Atopic Dermatitis and Sensitisation to Molecular Components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia—Results of Allergy Explorer ALEX 2
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients and Methods
2.2. Dermatological Examination
2.3. Examination of Specific IgE to Molecular Components
2.4. Allergological Examination
2.4.1. Bronchial Asthma
2.4.2. Allergic Rhinitis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montero-Vilchez, T.; Segura-Fernández-Nogueras, M.V.; Pérez-Rodríguez, I.; Soler-Gongora, M.; Martinez-Lopez, A.; Fernández-González, A.; Molina-Leyva, A.; Arias-Santiago, S. Skin Barrier Function in Psoriasis and Atopic Dermatitis: Transepidermal Water Loss and Temperature as Useful Tools to Assess Disease Severity. J. Clin. Med. 2021, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Czarnowicki, T.; Krueger, J.; Guttman-Yassky, E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J. Allergy Clin. Immunol. 2017, 139, 1723–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukutomi, Y.; Taniguchi, M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol. Int. 2015, 64, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Benedetto, A.; Kubo, A.; Beck, L.A. Skin barrier disruption: A requirement for allergen sensitization? J. Investig. Dermatol. 2012, 132, 949–963. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; Program, N.C.S.; Kong, H.H.; Segre, J.A. Biogeography and individuality shape function in the human skin metagenome. Nature 2014, 514, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; Murray, P.R.; et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Anto, J.M.; Bousquet, J.; Akdis, M.; Auffray, C.; Keil, T.; Momas, I.; Postma, D.S.; Valenta, R.; Wickman, M.; Cambon-Thomsen, A.; et al. Mechanisms of the development of allergy (MeDALL): Introducing novel concepts in allergy phenotypes. J. Allergy Clin. Immunol. 2017, 139, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI molecular Allergology User’s guide. Pediatr. Allergy Immunol. 2016, 27 (Suppl. S23), 1–250. [Google Scholar] [CrossRef]
- Van Hage, M.; Hamsten, C.; Valenta, R. ImmunoCAP assays: Pros and cons in allergology. J. Allergy Clin. Immunol. 2017, 140, 974–977. [Google Scholar] [CrossRef] [Green Version]
- Heffler, E.; Puggioni, F.; Peveri, S.; Montagni, M.; Canonica, G.W.; Melioli, G. Extended IgE profile based on an allergen macroarray: A novel tool for precision medicine in allergy diagnosis. World Allergy Organ. J. 2018, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Čelakovská, J.; Bukač, J.; Vaňková, R.; Krcmova, I.; Krejsek, J.; Andrys, C. ISAC multiplex testing—Results of examination in 100 patients suffering from atopic dermatitis. Food Agric. Immunol. 2020, 31, 1014–1035. [Google Scholar] [CrossRef]
