Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phylogenetic Study
2.2. Fermentation and Extraction
2.3. Isolation of Compounds 1–9
2.4. Chromatography and Spectral Methods
2.5. Spectral Data
2.5.1. Zopfinol (1)
2.5.2. Zopfinol B (2)
2.5.3. Zopfinol C (3)
2.5.4. Zopfinol D (4)
2.5.5. 7-O-Acetylmultiplolide A (5)
2.5.6. 8-O-Acetylmultiplolide A (6)
2.5.7. Sordarin (7)
2.5.8. Sordarin B (8)
2.5.9. Hypoxysordarin (9)
2.6. Derivatization with MTPA
2.7. Biological Testing
3. Results
3.1. Phylogenetic Analysis
3.2. Taxonomy
3.3. Structure Elucidation of Compounds 1–4
3.4. Antimicrobial and Cytotoxic Activities of Compounds 1–9
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, A.N.; Huhndorf, S.M. Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Molec. Phylogen. Evol. 2005, 35, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Kruys, Å.; Huhndorf, S.M.; Miller, A.N. Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi). Fungal Divers. 2015, 70, 101–113. [Google Scholar] [CrossRef]
- Wang, X.W.; Bai, F.Y.; Bensch, K.; Meijer, M.; Sun, B.D.; Han, Y.F.; Crous, P.W.; Samson, R.A.; Yang, F.Y.; Houbraken, J. Phylogenetic re-evaluation of Thielavia with the introduction of a new family Podosporaceae. Stud. Mycol. 2019, 93, 155–252. [Google Scholar] [CrossRef]
- Marin-Felix, Y.; Miller, A.N.; Cano-Lira, J.F.; Guarro, J.; García, D.; Stadler, M.; Huhndorf, S.M.; Stchigel, A.M. Re-evaluation of the order Sordariales: Delimitation of Lasiosphaeriaceae s. str., and introduction of the new families Diplogelasinosporaceae, Naviculisporaceae and Schizotheciaceae. Microorganisms 2020, 8, 1430. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.F.; Yin, Z.H.; Zhang, J.J.; Kang, W.Y.; Wang, X.W.; Ding, G.; Chen, L. Chaetomadrasins A and B, two new cytotoxic cytochalasans from desert soil-derived fungus Chaetomium madrasense 375. Molecules 2019, 24, 3240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noumeur, S.R.; Teponno, R.B.; Helaly, S.E.; Wang, X.-W.; Harzallah, D.; Houbraken, J.; Crous, P.W.; Stadler, M. Diketopiperazines from Batnamyces globulariicola, gen. & sp. nov. (Chaetomiaceae), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria. Mycol. Progr. 2020, 19, 589–603. [Google Scholar]
- Weber, R.W.S.; Meffert, A.; Anke, H.; Sterner, O. Production of sordarin and related metabolites by the coprophilous fungus Podospora pleiospora in submerged culture and in its natural substrate. Mycol. Res. 2005, 109, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Vicente, F.; Basilio, A.; Platas, G.; Collado, J.; Bills, G.F.; González del Val, A.; Martín, J.; Tormo, J.R.; Harris, G.H.; Zink, D.L.; et al. Distribution of the antifungal agents sordarins across filamentous fungi. Mycol. Res. 2009, 113, 754–770. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Marin-Felix, Y.; Surup, F.; Stchigel, A.M.; Stadler, M. Seven new cytotoxic and antimicrobial xanthoquinodins from Jugulospora vestita. J. Fungi 2020, 6, 188. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software v. 7: Improvements in performance and usability. Molec. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molec. Biol. Evol. 2013, 12, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Mason-Gamer, R.; Kellogg, E. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 1996, 45, 524–545. [Google Scholar] [CrossRef]
