Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Rock Sampling
2.2. Fungal Isolation and Molecular Identification
2.3. Algal Isolation and Molecular Identification
2.4. Phylogenetic Analyses
2.5. Morphological Analyses
3. Results
3.1. Fungal Isolation and Molecular Identification
3.2. Morphological Analyses of Isolated Fungal Strains
3.3. Algal Isolation and Molecular Identification
4. Taxonomy
5. Discussion
5.1. The Lichen–RIF Connections
5.2. Morphological Traits and the Fungal–Algal Association in Lichenostigmatales
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ITS | Internal Transcribed Spacer |
MEA | Malt Extract Agar |
ML | Maximum Likelihood |
MNA-CCFEE | National Antarctic Museum-Culture Collection of Fungi from Extreme Environments |
MUT | Mycotheca Universitatis Taurinenesis |
NCBI | National Center for Biotechnology Information |
nucITS | nuclear Internal Transcribed Spacers |
nucLSU | nuclear ribosomal Large SubUnit |
nucSSU | nuclear ribosomal Small SubUnit |
PCR | Polymerase Chain Reaction |
PSFR | Potential Scale Reduction Factor |
RIF | Rock Inhabitant Fungi |
TM | Trebouxia Medium |
References
- Fountain, A.G.; Nylen, T.H.; Monaghan, A.; Basagic, H.J.; Bromwich, D. Snow in the McMurdo dry valleys, Antarctica. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 633–642. [Google Scholar] [CrossRef]
- Myers, M.E.; Doran, P.T.; Myers, K.F. Summer valley-floor snowfall in Taylor Valley, Antarctica from 1995–2017. Cryosphere Discuss. 2020, 1–24. [Google Scholar] [CrossRef]
- Nienow, J.A.; Friedmann, E.I. Terrestrial lithophytic (rock) communities. In Antarctic Microbiology; Friedmann, E.I., Ed.; Wiley-Liss: New York, NY, USA, 1993; pp. 343–412. [Google Scholar]
- Friedmann, E.I. Endolithic microorganisms in the Antarctic cold desert. Science 1982, 215, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, E.I.; Ocampo, R. Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science 1976, 193, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.D.; de los Ríos, A.; Lee, K.C.; Niederberger, T.S.; Cary, S.C.; Coyne, K.J.; Douglas, S.; Lacap-Bugler, D.C.; Pointing, S.B. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 2017, 40, 997–1006. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; Alves, I.M.S.; de Oliveira, F.S.; Schaefer, C.E.G.R.; Turbay, C.V.G.; Rosa, C.A.; Rosa, L.H. Rock-inhabiting fungi in Antarctica: New frontiers of the edge of life. In Fungi of Antarctica; Springer: Cham, Switzerlands, 2019; pp. 99–126. [Google Scholar]
- Coleine, C.; Stajich, J.E.; de los Ríos, A.; Selbmann, L. Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia 2021, 113, 108–133. [Google Scholar] [CrossRef]
- Zucconi, L.; Onofri, S.; Cecchini, C.; Isola, D.; Ripa, C.; Fenice, M.; Madonna, S.; Reboleiro-Rivas, P.; Selbmann, L. Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol. 2016, 39, 91–102. [Google Scholar] [CrossRef]
- Selbmann, L.; Onofri, S.; Coleine, C.; Buzzini, P.; Canini, F.; Zucconi, L. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities. Extremophiles 2017, 21, 1069–1080. [Google Scholar] [CrossRef]
- Yung, C.C.; Chan, Y.; Lacap, D.C.; Pérez-Ortega, S.; de Los Rios-Murillo, A.; Lee, C.K.; Cary, S.C.; Pointing, S.B. Characterization of chasmoendolithic community in Miers valley, McMurdo dry valleys, Antarctica. Microb. Ecol. 2014, 68, 351–359. [Google Scholar] [CrossRef]
- Coleine, C.; Stajich, J.E.; Zucconi, L.; Onofri, S.; Pombubpa, N.; Egidi, E.; Franks, A.; Buzzini, P.; Selbmann, L. Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front. Microbiol. 2018, 9, 1392. [Google Scholar] [CrossRef] [Green Version]
- Coleine, C.; Biagioli, F.; de Vera, J.P.; Onofri, S.; Selbmann, L. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ. Microbiol. 2021, 23, 4002–4016. [Google Scholar] [CrossRef]
- Castello, M. Lichens of Terra Nova Bay area, northern Victoria Land (continental Antarctica). Studia Geobot. 2003, 22, 3–54. [Google Scholar]
- Hertel, L.H. Notes on and records of Southern Hemisphere lecideoid lichens. Bibl. Lichenol. 2007, 95, 267–296. [Google Scholar]
- Scalzi, G.; Selbmann, L.; Zucconi, L.; Rabbow, E.; Horneck, G.; Albertano, P.; Onofri, S. LIFE experiment: Isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 2012, 42, 253–262. [Google Scholar] [CrossRef]