- Čelakovská, J.; Bukač, J.; Vaňková, R.; Cermakova, E.; Krcmova, I.; Krejsek, J.; Andrýs, C. Cluster analysis of molecular components in 100 patients suffering from atopic dermatitis according to the ISAC Multiplex testing. Food Agric. Immunol. 2020, 31, 827–848. [Google Scholar] [CrossRef]
- Hanifin, J.; Rajka, G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. 1980, 92, 44–47. [Google Scholar]
- European Task Force on Atopic Dermatitis. Severity scoring of atopic dermatitis: The SCORAD Index (consensus report of the European Task Force on Atopic Dermatitis). Dermatology 1993, 186, 23–31. [Google Scholar] [CrossRef]
- Jakob, T.; Forstenlechner, P.; Matricardi, P.; Kleine-Tebbe, J. Molecular allergy diagnostics using multiplex assays: Methodological and practical considerations for use in research and clinical routine. Allergol. J. Int. 2015, 24, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Roh, J.; Lee, J. Clinical Availability of Component-Resolved Diagnosis Using Microarray Technology in Atopic Dermatitis. Ann. Dermatol. 2014, 26, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Du, K.; She, W.; Ouyang, Y.; Sima, Y.; Liu, C.; Zhang, L. Recent advances in the diagnosis of allergic rhinitis. Expert Rev. Clin. Immunol. 2018, 14, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Panzner, P.; Vachová, M.; Vítovcová, P.; Brodská, P.; Vlas, T. A comprehensive analysis of middle-european molecular sensitization profiles to pollen allergens. Int. Arch. Allergy Immunol. 2014, 164, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Panzner, P.; Vachová, M.; Vlas, T.; Vítovcová, P.; Brodská, P.; Malý, M. Cross-sectional study on sensitization to mite and cockroach allergen components in allergy patients in the Central European region. Clin. Transl. Allergy 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Vachová, M.; Panzner, P.; Vlas, T.; Vítovcová, P. Analysis of Sensitization Profiles in Central European Allergy Patients Focused on Animal Allergen Molecules. Int. Arch. Allergy Immunol. 2020, 181, 278–284. [Google Scholar] [CrossRef]
- Banerjee, S.; Resch, Y.; Chen, K.; Swoboda, I.; Focke-Tejkl, M.; Blatt, K.; Novak, N.; Wickman, M.; Van Hage, M.; Ferrara, R.; et al. Der p 11 is a major allergen for house dust miteallergic patients suffering from atopic dermatitis. J. Investig. Dermatol. 2015, 135, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, C.W.; Scheynius, A.; Heitman, J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog. 2012, 8, e1002701. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Sandstr€om, M.H.; Bartosik, J.; Särnhult, T.; Christiansen, J.; Zargari, A.; Bäck, O.; Wahlgren, C.F.; Faergemann, J.; Scheynius, A.; et al. Atopy patch test reactions to Malassezia allergens differentiate subgroups of atopic dermatitis patients. Br. J. Dermatol. 2003, 148, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Scheynius, A.; Johansson, C.; Buentke, E.; Zargari, A.; Linder, M.T. Atopic eczema/ dermatitis syndrome and Malassezia. Int. Arch. Allergy Immunol. 2002, 127, 161–169. [Google Scholar] [CrossRef]