- Wiens, J.J. Testing phylogenetic methods with tree congruence: Phylogenetic analysis of polymorphic morphological characters in phrynosomatid lizards. Syst. Biol. 1998, 47, 427–444. [Google Scholar] [CrossRef] [Green Version]
- Nylander, J.A.A. MrModeltest v2.2. Uppsala: Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaro, M.E.; Zoller, S.; Lutzoni, F. Bayes or bootstrap. A simulation study comparing the performance of Bayesian Markov chainMonte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molec. Biol. Evol. 2003, 20, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Jeewon, R.; Hyde, K.D. Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes. Fungal Divers. 2005, 19, 1–21. [Google Scholar]
- Miller, A.N.; Huhndorf, S.M. Using phylogenetic species recognition to delimit species boundaries within Lasiosphaeria. Mycologia 2004, 96, 1106–1127. [Google Scholar] [CrossRef]
- Réblová, M. Bellojisia, a new sordariaceous genus for Jobellisia rhynchostoma and a description of Jobellisiaceae fam. nov. Mycologia 2008, 100, 893–901. [Google Scholar] [CrossRef]
- Stchigel, A.M.; Cano, J.; Miller, A.N.; Calduch, M.; Guarro, J. Corylomyces: A new genus of Sordariales from plant debris in France. Mycol. Res. 2006, 110, 1361–1368. [Google Scholar] [CrossRef]
- Miller, A.N.; Huhndorf, S.M. A natural classification of Lasiosphaeria based on nuclear LSU rDNA sequences. Mycol. Res. 2004, 108, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, F.A.; Lutzoni, F.M.; Huhndorf, S.M. Teleomorph-anamorph connections: The new pyrenomycetous genus Carpoligna and its Pleurothecium anamorph. Mycologia 1999, 91, 251–262. [Google Scholar] [CrossRef]
- Fernandez, F.A.; Miller, A.N.; Huhndorf, S.M.; Lutzoni, F.M.; Zoller, S. Systematics of the genus Chaetosphaeria and its allied genera: Morphological and phylogenetic diversity in north temperate and neotropical taxa. Mycologia 2006, 98, 121–130. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Kao, H.W.; Wang, Y.Z. Molecular phylogeny of Cercophora, Podospora, and Schizothecium (Lasiosphaeriaceae, Pyrenomycetes). Taiwana 2010, 55, 110–116. [Google Scholar]
- Cai, L.; Jeewon, R.; Hyde, K.D. Molecular systematics of Zopfiella and allied genera: Evidence from multi-gene sequence analyses. Mycol. Res. 2006, 110, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Rupcic, Z.; Rascher, M.; Kanaki, S.; Köster, R.W.; Stadler, M.; Wittstein, K. Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum. Int. J. Mol. Sci. 2018, 19, 740. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Wongkanoun, S.; Wessel, A.-C.; Bills, G.F.; Stadler, M.; Luangsa-ard, J.J. Phylogenetic and chemotaxonomic studies confirm the affinities of Stromatoneurospora phoenix to the coprophilous Xylariaceae. J. Fungi 2020, 6, 144. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, Y.W.; Shao, S.C.; Wang, L.D.; Li, Z.Y.; Yang, L.Y.; Li, S.L.; Huang, R. Ten-Membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J. Nat. Prod. 2008, 71, 731–734. [Google Scholar] [CrossRef]
