The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Culture and DNA Isolation
2.2. Species Identification
2.3. Genome Sequencing and Assembly
2.4. Gene Prediction and Annotation
2.5. Genomic Structure of the Mating-Type (MAT) Locus
2.6. Phylogenomics Analysis
2.7. Comparative Genomics Analysis
3. Results
3.1. Species Identity
3.2. Genome Sequence Assembly and Annotation
3.3. Terpenoid Biosynthesis
3.4. Polysaccharide Biosynthesis
3.5. Flavonoid Biosynthesis
3.6. CAZyme
3.7. Cytochromes P450 (CYPs)
3.8. Gene Cluster
3.9. MAT Locus
3.10. Phylogenomics
3.11. Comparative Genomics
4. Discussion
4.1. Accurate Link of Whole Genome Sequencing to Sanghuangporus sanghuang
4.2. Medicinal Properties of Sanghuangporus
4.3. Clues to Artificial Cultivation of Sanghuangporus sanghuang
4.4. Specification in Sanghuangporus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Wang, Y.J.; Sun, G.P.; Wang, Y.R.; Cao, L.J.; Shen, Y.M.; Yuan, B.; Han, D.; Huang, L.Q. Archaeological evidence suggests earlier use of Ganoderma in Neolithic China. Chin. Sci. Bull. 2018, 63, 1180–1188. (In Chinese) [Google Scholar]
- Anonymous. Shen Nong Materia Medica, 102-200 A.D.; Han, E., Ed.; Reprinted; People’s Hygiene Press: Beijing, China, 1955; p. 514. [Google Scholar]
- Zhou, L.W.; Ghobad-Nejhad, M.; Tian, X.M.; Wang, Y.F.; Wu, F. Current status of ‘Sanghuang’ as a group of medicinal mushrooms and their perspective in industry development. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Zhou, L.W.; Vlasák, J.; Decock, C.; Assefa, A.; Stenlid, J.; Abate, D.; Wu, S.H.; Dai, Y.C. Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 2016, 77, 335–347. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, L.W.; Yang, Z.L.; Bau, T.; Li, T.H.; Dai, Y.C. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 2019, 98, 1–76. [Google Scholar]
- Wu, S.H.; Wei, C.L.; Chang, C.C. Sanghuangporus vitexicola sp. nov. (Hymenochaetales, Basidiomycota) from tropical Taiwan. Phytotaxa 2020, 475, 43–51. [Google Scholar] [CrossRef]
- Shen, S.; Liu, S.L.; Jiang, J.H.; Zhou, L.W. Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences. IMA Fungus 2021, 12, 10. [Google Scholar] [CrossRef]
- Wu, S.H.; Dai, Y.C.; Hattori, T.; Yu, T.W.; Wang, D.M.; Parmasto, E.; Chang, H.Y.; Shi, X.Y. Species clarification for the medicinally valuable ‘Sanghuang’ mushroom. Bot. Stud. 2012, 53, 135–149. [Google Scholar]
- Chen, S.L.; Xu, J.; Liu, C.; Zhu, Y.J.; Nelson, D.R.; Zhou, S.G.; Li, C.F.; Wang, L.Z.; Guo, X.; Sun, Y.Z.; et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 2012, 3, 913. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Gong, J.; Dai, W.; Kang, X.; Huang, Z.; Zhang, H.M.; Liu, W.; Liu, L.; Ma, J.; Xia, Z.; et al. The genome of Ganoderma lucidum provide insights into triterpense biosynthesis and wood degradation. PLoS ONE 2012, 7, e36146. [Google Scholar]
- Lu, M.Y.J.; Fan, W.L.; Wang, W.F.; Chen, T.C.; Tang, Y.C.; Chu, F.H.; Chang, T.T.; Wang, S.Y.; Li, M.Y.; Chen, Y.H.; et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc. Natl. Acad. Sci. USA 2014, 111, 4743–4752. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Y.; Guan, R.L.; Shi, Y.X.; Ding, J.M.; Dai, R.H.; Ye, W.X.; Xu, K.; Chen, Y.; Shen, L.; Liu, Y.Y.; et al. Comparative genome and transcriptome analysis reveal the medicinal basis and environmental adaptation of artificially cultivated Taiwanofungus camphoratus. Mycol. Prog. 2018, 17, 871–883. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, X.; Yang, Y.L.; Xing, Y.M.; Zhang, Q.; Li, J.M.; Ma, K.; Liu, H.W.; Guo, S.X. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Sci. Rep. 2017, 7, 10151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.B.; Wang, Y.H.; Xie, C.L.; Zhou, Y.J.; Zhu, Z.H.; Peng, Y.D. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020, 112, 2393–2399. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, F.; Si, J.; Zhao, Y.F.; Dai, Y.C. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 2019, 111, 50–58. [Google Scholar] [CrossRef]