- Brodska, P.; Panzner, P.; Pizinger, K.; Schmid-Grendelmeier, P. IgE-mediated sensitization to malassezia in atopic dermatitis: More common in male patients and in head and neck type. Dermatitis 2014, 25, 120–126. [Google Scholar] [CrossRef]
- Glatz, M.; Buchner, M.; von Bartenwerffer, W.; Schmid-Grendelmeier, P.; Worm, M.; Hedderich, J.; Fölster-Holst, R. Malassezia spp.-specific immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm. Venereol. 2015, 95, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Darabi, K.; Hostetler, S.G.; Bechtel, M.A.; Zirwas, M. The role of Malassezia in atopic dermatitis affecting the head and neck of adults. J. Am. Acad. Dermatol. 2009, 60, 125–136. [Google Scholar] [CrossRef]
- Schwienbacher, M.; Israel, L.; Heesemann, J.; Ebel, F. Asp f6, an Aspergillus allergen specifically recognized by IgE from patients with allergic bronchopulmonary aspergillosis, is differentially expressed during germination. Allergy 2005, 60, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Kortekangas-Savolainen, O.; Lammintausta, K.; Kalimo, K. Skin prick test reactions to brewer’s yeast (Saccharomyces cerevisiae) in adult atopic dermatitis patients. Allergy 1993, 48, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Reijula, K.; Leino, M.; Mussalo-Rauhamaa, H.; Nikulin, M.; Alenius, H.; Mikkola, J.; Elg, P.; Kari, O.; Mäkinen-Kiljunen, S.; Haahtela, T. IgE-mediated allergy to fungal allergens in Finland with special reference to Alternaria alternata and Cladosporium herbarum. Ann. Allergy Asthma Immunol. 2003, 91, 280–287. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Postigo, I.; Tomaz, C.T.; Martínez, J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. Environ. Int. 2016, 89–90, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Celakovská, J.; Josef, B.; Ettler, K.; Vaneckova, J.; Ettlerova, K.; Jan, K. Sensitization to Fungi in Atopic Dermatitis Patients 14 Year and Older—Association with Other Atopic Diseases and Parameters. Indian J. Dermatol. 2018, 63, 391–398. [Google Scholar] [CrossRef] [PubMed]
Table 100 | |
---|---|
Patients suffering from atopic dermatitis | 100 patients |
Sex | 48 men, 52 women |
The average age | 40.9 years (min. age 14 years, max. age 67 years) |
The average SCORAD | 39 points, s.d. 13.1 points |
Severity of AD | mild form 14 (14%) |
moderate form 61 (61%) | |
severe form 25 (25%) | |
Asthma bronchiale | 55 (55%) |
Allergic rhinitis | 74 (74%) |
Allergen Reagents (Allergenic Extracts and Molecular Components) | Frequency in % |
---|---|
Phl p 1 (Beta-expansin, Timothy grass) | 57.0 |
Bet v 1 (PR-10 protein, birch), Lol p 1 (Beta-expansin, Rye grass), Sec c_pollen (cultivated rye, pollen) | 53.0 |
Fag s1 (PR-10 protein, European beech) | 49.0 |