- Chiba, S.; Kitamura, M.; Narasaka, K. Synthesis of (−)-sordarin. J. Am. Chem. Soc. 2006, 128, 6931–6937. [Google Scholar] [CrossRef] [PubMed]
- Daferner, M.; Mensch, S.; Anke, T.; Sterner, O. Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z. Naturforsch. C. J. Biosci. 1999, 54, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Pfütze, S.; Kuhnert, E.; Cox, R.J.; Stadler, M.; Surup, F. Hybridorubrins A–D: Azaphilone heterodimers from stromata of Hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification. Chem. Eur. J. 2021, 27, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Barron, G.L. A new genus of the Hyphomycetes from soil. Mycologia 1964, 56, 514–518. [Google Scholar] [CrossRef]
- Guarro, J.; Al-Saadoon, A.H.; Gene, J.; Abdullah, S.K. Two new cleistothecial Ascomycetes from Iraq. Mycologia 1997, 89, 955–961. [Google Scholar] [CrossRef]
- Furuya, K.; Udagawa, S. Two new species of cleistothecial ascomycetes. J. Jap. Bot. 1975, 50, 249–254. [Google Scholar]
- Guarro, J.; Gene, J.; Stchigel, A.M.; Figueras, M.J. Atlas of Soil Ascomycetes; CBS Biodiversity Series, no. 10; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2012. [Google Scholar]
- Von Arx, J.A.; Hennebert, G.L. Triangularia mangenotii nov.sp. Bull. Soc. Mycol. France 1968, 84, 423–426. [Google Scholar]
- Udagawa, S.I.; Furuya, K. Zopfiella pilifera, a new cleistoascomycete from Japanese soil. Trans. Mycol. Soc. Japan 1972, 13, 255–259. [Google Scholar]
- Kondo, M.; Takayama, T.; Furuya, K.; Okudaira, M.; Hayashi, T.; Kinoshita, M. A nuclear magnetic resonance study of zopfinol isolated from Zopfiella marina. Annu. Rep. Sankyo Res. Lab. 1987, 39, 45–53. [Google Scholar]
- Tan, Q.; Yan, X.; Lin, X.; Huang, Y.; Zheng, Z.; Song, S.; Lu, C.; Shen, Y. Chemical constituents of the endophytic fungal strain Phomopsis sp. NXZ-05 of Camptotheca acuminata. Helv. Chim. Acta 2007, 90, 1811–1817. [Google Scholar] [CrossRef]
- Hauser, D.; Sigg, H.P. Isolierung und Abbau von Sordarin [Isolation and decomposition of sordarin]. Helv. Chim. Acta 1971, 54, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Seco, J.M.; Quinoa, E.; Riguera, R. Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents. Chem. Rev. 2012, 112, 4603–4641. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Yang, X.Q.; Wan, C.P.; Wang, B.Y.; Yin, H.Y.; Shi, L.J.; Wu, Y.; Yang, Y.B.; Zhoua, H.; Ding, Z.T. Potential antihyperlipidemic polyketones from endophytic Diaporthe sp. JC-J7 in Dendrobium nobile. RSC Adv. 2018, 8, 41810–41817. [Google Scholar] [CrossRef] [Green Version]
- Boonphong, S.; Kittakoop, P.; Isaka, M.; Pittayakhajonwut, D.; Tanticharoen, M.; Thebtaranonth, Y. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J. Nat. Prod. 2001, 64, 965–967. [Google Scholar] [CrossRef]
- Fischer, B.; Anke, H.; Sterner, O. Humicolactone, a new bioactive 10-membered lactone from the fungus Gilmaniella humicola. Nat. Prod. Lett. 1995, 7, 303–308. [Google Scholar] [CrossRef]