- Selbmann, L.; De Hoog, G.S.; Mazzaglia, A.; Friedmann, E.I.; Onofri, S. Fungi at the edge of life: Cryptoendolithic black fungi from Antarctic desert. Stud. Mycol. 2005, 51, 1–32. [Google Scholar]
- Ertz, D.; Lawrey, J.D.; Common, R.S.; Diederich, P. Molecular data resolve a new order of Arthoniomycetes sister to the primarily lichenized Arthoniales and composed of black yeasts, lichenicolous and rock-inhabiting species. Fungal Divers. 2014, 66, 113–137. [Google Scholar] [CrossRef]
- White, T.J.; Burns, T.D.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenies. In PCR Protocols, a Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Snisky, J.J., White, T.J., Eds.; Academic: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bold, H.C. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club 1949, 76, 101–108. [Google Scholar] [CrossRef]
- Ahmadjian, V. The Lichen Symbiosis; Blaisdell Publishing Company: Waltham, MA, USA, 1967. [Google Scholar]
- Cubero, O.F.; Crespo, A.; Fatehi, J.; Bridge, P.D. DNA extraction and PCR amplification method suitable for fresh, herbarium stored and lichenized fungi. Plant Syst. Evol. 1999, 217, 243–249. [Google Scholar] [CrossRef]
- Nozaki, H.; Ito, M.; Sano, R.; Uchida, H.; Watanabe, M.M.; Kuroiwa, T. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. J. Phycol. 1995, 31, 970–979. [Google Scholar] [CrossRef]
- Muggia, L.; Pérez-Ortega, S.; Kopun, T.; Zellnig, G.; Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 2014, 114, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Ertz, D.; Tehler, A. The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers. 2011, 49, 47–71. [Google Scholar] [CrossRef]
- Gueidan, C.; Aptroot, A.; Silvia Caceres, M.E.; Badali, H.; Stenroos, S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol. Prog. 2014, 13, 1027–1039. [Google Scholar] [CrossRef]
- Muggia, L.; Kocourkova, J.; Knudsen, K. Disentangling the complex of Lichenothelia species from rock communities in the desert. Mycologia 2015, 107, 1233–1253. [Google Scholar] [CrossRef] [Green Version]
- Ertz, D.; Tehler, A.; Irestedt, M.; Frisch, A.; Thor, G.; van den Boom, P. A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Divers. 2015, 70, 31–53. [Google Scholar] [CrossRef]
- Ertz, D.; Sanderson, N.; Lubek, A.; Kukwa, M. Two new species of Arthoniaceae from old-growth European forests, Arthonia thoriana and Inoderma sorediatum, and a new genus for Schismatomma niveum. Lichenologist 2018, 50, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ortega, S.; Garrido-Benavent, I.; Grube, M.; de los Rios, A. Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Divers. 2016, 80, 285–300. [Google Scholar] [CrossRef]
- Ametrano, C.G.; Knudsen, K.; Kocourkova, J.; Grube, M.; Selbmann, L.; Muggia, L. Phylogenetic relationships of rock-inhabiting black fungi belonging to the widespread genera Lichenothelia and Saxomyces. Mycologia 2019, 111, 127–160. [Google Scholar] [CrossRef]
- Quan, Y.; Muggia, L.; Moreno, L.F.; Wang, M.; Al-Hatmi, A.M.S.; Menezes da Silva, N.; Shi, D.; Deng, S.; Ahmed, S.; Hyde, K.D.; et al. A re-evaluation of the Chaetothyriales using criteria of comparative biology. Fungal Divers. 2020, 103, 47–85. [Google Scholar] [CrossRef]
- Hodač, L.; Hallmann, C.; Spitzer, K.; Elster, J.; Faßhauer, F.; Brinkmann, N.; Lepka, D.; Diwan, V.; Friedl, T. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 2016, 92, fiw122. [Google Scholar] [CrossRef] [Green Version]
- Pröschold, T.; Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 2020, 441, 113–142. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series; c1979–c2000; Information Retrieval Ltd.: London, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Vaidya, G.; Lohman, D.J.G.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Mason-Gamer, R.; Kellogg, E. Testing for phylogenetic conflict among molecular dataset in the tribe Triticeae (Gramiae). Syst. Biol. 1996, 45, 524–545. [Google Scholar] [CrossRef]
- Reeb, V.; Lutzoni, F.; Roux, C. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol. Phylogenet. Evol. 2004, 32, 1036–1060. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P.; Teslenko, M. MrBayes version 3.2 Manual: Tutorials and Model Summaries. 2011. Available online: mrbayes.sourceforge.net/mb3.2_manual.pdf (accessed on 19 October 2018).