Cor a 1.0103 (PR-10 protein, hazel pollen) Cyn d 1 (Beta-expansin, Bermuda grass) | 48.0 |
Cor a_pollen (hazel pollen) | 47.0 |
Der f 2 (NPC2 family, house dust mite) Fra a 1+3 (PR 10 protein + Non-specific lipid transfer protein, type 1, strawberry) Phl p 2 (Expansin, Timothy grass) | 45.0 |
Cor a 1.0401 (PR-10 protein, hazel pollen) Cyn d (Bermuda grass) Der p 2 (NPC2 family, house dust mite) Fel d 1 (Uteroglobin, cat) | 44.0 |
Aln g 1 (PR-10 protein, alder) | 43.0 |
Pas n (Bahia grass) Phl p 5.0101 (Grass Group 5/6, Timothy grass), Phl p 6 (Grass Group 5/6, Timothy grass) | 42.0 |
Lep d 2 (NPC2 family, storage mite) Mal d 1 (PR-10 protein, apple) | 41.0 |
Can f 1 (Lipocalin, dog) Der p 23 (Peritrophin-like protein domain, house dust mite) | 36.0 |
Gly m 4 (PR-10 protein, soybean) | 35.0 |
Der p 1 (Cysteine protease, house dust mite) | 34.0 |
Ara h 8 (PR-10 protein, peanut) Gly d 2 (NPC2 family, storage mite) | 33.0 |
Art v (Mugwort), Can f 6 (Lipocalin, dog) | 32.0 |
Der f 1 (Cysteine protease, house dust mite) Fel d 7 (Lipocalin, cat) | 31.0 |
Can f_male urine (male dog urine) | 30.0 |
Can f 4 (Lipocalin, dog) Equ c 1 (Lipocalin, horse) | 29.0 |
Pla l (English plantain) | 28.0 |
Ory c 3 (Uteroglobin, rabbit) Phr c (Common reed) | 27.0 |
Aca s (storage mite) Alt a 1 (unknown, Alternaria alternata) * Der p 5 (unknown, house dust mite) Fel d 4 (Lipocalin, cat) | 26.0 |
Amb a (ragweed) Tyr p (storage mite) | 25.0 |
Ach d (house cricket) Der p 7 (Mites group 7, Bactericidal permeability-increasing-like protein, house dust mite) Loc m (Migratory locust) Mala s 11 (Mn superoxide dismutase, Malassezia sympodialis) * | 24.0 |
Amb a 4 (Plant defensin, ragweed) Der p 20 (Arginine kinase, house dust mite), Ten m (Mealworm) | 23.0 |
Api g 1 (PR-10 protein, celery), Mus m 1 (Lipocalin and urinary prealbumin, house mouse) | 22.0 |
Bla g 9 (Arginine kinase, German cockroach) Can f_Fd1 (Uteroglobin, dog), Cav p 1 (Lipocalin, Guinea pig) | 21.0 |
Asp f 6 (Mn superoxide dismutase, Aspergillus fumigatus) * Bla g 4 (Calycin, Lipocalin, German cockroach) Fra e 1 (Ole e 1-like protein family, European ash), Jug r_pollen (walnut pollen) | 20.0 |
Art v 1 (Plant defensin, Mugwort) Dau c (Carrot) Dau c 1 (PR-10 protein, carrot) | 19.0 |
Par j 2 (Non-specific lipid transfer protein, type 1, Pellitory of the wall) Pen m 2 (Arginine kinase, shrimp) Ves v 5 (Antigen 5, Yellow jacket venom) | 18.0 |
Ama r (redroot pigweed) Can f 2 (Lipocalin, dog) Rat n (rat) | 17.0 |
Api m (Honey bee venom) Cup a 1 (Pectate Lyase, cypress) Fra e (European ash), Gal d_white (egg white) Per a (American cockroach) | 16.0 |
Aca m (Acacia) Api m 1 (Phospholipase A2, Honey bee venom) Asp f 3 (Peroxysomal protein, Aspergillus fumigatus) * Cla h 8 (Mannitol dehydrogenase, Cladosporium herbarum) * Cry j 1 (Pectate lyase, Japanese cedar) Der p 21 (unknown, house dust mite) Hel a (sunflower seed) Hom g (lobster) Pla l 1 (Ole e 1-like protein family, English plantain) Sal k (Russian thistle, saltwort) | 15.0 |