- Dominguez, J.M.; Martin, J.J. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob. Agents Chemother. 1998, 42, 2279–2283. [Google Scholar] [CrossRef] [Green Version]
- Justice, M.; Hsu, M.J.; Tse, B.; Ku, T.; Balkovec, J.; Schmatz, D.; Nielsen, J. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. 1998, 273, 3148–3151. [Google Scholar] [CrossRef] [Green Version]
- Kudo, F.; Matsuura, Y.; Hayashi, T.; Fukushima, M.; Eguchi, T. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: Characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J. Antibiot. 2016, 69, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Chaichanan, J.; Wiyakrutta, S.; Pongtharangkul, T.; Isarangkul, D.; Meevootisom, V. Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Brazil J. Microbiol. 2014, 45, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Ogita, J.; Hayashi, A.; Sato, S.; Furutani, W. Antibiotic Zopfimarin. Japan Patent 62-40292, 1987. [Google Scholar]
- Kennedy, T.C.; Webb, G.; Cannell, R.J.P.; Kinsman, O.S.; Middleton, R.F.; Sidebottom, P.J.; Taylor, N.L.; Dawson, M.J.; Buss, A.D. Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. J. Antibiot. 1998, 51, 1012–1018. [Google Scholar] [CrossRef] [Green Version]
- Davoli, P.; Engel, G.; Werle, A.; Sterner, O.; Anke, T. Neosordarin and hydroxysordarin, two new antifungal agents from Sordaria araneosa. J. Antibiot. 2002, 55, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chokpaiboon, S.; Unagul, P.; Nithithanasilp, S.; Komwijit, S.; Somyong, W.; Ratiarpakul, T.; Isaka, M.; Bunyapaiboonsri, T. Salicylaldehyde and dihydroisobenzofuran derivatives from the marine fungus Zopfiella marina. Nat. Prod. Res. 2018, 32, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ying, Y.; Hung, Y.S.; Tang, Y. Genome mining reveals Neurospora crassa can produce the salicylaldehyde sordarial. J. Nat. Prod. 2019, 82, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, T. Secondary metabolites of the rice blast fungus Pyricularia oryzae: Biosynthesis and biological function. Int. J. Mol. Sci. 2020, 21, 8698. [Google Scholar] [CrossRef]
- Iwasaki, S.; Muro, H.; Sasaki, K.; Nozoe, S.; Okuda, S.; Sato, Z. Isolations of phytotoxic substances produced by Pyricularia oryzae Cavara. Tetrahedron Lett. 1973, 14, 3537–3542. [Google Scholar] [CrossRef]
Taxa | Strain | GenBank Accession Numbers | Source | |||
---|---|---|---|---|---|---|
LSU | ITS | rpb2 | tub2 | |||
Anopodium ampullaceum* | MJR 40/07 | KF557662 | - | - | KF557701 | [2] |
E00218015 | KF557663 | - | - | KF557702 | [2] | |
Areotheca ambigua | CBS 215.60 | AY999114 | AY999137 | - | - | [18] |
Areotheca areolata | UAMH 7495 | AY587936 | AY587911 | AY600275 | AY600252 | [19] |
Arnium caballinum | Lundqvist 7098-e | KF557672 | - | - | - | [2] |
Arnium japonense* | SANK 10273 | KF557680 | - | KF557713 | - | [2] |
Arnium mendax* | Lundqvist 20874-c | KF557687 | - | KF557716 | - | [2] |
E00122117 | KF557688 | - | KF557717 | - | [2] | |
Bellojisia rhynchostoma* | CBS 118484 | EU999217 | - | - | - | [20] |
Camarops amorpha | SMH 1450 | AY780054 | - | AY780156 | AY780093 | [1] |