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Page, R.D.M. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 1996, 12, 357–358. [Google Scholar]
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.; Huhndorf, S.; James, T.; Kirk, P.M.; Lucking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef]
- Spatafora, J.; Sung, G.-H.; Johnson, D.; Hesse, C.; O’Rourke, B.; Serdani, M.; Spotts, R.; Lutzoni, F.; Hofstetter, V.; Miadlikowska, J.; et al. A five gene phylogeny of Pezizomycotina. Mycologia 2006, 98, 1018–1028. [Google Scholar] [CrossRef]
- Schoch, C.L.; Sung, G.H.; López-Giráldez, F.; Townsend, J.P.; Miadlikowska, J.; Hofstetter, V.; Robbertse, B.; Matheny, P.B.; Kauff, F.; Wang, Z.; et al. The Ascomycota Tree of Life: A Phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 2009, 58, 224–239. [Google Scholar] [CrossRef]
- Schoch, C.L.; Wang, Z.; Townsend, J.P.; Spatafora, J.W. Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxa above class rank in the Ascomycota Tree Life. Persoonia 2009, 22, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Crous, P.W.; Groenewald, J.Z.; Boehm, E.W.A.; Burgess, T.I.; De Gruyter, J.; de Hoog, G.S.; Dixon, L.J.; Grube, M.; Gueidan, C.; et al. A class-wide phylogenetic assessment of Dothideomycetes. Study Mycol. 2009, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Grube, M. Classification and phylogeny in the Arthoniales (lichenized Ascomycetes). Bryologist 1998, 101, 377–391. [Google Scholar] [CrossRef]
- Ertz, D.; Sérusiaux, E. A new species of Lecanactis (Arthoniales, Roccellaceae) from Madagascar. Lichenologist 2009, 41, 147–150. [Google Scholar] [CrossRef]
- Caceres, M.; Aptroot, A.; Ertz, D. New species and interesting records of Arthoniales from the Amazon, Rondonia, Brazil. Lichenologist 2014, 46, 573–588. [Google Scholar] [CrossRef]
- Lawrey, J.D.; Diederich, P. Lichenicolous fungi: Interactions, evolution, and biodiversity. Bryologist 2003, 106, 80–120. [Google Scholar] [CrossRef]
- Ruibal, C.; Gueidan, C.; Selbmann, L.; Gorbushina, A.A.; Crous, P.W.; Groenewald, J.Z.; Muggia, L.; Grube, M.; Isola, D.; Schoch, C.L.; et al. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud. Mycol. 2009, 64, 123–133. [Google Scholar] [CrossRef]
- Lumbsch, H.T.; Schmitt, I.; Lindemuth, R.; Miller, A.; Mangold, A.; Fernandez, F.; Huhndorf, S. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). Mol. Phylogenet. Evol. 2005, 34, 512–524. [Google Scholar] [CrossRef]
- Schoch, C.L.; Shoemaker, R.A.; Seifert, K.A.; Hambleton, S.; Spatafora, J.W.; Crous, P.W. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 2006, 98, 1041–1052. [Google Scholar] [CrossRef]
- Henssen, A.; Thor, G. Developmental morphology of the “Zwischengruppe” between Ascohymeniales and Ascoloculares. In Ascomycete Systematics; Springer: Boston, MA, USA, 1994; pp. 43–56. [Google Scholar]
- Nelsen, M.P.; Lücking, R.; Grube, M.; Mbatchou, J.S.; Muggia, L.; Rivas Plata, E.; Lumbsch, H.T. Unravelling the phylogenetic relationships of lichenized fungi in Dothideomyceta. Study Mycol. 2009, 64, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Muggia, L.; Gueidan, C.; Knudsen, K.; Perlmutter, G.; Grube, M. The lichen connections of black fungi. Mycopathologia 2013, 175, 523–535. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Lichenothelia, a new genus for the Microthelia aterrima group. Lichenologist 1981, 13, 141–153. [Google Scholar] [CrossRef]