- Yu, F.; Song, J.; Liang, J.F.; Wang, S.K.; Lu, J.K. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2019, 112, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Guo, H.; Zhang, J.; Liu, H.; Wang, K.; Zuo, S.; Xu, P.; Xia, Z.; Zhou, Q.; Zhang, H.; et al. The genome of the medicinal macrofungus Sanghuang provides insights into the synthesis of diverse secondary metabolites. Front. Microbiol. 2020, 10, 3035. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Wang, J.; Jiang, H.; Wang, G.; Wang, Y. Deep sequencing of the Sanghuangporus vaninii transcriptome reveals dynamic landscapes of candidate genes involved in the biosynthesis of active compounds. Arch. Microbiol. 2021, 203, 2315–2324. [Google Scholar] [CrossRef]
- Huo, J.; Zhong, S.; Du, X.; Cao, Y.; Wang, W.; Sun, Y.; Tian, Y.; Zhu, J.; Chen, J.; Xuan, L.; et al. Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. J. Adv. Res. 2020, 24, 325–335. [Google Scholar] [CrossRef]
- Zhou, L.W. Systematics is crucial for the traditional Chinese medicinal studies and industry of macrofungi. Fungal Biol. Rev. 2020, 34, 10–12. [Google Scholar] [CrossRef]
- Lin, W.C.; Deng, J.S.; Huang, S.S.; Wu, S.H.; Lin, H.Y.; Huang, G.J. Evaluation of antioxidant, anti-inflammatory and anti-proliferative activities of ethanol extracts from different varieties of Sanghuang species. RSC Adv. 2017, 7, 7780–7788. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.J.; Lee, E.-H.; Yoon, Y.; Chua, B.; Son, A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J. Appl. Microbiol. 2016, 120, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Application; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Chaisson, M.J.; Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory. BMC Bioinform. 2012, 13, 238. [Google Scholar] [CrossRef] [Green Version]
- Stanke, M.; Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003, 19, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, 339–346. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.-B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Han, M.V.; Thomas, G.W.; Lugo-Martinez, J.; Hahn, M.W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 2013, 30, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Frazer, I.H. Collaboration in the war against viruses: A multidisciplinary international effort. Innovation 2020, 1, 100011. [Google Scholar]
- Shi, Y. New virus, new challenge. Innovation 2020, 1, 100005. [Google Scholar]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef]
- Wawrzyn, G.T.; Held, M.A.; Bloc, S.E.; Schmidt-Dannert, C. Genome mining for fungal secondary metabolic gene clusters. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J.F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; Volume 2, pp. 43–65. [Google Scholar]
- Zhang, G.L.; Si, J.; Tian, X.M.; Wang, J.P. The effects of fungal elicitor on the accumulation of Sanghuangporus sanghuang intracellular metabolites. Mycosystema 2017, 36, 482–491. [Google Scholar]
- Cai, C.; Ma, J.; Han, C.; Jin, Y.; Zhao, G.; He, X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep. 2019, 9, 7418. [Google Scholar] [CrossRef]