Cercophora mirabilis | CBS 120402 | KP981429 | MT784128 | KP981611 | KP981556 | [4] |
Cercophora sparsa* | JF 00229 | AY587937 | AY587912 | - | AY600253 | [19] |
Cercophora sulphurella* | SMH 2531 | AY587938 | AY587913 | AY600276 | AY600254 | [19] |
Cladorrhinum coprophilum | SMH 3794 | AY780058 | - | AY780162 | AY780102 | [1] |
Cladorrhinum foecundissimum | CBS 180.66T | MK926856 | MK926856 | MK876818 | - | [3] |
Cladorrhinum hyalocarpum | CBS 322.70T | MK926857 | MK926857 | MK876819 | - | [3] |
Cladorrhinum intermedium | CBS 433.96T | MK926859 | MK926859 | MK876821 | - | [3] |
Cladorrhinum tomentosum | Francoise Candoussau | KF557691 | - | - | KF557720 | [1] |
Corylomyces selenosporus* | CBS 113930T | DQ327607 | MT784130 | KP981612 | KP981557 | [4,21] |
Echria gigantospora | F77-1 | KF557674 | - | - | KF557710 | [2] |
Echria macrotheca | Lundqvist 2311 | KF557684 | - | - | KF557715 | [2] |
Gilmaniella humicola | NBRC 9235T | ITS and LSU sequences only available in https://www.nite.go.jp/nbrc/catalogue/NBRCDispSearchServlet?lang=en (Accessed on 8 November 2020) | ||||
Immersiella caudata | SMH 3298 | AY436407 | - | AY780161 | AY780101 | [1,22] |
Immersiella immersa | SMH 4104 | AY436409 | - | AY780181 | AY780123 | [1,22] |
Jugulospora antarctica | IMI 381338T | KP981433 | - | KP981616 | KP981561 | [4] |
Jugulospora rotula | FMR 12781 | KP981438 | MT784134 | KP981621 | KP981566 | [4] |
Jugulospora vestita | CBS 135.91T | MT785872 | MT784135 | MT783824 | MT783825 | [4] |
Lasiosphaeria lanuginosa | SMH 3819 | AY436412 | AY587921 | AY600262 | AY600283 | [19,22] |
Lasiosphaeria ovina | SMH 1538 | AF064643 | AY587926 | AY600287 | AF466046 | [19,23,24] |
Lundqvistomyces karachiensis | CBS 657.74 | KP981447 | MK926850 | KP981630 | KP981478 | [3,4] |
Lundqvistomyces tanzaniensis | TRTC 51981T | AY780081 | MH862260 | AY780197 | AY780143 | [1,25] |
Naviculispora terrestris | CBS 137295T | KP981439 | MT784136 | KP981622 | KP981567 | [4] |
Podospora bulbillosa | CBS 304.90T | MK926861 | MK926861 | MK876823 | - | [3] |
Podospora didyma* | CBS 232.78 | AY999100 | AY999127 | - | - | [18] |
Podospora fimicola | CBS 482.64ET | KP981440 | MK926862 | KP981623 | KP981568 | [3,4] |
Podospora sacchari | CBS 713.70T | KP981425 | MH859915 | KP981607 | KP981552 | [4,25] |
Podospora striatispora | CBS 154.77T | KP981426 | MT784137 | KP981608 | KP981553 | [4] |
Pseudoechria curvicolla | NBRC 8548 | AY999099 | AY999122 | - | - | [18] |
Pseudoechria decidua | CBS 254.71T | MK926842 | MK926842 | MK876804 | - | [3] |
Pseudorhypophila marina | CBS 155.77T | MK926851 | MK926851 | MK876813 | - | [3] |
CBS 698.96T | MK926853 | MK926853 | MK876815 | - | [3] | |
Pseudorhypophila pilifera | CBS 413.73T | MK926852 | MK926852 | MK876814 | - | [3] |
Pseudorhypophila mangenotii | CBS 419.67T | KP981444 | MT784143 | KP981627 | KP981571 | [4] |
Pseudoschizothecium atropurpureum | SMH 3073 | AY780057 | - | AY780160 | AY780100 | [1] |
Rinaldiella pentagonospora | CBS 132344T | KP981442 | MH866007 | KP981625 | KP981570 | [4,25] |