- Henssen, A. Lichenothelia, a genus of microfungi on rocks. Bibl. Lichenol. 1987, 25, 257–293. [Google Scholar]
- Hyde, K.D.; Jones, E.G.; Liu, J.K.; Ariyawansa, H.; Boehm, E.; Boonmee, S.; Braun, U.; Chomnunti, P.; Crous, P.W.; Dai, D.Q.; et al. Families of Dothideomycetes. Fungal Divers. 2013, 63, 1–313. [Google Scholar] [CrossRef]
- Mohr, F.; Ekman, S.; Heegaard, E. Evolution and taxonomy of the marine Collemopsidium species (lichenized Ascomycota) in northwest Europe. Mycol. Res. 2004, 108, 515–532. [Google Scholar] [CrossRef]
- Kohlmeyer, J.; Hawksworth, D.; Volkmann-Kohlmeyer, B. Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog. 2004, 3, 51–56. [Google Scholar] [CrossRef]
- Lehmann, A.; Zheng, W.; Soutschek, K.; Roy, J.; Yurkov, A.M.; Rillig, M.C. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci. Rep. 2019, 9, 14152. [Google Scholar] [CrossRef] [Green Version]
- Gostinčar, C.; Muggia, L.; Grube, M. Polyextremotolerant black fungi: Oligotrophism, adaptive potential, and a link to lichen symbioses. Front. Microbiol. 2012, 3, 390. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, G.M. Dimorphism in fungal pathogens of Mammals, Plants, and Insects. PLoS Pathog. 2015, 11, e1004608. [Google Scholar] [CrossRef]
- Gostinčar, C.; Zajc, J.; Lenassi, M.; Plemenitaš, A.; de Hoog, S.; Al-Hatmi, A.M.S.; Gunde-Cimerman, N. Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Divers. 2018, 93, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, K.; Kocourková, J. A new Lichenostigma species (Genus incertae sedis) from southern California. Bryologist 2010, 113, 229–234. [Google Scholar] [CrossRef]
- Kocourková, J.; Knudsen, K. Lichenological notes 2: Lichenothelia convexa, a poorly known rock inhabiting and lichenicolous fungus. Mycotaxon 2011, 115, 345–351. [Google Scholar] [CrossRef]
- Ametrano, C.G.; Selbmann, L.; Muggia, L. A standardized approach for co-culturing Dothidealean rock-inhabiting fungi and lichen photobionts in vitro. Symbiosis 2017, 73, 35–44. [Google Scholar] [CrossRef]
- Muggia, L.; Hafellner, J.; Wirtz, N.; Hawksworth, D.L.; Grube, M. The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol. Res. 2008, 112, 50–56. [Google Scholar] [CrossRef]
- Muggia, L.; Kraker, S.; Gößler, T.; Grube, M. Enforced fungal-algal symbioses in alginate spheres. FEMS Microbiol. Lett. 2018, 365, fny115. [Google Scholar] [CrossRef]
- Muggia, L.; Zalar, P.; Azua-Bustos, A.; González-Silva, C.; Grube, M.; Gunde-Cimerman, N. The beauty and the yeast: Can the microalgae Dunaliella form a borderline lichen with Hortaea werneckii? Symbiosis 2020, 82, 123–131. [Google Scholar] [CrossRef]
- Azúa-Bustos, A.; González-Silva, C.; Salas, L.; Palma, R.E.; Vicuña, R. A novel subaerial Dunaliella species growing on cave spiderwebs in the Atacama Desert. Extremophiles 2010, 14, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Gorbushina, A.A.; Beck, A.; Schulte, A. Microcolonial rock inhabiting fungi and lichen photobionts: Evidence for mutualistic interactions. Mycol. Res. 2005, 109, 1288–1296. [Google Scholar] [CrossRef]
- Hawksworth, D.; Grube, M. Lichens redefined as complex ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef]