Act d 2 (Thaumatin-like protein, kiwi fruit) Mala s 6 (Cyclophilin, Malassezia sympodialis) * Sac c (Saccharomyces cerevisiae) * Sol t (potato) | 14.0 |
Api m 10 (Icarapin Variant 2, Honey bee venom) Pha v (Green bean, French bean) | 13.0 |
Alt a 6 (Enolase, Alternaria alternata) * Amb a 1 (Pectate lyase, ragweed), Api g 2 (Non-specific lipid-transfer protein, type 1, celery) Blo t 5 (Mites group 5, storage mite) Can s (hemp), Hor v (barley) Lol spp. (squid) Pan b (Northern shrimp), Phl p 7 (Polcalcin, Timothy grass) Phod s 1 (Lipocalin, Siberian hamster) Sal k 1 (Pectin methylesterase, Russian thistle, saltwort) Urt d (nettle) | 12.0 |
Bet v 2 (Profilin, birch) Cuc m 2 (Profilin, muskmelon) Pec spp. (Scallop) Sec c_flour (cultivated rye) Ses i 1 (2S albumin, sesame) Tyr p 2 (NPC2 family, storage mite) Ves v (Yellow jacket venom), Ves v 1 (Phospholipase A1, Yellow jacket venom) Zea m 14 (Non-specific lipid transfer protein, type 1, maize) | 11.0 |
Che q (quinoa) Mala s 5 (unknown, Malassezia sympodialis) * Ole e 1 (Ole e 1-family, olive) Pers a (avocado) Phl p 12 (Profilin, Timothy grass) Pla a 2 (Polygalacturonase, London plane tree) Pol d (paper wasp venom) Pyr c (pear) Sola l (tomato) Ulm c (Elm) Zea m (Maize) | 10.0 |
Number of Patients (%) with Positive Results of Specific IgE in the Whole Study—100 Patients (=100%) | Severity of Atopic Dermatitis | ||||
---|---|---|---|---|---|
Yeast | Mild Form 14 Patients (=100 %) | Moderate Form 61 Patients (=100 %) | Severe Form 25 Patients (=100 %) | p-Value | |
Mala s 5 Malassezia sympodialis | 10 (10.0%) | 0 | 5(8.2%) | 5 (20.0%) | 0.123 |
Mala s 6 Malassezia sympodialis, Cyclophilin, | 14 (14.0%) | 0 | 6 (9.8%) | 8 (32.0%) | 0.011 * |
Mala s 11 Manganese superoxide dismutase, Malassezia sympodialis | 24 (24.0%) | 0 | 11 (18.0%) | 13 (52.0%) | 0.001 * |
Sac c Saccharomyces cerevisiae | 14 (14.0%) | 0 (0%) | 6 (9.8%) | 8 (32.0%) | 0.011 * |
Moulds | |||||
Alt a 1 Alternaria | 26 (26.0%) | 3 (21.4%) | 16 (26.2%) | 7 (28.0%) | 0.949 |
Alt a 6 Enolase, Alternaria alternata | 12 (12.0%) | 0 | 6 (9.8%) | 6 (24.0%) | 0.073 |
Asp f 1 Aspergilus fumigatus Mitogillin family | 4 (4.0%) | 0 | 1(1.6%) | 3 (12%) | 0.098 |
Asp f 3 Aspergilus fumigatus Peroxysomal protein | 15 (15.0%) | 0 | 8 (13.1%) | 7 (28.0%) | 0.055 |
Asp f 4 Aspergilus fumigatus | 3 (3.0%) | 1 (1.7%) | 0 | 2 (8.0%) | 0.057 |
Asp f 6 Aspergilus fumigatus Mn superoxide dismutase | 20 (20.0%) | 0 | 10(16.4%) | 10 (40.0%) | 0.007 * |
Cla h Cladosporium herbarum | 6 (6.0%) | 0 | 1 (1.6%) | 5 (20.0%) | 0.008 * |
Cla h 8 Mannitol dehydrogenase, Cladosporium herbarum | 15 (15.0%) | 0 | 7(11.5%) | 8(32.0%) | 0.017 * |
Pen ch Penicillium chrysogenum | 3 (3.0%) | 0 | 1(1.6%) | 2 (8.0%) | 0.204 |
Number of Patients (Relative Frequency in %) | |||||
---|---|---|---|---|---|