Rhypophila cochleariformis | CBS 249.71 | AY999098 | AY999123 | - | - | [18] |
Rhypophila decipiens | CBS 258.69 | AY780073 | KX171946 | AY780187 | AY780130 | [1], Miller [unpubl. data] |
Rhypophila myriaspora | TNM F17211 | - | EF197083 | - | - | [26] |
Rhypophila pleiospora | TNM F16889 | - | EF197084 | - | - | [26] |
Schizothecium inaequale | CBS 356.49T | MK926846 | MK926846 | MK876808 | - | [3] |
Schizothecium selenosporum | CBS 109403T | MK926849 | MK926849 | MK876811 | - | [3] |
Sordaria araneosa* | F-116,361 | - | FJ175160 | - | - | [8] |
Triangularia allahabadensis | CBS 724.68T | MK926865 | MK926865 | MK876827 | - | [3] |
Triangularia anserina | CBS 433.50 | MK926864 | MK926864 | - | MK876826 | [3] |
Triangularia arizonensis | Kruys 724 | KF557669 | - | KF557707 | - | [2] |
Triangularia backusii | CBS 539.89IsoT | MK926866 | MK926866 | MK876828 | - | [3] |
FMR 12439 | KP981423 | MT784138 | KP981605 | KP981550 | [4] | |
Triangularia bambusae | CBS 352.33T | MK926868 | MK926868 | MK876830 | - | [3] |
Triangularia batistae | CBS 381.68T | KP981443 | MT784140 | KP981626 | KP981577 | [4] |
Triangularia longicaudata | CBS 252.57T | MK926871 | MK926871 | MK876833 | - | [3] |
Triangularia pauciseta | CBS 451.62 | MK926870 | MK926870 | - | MK876832 | [3] |
Triangularia phialophoroides | CBS 301.90T | MK926871 | MK926871 | - | MK876833 | [3] |
Triangularia setosa | FMR 12787 | KP981441 | MT784144 | KP981624 | KP981569 | [4] |
Triangularia striata | SMH 3431 | - | AY780065 | AY780108 | AY780169 | [1] |
SMH 4036 | KX348038 | AY780066 | - | - | [1], Miller [unpubl. data] | |
Triangularia tetraspora | FMR 5770 | AY999130 | AY999108 | - | - | [27] |
Triangularia verruculosa | CBS 148.77 | MK926874 | MK926874 | MK876836 | - | [3] |
Zopfiella attenuata* | CBS 266.77T | KP981445 | MH861060 | KP981628 | KP981572 | [4,25] |
Zopfiella tardifaciens* | CBS 670.82T | MK926855 | MK926855 | MK876817 | - | [3] |
1 | 2 | 3 | 4 | |||||
---|---|---|---|---|---|---|---|---|
δC, Type | δH, Multiplicity | δC, Type | δH, Multiplicity | δC, Type | δH, Multiplicity | δC, Type | δH, Multiplicity | |
1 | 55.9, CH2 | 4.64, s | 54.2, CH2 | 4.54, s | 55.9, CH2 | 4.64, s | 54.2, CH2 | 4.54, s |
2 | 126.6, C | 124.7, C | 126.6, C | 124.7, C | ||||
3 | 151.3, C | 155.6, C | OH: 9.33, br s | 151.3, C | 155.6, C | |||
4 | 119.2, C | 114.0, CH | 6.68, br d (7.9) | 119.2, C | 113.9, C | 6.69, dd (7.9,1.0) | ||
5 | 128.2, CH | 7.21, d (8.4) | 127.9, CH | 7.02, t (7.9) | 128.2, CH | 7.22, d (8.4) | 128.0, CH | 7.02, t (7.9) |
6 | 117.9, CH | 6.92, d (8.4) | 116.5, CH | 6.89, m | 118.0, CH | 6.97, d (8.4) | 116.5, CH | 6.92, d (7.9) |
7 | 136.7, C | 138.4, C | 136.8, C | 138.4, C | ||||
8 | 126.2, CH | 6.79, d (15.8) | 127.4, CH | 6.88, m | 126.1, CH | 6.80, d (15.8) | 127.3, CH | 6.89, d (15.8) |
9 | 133.8, CH | 6.13, dd (15.8, 5.8) | 132.6, CH | 6.11, dd (16.0, 6.1) | 134.3, CH | 6.19, dd (15.8, 6.3) | 133.0, CH | 6.16, dd (15.8, 6.3) |
10 | 75.0, CH | 3.99, br dd (5.8, 5.0) | 75.2, CH | 3.99, pseudo q (5.0) | 75.0, CH | 3.91, ddd (6.3,5.2,5.0) | 75.2, CH | 3.92, ddd (6.3,5.2,5.0) |