- Grube, M.; Wedin, M. Lichenized fungi and the evolution of symbiotic organization. Fungal Kingd. 2016, 4, 749–765. [Google Scholar]
- Spribille, T.; Tagirdzhanova, G.; Goyette, S.; Tuovinen, V.; Case, R.; Zandberg, W.F. 3D biofilms: In search of the polysaccharides holding together lichen symbioses. FEMS Microbiol. Lett. 2020, 367, fnaa023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voytsekhovich, A.; Beck, A. Lichen photobionts of the rocky outcrops of Karadag massif (Crimean Peninsula). Symbiosis 2016, 68, 9–24. [Google Scholar] [CrossRef]
Species | MNA-CCFEE | Rock Type | Location | Coordinates | GenBank Accessions | ||
---|---|---|---|---|---|---|---|
nucITS | nucLSU | nucSSU | |||||
Antarctolichenia onofrii | 5284 | Sandstone | Battleship Promontory, SVL | −76.90000, 160.90000 | MW991415 | MW991430 | MZ005695 |
Antarctolichenia onofrii | 6076 | Sandstone | Stewart Heights, NVL | −73.490556, 163.912222 | MW991424 | MW991432 | MZ005699 |
Antarctolichenia onofrii | 6093 | Granite | Random Hills, NVL | −74.103056, 164.381389 | MW991413 | MZ005702 | MZ005688 |
Antarctolichenia onofrii | 6101 | Granite | Starr Nunatak, NVL | −75.898889, 162.593889 | MW991414 | MZ005690 | MZ005689 |
Antarctolichenia onofrii | 6102 (=MUT 6405) | Granite | Starr Nunatak, NVL | −75.898889, 162.593889 | MW991425 | MZ005700 | MZ005696 |
Antarctolichenia onofrii | 6108 | Granite | Archambault Ridge, NVL | −73.740556, 162.675556 | MW991426 | MZ005691 | MW989536 |
Antarctolichenia onofrii | 6112 | Granite | Mt. McGee, NVL | −74.002778, 164.482222 | MW991411 | MZ005694 | MW989537 |
Antarctolichenia onofrii | 6161 | Sandstone | Mt. Howard, NVL | −75.680556, 161.270833 | MW991410 | MZ005698 | - |
Antarctolichenia onofrii | 6163 | Granite | Olson Nunatak, NVL | −75.931944, 162.402222 | MW991412 | MZ005687 | - |
Antarctolichenia onofrii | 6165 | Granite | Harrow Peak, NVL | −74.075833, 164.808889 | MW991423 | MZ005686 | MW989728 |
Antarctolichenia onofrii | 6294 | Granite | Vegetation Island, NVL | −74.784167, 163.659722 | - | MZ005701 | MW989729 |
Antarctolichenia onofrii | 6564 (=MUT 6552) * T | Sandstone | Helliwell Hills, NVL | −71.731667, 161.375667 | MW991427 | MZ005697 | MW989731 |
Antarctolichenia onofrii | 6574 | Sandstone | Helliwell Hills, NVL | −71.793533, 161.995717 | MW991431 | MZ005692 | MW989732 |
Antarctolichenia onofrii | 6583 | Sandstone | Helliwell Hills, NVL | −71.793533, 161.995717 | MW991428 | MZ005693 | MW989733 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muggia, L.; Coleine, C.; De Carolis, R.; Cometto, A.; Selbmann, L. Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes. J. Fungi 2021, 7, 935. https://doi.org/10.3390/jof7110935
Muggia L, Coleine C, De Carolis R, Cometto A, Selbmann L. Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes. Journal of Fungi. 2021; 7(11):935. https://doi.org/10.3390/jof7110935
Chicago/Turabian StyleMuggia, Lucia, Claudia Coleine, Roberto De Carolis, Agnese Cometto, and Laura Selbmann. 2021. "Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes" Journal of Fungi 7, no. 11: 935. https://doi.org/10.3390/jof7110935
APA StyleMuggia, L., Coleine, C., De Carolis, R., Cometto, A., & Selbmann, L. (2021). Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes. Journal of Fungi, 7(11), 935. https://doi.org/10.3390/jof7110935