Classes of Specific IgE | Mild Form 14 Patients (=100%) | Moderate Form 61 Patients (=100%) | Severe Form 25 Patients (=100%) | p-Value | |
Mala s 5 Malassezia sympodialis | 0 | 14 (100%) | 56 (91.8%) | 20 (80.00%) | 0.435 |
1 | 0 | 1 (1.64%) | 0 | ||
2 | 0 | 2 (3.28%) | 1 (4.00%) | ||
3 | 0 | 0 | 1 (4.00%) | ||
4 | 0 | 2 (3.28%) | 3 (12.00%) | ||
Mala s 6 Malassezia sympodialis, Cyclophilin, | 0 | 14 (100%) | 55 (90.16%) | 17 (68.0%) | 0.065 |
1 | 0 | 1 (1.64%) | 4 (16.00%) | ||
2 | 0 | 3 (4.92%) | 3 (12.00%) | ||
3 | 0 | 2 (3.28%) | 1 (4.00%) | ||
4 | 0 | 0 | 0 | ||
Mala s 11 Manganese superoxide dismutase, Malassezia sympodialis | 0 | 14 (100%) | 50 (81.97%) | 12 (48%) | |
1 | 0 | 0 | 0 | 0.003 * | |
2 | 0 | 3 (4.92%) | 4 (16.00%) | ||
3 | 0 | 1 (1.64%) | 0 | ||
4 | 0 | 7 (11.48%) | 9 (36.00%) | ||
Sac c Saccharomyces cerevisiae | 0 | 14 (100%) | 55 (90.16%) | 17 (68.00%) | |
1 | 0 | 3 (4.92%) | 4 (16.00%) | 0.056 | |
2 | 0 | 3 (4.92%) | 4 (16.00%) | ||
3 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | ||
Alt a 1 Alternaria | 0 | 11 (78.57%) | 45 (73.77%) | 18 (72.00%) | 0.182 |
1 | 0 | 0 | 0 | ||
2 | 0 | 0 | 0 | ||
3 | 2 (14.29%) | 1 (1.64%) | 1 (4.00%) | ||
4 | 1 (7.14%) | 15 (24.59%) | 6 (24.00%) | ||
Alt a 6 Enolase, Alternaria alternata | 0 | 14 (100%) | 55 (90.16%) | 19 (76.00%) | |
1 | 0 | 1 (1.64%) | 1 (4.00%) | 0.393 | |
2 | 0 | 3 (4.92%) | 1 (4.00%) | ||
3 | 0 | 1 (1.64%) | 3 (12.00%) | ||
4 | 0 | 1 (1.64%) | 1 (4.00%) | ||
Asp f 1 Aspergilus fumigatus Mitogillin family | 0 | 14 (100%) | 60 (98.36%) | 22 (88.00%) | |
1 | 0 | 1 (1.64%) | 1 (4.00%) | 0.233 | |
2 | 0 | 0 | 1 (4.00%) | ||
3 | 0 | 0 | 1 (4.00%) | ||
4 | 0 | 0 | 0 | ||
Asp f 3 Aspergilus fumigatus Peroxysomal protein | 0 | 14 (100%) | 53 (86.89%) | 18 (72.00%) | |
1 | 0 | 7 (11.48%) | 1 (4.00%) | 0.005 * | |
2 | 0 | 0 | 5 (20.00%) | ||
3 | 0 | 1 (1.64%) | 0 | ||
4 | 0 | 0 | 1 (4.00%) | ||
Asp f 4 Aspergilus fumigatus | 0 | 13 (92.86%) | 61 (100%) | 23 (92.0%) | |
1 | 0 | 0 | 0 | ||
2 | 1 (7.14%) | 0 | 0 | 0.042 * | |
3 | 0 | 0 | 1 (4.00%) | ||
4 | 0 | 0 | 1 (4.00%) | ||
Asp f 6 Aspergilus fumigatus Mn superoxide dismutase | 0 | 14 (100%) | 51 (83.61%) | 15 (60.0%) | |
1 | 0 | 2 (3.28%) | 0 | ||
2 | 0 | 3 (4.92%) | 1 (4.00%) | 0.058 | |
3 | 0 | 3 (4.92%) | 6 (24.00%) | ||
4 | 0 | 2 (3.28%) | 3 (12.00%) | ||
Cla h Cladosporium herbarum | 0 | 14 (100%) | 60 (98.36%) | 20 (80.00%) | |
1 | 0 | 1 (1.64%) | 4 (16.00%) | 0.016 * | |
2 | 0 | 0 | 1 (4.00%) | ||
3 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | ||
Cla h 8 Mannitol dehydrogenase, Cladosporium herbarum | 0 | 14 (100%) | 54 (88.52%) | 17 (68.00%) | |
1 | 0 | 7 (11.48%) | 7 (28.00%) | 0.024 * | |
2 | 0 | 0 | 1 (4.00%) | ||
3 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | ||
Pen ch Penicillium chrysogenum | 0 | 14 (100%) | 60 (98.36%) | 23 (92.00%) | 0.204 |
1 | 0 | 1 (1.64%) | 2 (8.00%) | ||