OH | 4.87, br s | 4.81, br d (4.9) | OH | 4.84, d (5.2) | OH | 4.79, d (5.2) | ||
11 | 74.8, CH | 3.87, br dd (6.2, 5.0) | 74.9, CH | 3.87, pseudo q (4.7) | 73.7, CH | 3.34, m | 73.8, CH | 3.34, m |
OH | 4.71, br s | 4.68, br d (4.9) | OH | 4.42, d (5.8) | OH | 4.38, d (5.8) | ||
12 | 130.8, CH | 5.51, dd (15.6, 6.2) | 130.9, CH2 | 5.51, dt (15.6, 6.2) | 32.6, CH2 | 1.50, m 1.26, m | 32.6, CH2 | 1.50, m 1.26, m |
13 | 130.7, CH | 5.58, dt (15.6, 6.4) | 130.6, CH2 | 5.58, dt (15.6, 6.2) | 25.4, CH2 | 1.45, m 1.25, m | 25.4, CH2 | 1.45, m 1.25, m |
14 | 31.7, CH2 | 1.98, pseudo q (6.9) | 31.8, CH2 | 1.98, pseudo q (6.8) | 29.2, CH2 | 1.25, m | 29.2, CH2 | 1.25, m |
15 | 28.5, CH2 | 1.32, m | 28.5, CH2 | 1.32, m | 28.8, CH2 | 1.25, m | 28.8, CH2 | 1.25, m |
16 | 30.7, CH2 | 1.24, m | 30.7, CH2 | 1.25, m | 31.3, CH2 | 1.24, m | 31.3, CH2 | 1.24, m |
17 | 21.9, CH2 | 1.24, m | 22.0, CH2 | 1.25, m | 22.1, CH2 | 1.26, m | 22.1, CH2 | 1.26, m |
18 | 13.9, CH3 | 0.83, t (6.9) | 13.9, CH3 | 0.84, t (6.9) | 14.0, CH3 | 0.85, t (6.9) | 14.0, CH3 | 0.85, t (6.9) |
Test Organism | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Positive Control |
---|---|---|---|---|---|---|---|---|---|---|
Candida albicans | – | – | – | – | – | – | 33.3 | – | 66.7 | 4.20 N |
Schizosaccharomyces pombe | – | – | – | – | – | – | – | – | – | 4.20 N |
Wickerhamomyces anomalus | – | – | – | – | – | – | – | – | – | 4.20 N |
Rhodotorula glutinis | – | – | 66.7 | – | – | – | – | – | – | 1.00 N |
Mucor hiemalis | 66.7 | – | 66.7 | – | – | – | – | – | 16.7 | 2.10 N |
Mycobacterium smegmatis | – | – | – | – | – | – | – | – | – | 1.70 K |
Bacillus subtilis | 33.3 | – | 33.3 | 66.7 | – | – | – | – | – | 8.30 O |
Staphylococcus aureus | 66.7 | – | 33.3 | 66.7 | – | – | – | – | – | 0.83 O |
Chromobacterium violaceum | – | – | – | – | – | – | – | – | – | 0.83 O |
Escherichia coli | – | – | – | – | – | – | – | – | – | 1.70 O |
Pseudomonas aeruginosa | – | – | – | – | – | – | – | – | – | 0.42 G |
Cell Lines | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Epothilone B |
---|---|---|---|---|---|---|---|---|---|---|
KB 3.1 | 15.6 | – | 23.0 | 23.7 | – | – | – | – | – | 0.00003 |
L929 | 52.9 | – | 70.4 | 45.5 | – | – | – | – | – | 0.00051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harms, K.; Milic, A.; Stchigel, A.M.; Stadler, M.; Surup, F.; Marin-Felix, Y. Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov. J. Fungi 2021, 7, 181. https://doi.org/10.3390/jof7030181
Harms K, Milic A, Stchigel AM, Stadler M, Surup F, Marin-Felix Y. Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov. Journal of Fungi. 2021; 7(3):181. https://doi.org/10.3390/jof7030181
Chicago/Turabian StyleHarms, Karen, Andrea Milic, Alberto M. Stchigel, Marc Stadler, Frank Surup, and Yasmina Marin-Felix. 2021. "Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov." Journal of Fungi 7, no. 3: 181. https://doi.org/10.3390/jof7030181
APA StyleHarms, K., Milic, A., Stchigel, A. M., Stadler, M., Surup, F., & Marin-Felix, Y. (2021). Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov. Journal of Fungi, 7(3), 181. https://doi.org/10.3390/jof7030181