 |
1,2,3-Triazole | >16 (>16) | >16 (>16) | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 (>16) | >16 | >16 | >16 | >16 (>16) | >16 |
Triazole alanine | >16 (>16) | >16 (>16) | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 (>16) | >16 | >16 | >16 | >16 (>16) | >16 |
Triazole acetate | >16 (>16) | >16 (>16) | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 (>16) | >16 | >16 | >16 | >16 (>16) | >16 |
Triazole sulfonamide | >16 (>16) | >16 (>16) | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 | >16 (>16) | >16 | >16 | >16 | >16 (>16) | >16 |
Non-azole fungicides | |||||||||||||||||
Bixafen | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 2 | 4 | 2 | >32 | 8 | >32 | >32 (>32) | >32 | >32 | >32 | >32 (>32) | >32 |
Boscalid | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 2 | 2 | 2 | >32 | >32 | >32 | >32 (>32) | >32 | >32 | >32 | >32 (>32) | >32 |
Fluxapyroxad | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 2 | 1 | 2 | >32 | >32 | >32 | >32 (>32) | >32 | >32 | >32 | >32 (>32) | >32 |
Fluopyram | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 4 | 16 | 4 | 32 | >32 | >32 | >32 (>32) | >32 | >32 | >32 | >32 (>32) | >32 |
Folpet | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 32 | 16 | 32 | >32 | 32 | >32 | >32 (>32) | >32 | 32 | >32 | >32 (>32) | >32 |
Azoxystrobin | >32 (>32) | >32 (>32) | >32 | >32 | >32 | 8 | >32 | 32 | >32 | >32 | >32 | 2 (0.5–8) | >32 | >32 | 16 | >32 (>32) | >32 |
A. fumigatus | A. terreus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TR34/L98H | TR34(3)/L98H | TR46/Y121F/T289A | TR120/F46Y/M172V/E427K | G432S | G54A | G54R | M220K | M220R | G51A | M217I | Y491H | |
Triazole fungicides | ||||||||||||
Mefentrifluconazole | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 |
Paclobutrazole | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 0 | 2 | 2 |
Epoxiconazole * | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | 1 | 3 | 5 | 2 |
Propiconazole * | 3 | 3 | 3 | 3 | 3 | 1 | 0 | 1 | 1 | 3 | 5 | 2 |
Tebuconazole * | 3 | 4 | 4 | 3 | 3 | 0 | 3 | 1 | 1 | 3 | 4 | 2 |
Difenoconazole * | 5 | 5 | 5 | 4 | 3 | 1 | 0 | 2 | 2 | 3 | 3 | 2 |
Metconazole | 3 | 3 | 6 | 2 | 2 | 1 | 5 | 1 | 1 | 1 | 2 | 2 |
Prothioconazole-desthio | 1 | 2 | 4 | 1 | 1 | 1 | 6 | 1 | 1 | −1 | 0 | 0 |
Imidazole fungicides | ||||||||||||
Prochloraz | 3 | 3 | 7 | 2 | 3 | 1 | 5 | 1 | 3 | 2 | 3 | 3 |
Imazalil | 4 | 5 | 7 | 3 | 4 | 2 | 3 | 1 | 1 | 2 | 2 | 1 |
Medical triazoles | ||||||||||||
Itraconazole | 8 | 8 | 1 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 2 |
Posaconazole | 4 | 3 | 2 | 3 | 3 | 5 | 9 | 4 | 2 | 2 | 2 | 2 |
Isavuconazole | 3 | 4 | 6 | 2 | 3 | 0 | 4 | 1 | 1 | 1 | 3 | 2 |
Voriconazole | 3 | 3 | 6 | 1 | 2 | 0 | 3 | 1 | 0 | 2 | 3 | 3 |
Strobilurin | ||||||||||||
Azoxystrobin | 0 | 0 | 0 | −3 | 0 | −1 | 0 | 0 | 0 | 5 | 5 | 3 |
Azole Fungicide | DT50 in Soil (20 °C) (Range in Days) | Source (Link to Specific EFSA Document) |
---|---|---|
Difenoconazole | 53–235 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2011.1967 |
Prothioconazole | 1.3–2.8 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2007.106r |
Prothioconazole-destio | 7–34 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2007.106r |
Tebuconazole | 20–92 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2014.3485 |
Metconazole | 84–598 | https://www.efsa.europa.eu/en/consultations/call/180801 |
Propiconazole | 28–131 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2017.4887 |
Epoxiconazole | 98–694 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2008.138r |
Imazalil | 41–135 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1526 |
Mefentrifluconazole | 104–477 | https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2018.5379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jørgensen, K.M.; Helleberg, M.; Hare, R.K.; Jørgensen, L.N.; Arendrup, M.C. Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. J. Fungi 2021, 7, 205. https://doi.org/10.3390/jof7030205
Jørgensen KM, Helleberg M, Hare RK, Jørgensen LN, Arendrup MC. Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. Journal of Fungi. 2021; 7(3):205. https://doi.org/10.3390/jof7030205
Chicago/Turabian StyleJørgensen, Karin Meinike, Marie Helleberg, Rasmus Krøger Hare, Lise Nistrup Jørgensen, and Maiken Cavling Arendrup. 2021. "Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance" Journal of Fungi 7, no. 3: 205. https://doi.org/10.3390/jof7030205
APA StyleJørgensen, K. M., Helleberg, M., Hare, R. K., Jørgensen, L. N., & Arendrup, M. C. (2021). Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. Journal of Fungi, 7(3), 205. https://doi.org/10.3390/jof7030205