2 | 0 | 0 | 0 | ||
3 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 |
Bronchial Asthma (AB) | p-Value | Allergic Rhinitis (AR) | p-Value | ||||
---|---|---|---|---|---|---|---|
Number of Patients (%) with Positive Results of Specific IgE in the Whole Study—100 Patients (=100%) | AB Yes 55 Patients (=100%) | AB No 45 Patients (=100%) | AR Yes 76 Patients (=100%) | AR No 24 Patients (=100%) | |||
Mala s 5 Malassezia sympodialis | 10 (10.0%) | 5 (9.1%) | 5 (11.1%) | 0.750 | 7 (9.5%) | 3 (11.5%) | 0.718 |
Mala s 6 Malassezia sympodialis, Cyclophilin, | 14 (14.0%) | 6 (10.9%) | 8 (17.8%) | 0.391 | 14 (18.9%) | 0 | 0.018 * |
Mala s 11 Manganese superoxide dismutase, Malassezia sympodialis | 24 (24.0%) | 13 (23.6%) | 11 (24.4%) | 1.000 | 21 (28.4%) | 3 (11.5%) | 0.111 |
Sac c Saccharomyces cerevisiae | 14 (14.0%) | 12 (21.8%) | 2 (4.4%) | 0.018 * | 11 (14.9%) | 3 (11.5%) | 1.000 |
Moulds | |||||||
Alt a 1 Alternaria | 26 (26.0%) | 16 (29.1%) | 10 (22.2%) | 0.497 | 22 (29.7%) | 4(15.4%) | 0.198 |
Alt a 6 Enolase, Alternaria alternata | 12 (12.0%) | 11 (20.0%) | 1(2.2%) | 0.011 * | 10 (13.5%) | 2 (7.7%) | 0.726 |
Asp f 1 Aspergilus fumigatus Mitogillin family | 4 (4.0%) | 3 (5.5%) | 1 (2.2%) | 0.625 | 4 (5.4%) | 0 | 0.571 |
Asp f 3 Aspergilus fumigatus Peroxysomal protein | 15 (15.0%) | 10 (18.2%) | 5 (11.1%) | 0.405 | 13 (17.6%) | 2 (7.7%) | 0.342 |
Asp f 4 Aspergilus fumigatus | 3 (3.0%) | 1 (1.8%) | 2 (4.4%) | 0.587 | 2 (2.7%) | 1 (3.8%) | 1.0000 |
Asp f 6 Aspergilus fumigatus Mn superoxide dismutase | 20 (20.0%) | 13(23.6%) | 7 (15.6%) | 0.452 | 18 (24.3%) | 2 (7.7%) | 0.089 |
Cla h Cladosporium herbarum | 6 (6.0%) | 6 (10.9%) | 0 | 0.031 * | 6 (8.1%) | 0 | 0.335 |
Cla h 8 Mannitol dehydrogenase, Cladosporium herbarum | 15 (15.0%) | 12 (21.8%) | 3 (6.7%) | 0.045 * | 14 (18.9%) | 1 (3.8%) | 0.107 |
Pen ch Penicillium chrysogenum | 3 (3.0%) | 3 (5.5%) | 0 | 0.250 | 3 (4.1%) | 0 | 0.566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celakovska, J.; Vankova, R.; Bukac, J.; Cermakova, E.; Andrys, C.; Krejsek, J. Atopic Dermatitis and Sensitisation to Molecular Components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia—Results of Allergy Explorer ALEX 2. J. Fungi 2021, 7, 183. https://doi.org/10.3390/jof7030183
Celakovska J, Vankova R, Bukac J, Cermakova E, Andrys C, Krejsek J. Atopic Dermatitis and Sensitisation to Molecular Components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia—Results of Allergy Explorer ALEX 2. Journal of Fungi. 2021; 7(3):183. https://doi.org/10.3390/jof7030183
Chicago/Turabian StyleCelakovska, Jarmila, Radka Vankova, Josef Bukac, Eva Cermakova, Ctirad Andrys, and Jan Krejsek. 2021. "Atopic Dermatitis and Sensitisation to Molecular Components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia—Results of Allergy Explorer ALEX 2" Journal of Fungi 7, no. 3: 183. https://doi.org/10.3390/jof7030183