- Cheng, T.; Chepkirui, C.; Decock, C.; Matasyoh, J.C.; Stadler, M. Sesquiterpenes from an Eastern African medicinal mushroom belonging to the genus Sanghuangporus. J. Nat. Prod. 2019, 82, 1283–1291. [Google Scholar] [CrossRef]
- Maity, P.; Sen, I.K.; Chakraborty, I.; Mondal, S.; Bar, H.; Bhania, S.K.; Mandal, S.; Maity, G.N. Biologically active polysaccharide from edible mushrooms: A review. Int. J. Biol. Macromol. 2021, 172, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xiao, X.; Wang, J.; Chen, C.Y.; Hu, H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activiti.es of mushroom Inonotus sanghuang. LWT-Food Sci. Technol. 2017, 82, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Coelho, M.A.; Bakkeren, G.; Sun, S.; Hood, M.E.; Giraud, T. Fungal sex: The Basidiomycota. Microbiol. Spectr. 2017, 5, FUNK-0046-2016. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Valderrama, J.R.; Aime, M.C. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally. Heredity 2016, 116, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Aspeborg, H.; Coutinho, P.M.; Wang, Y.; Brumer, H.; Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 2012, 12, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viborg, A.H.; Terrapon, N.; Lombard, V.; Michel, G.; Czjzek, M.; Henrissat, B.; Brumer, H. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J. Biol. Chem. 2019, 294, 15973–15986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; Sørlie, M.; Eijsink, V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330, 219–222. [Google Scholar] [CrossRef]
- Fang, M.; Wang, X.E.; Chen, Y.; Wang, P.; Lu, L.X.; Lu, J.; Yao, F.J.; Zhang, Y.M. Genome sequence analysis of Auricularia heimuer combined with genetic linkage map. J. Fungi 2020, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Sørbotten, A.; Horn, S.J.; Eijsink, V.G.; Vårum, K.M. Degradation of chitosans with chitinase B from Serratia marcescens. Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J. 2005, 272, 538–549. [Google Scholar] [CrossRef]
- Nagy, L.G.; Ohm, R.A.; Kovács, G.M.; Floudas, D.; Riley, R.; Gácser, A.; Sipiczki, M.; Davis, J.M.; Doty, S.L.; Hoog, G.S.; et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 2014, 5, 4471. [Google Scholar] [CrossRef] [Green Version]
- Kiss, E.; Hegedüs, B.; Virágh, M.; Varga, T.; Merényi, Z.; Kószó, T.; Bálint, B.; Prasanna, A.N.; Krizsán, K.; Kocsubé, S.; et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat. Commun. 2019, 10, 4080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyauchi, S.; Kiss, E.; Kuo, A.; Drula, E.; Kohler, A.; Sánchez-García, M.; Morin, E.; Andreopoulos, B.; Barry, K.W.; Bonito, G.; et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 2020, 11, 5125. [Google Scholar] [CrossRef]
- Zhu, L.; Song, J.; Zhou, J.-L.; Si, J.; Cui, B.-K. Species diversity, phylogeny, divergence time, and biogeography of the genus Sanghuangporus (Basidiomycota). Front. Microbiol. 2019, 10, 812. [Google Scholar] [CrossRef] [PubMed]
- Albalat, R.; Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 2016, 17, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Crešnar, B.; Petrič, S. Cytochrome P450 enzymes in the fungal kingdom. BBA-Proteins Proteom. 2011, 1814, 29–35. [Google Scholar] [CrossRef]
- Hussain, R.; Ahmed, M.; Khan, T.A.; Akhter, Y. Fungal P450 monooxygenases—The diversity in catalysis and their promising roles in biocontrol activity. Appl. Microbiol. Biot. 2020, 104, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Qhanya, L.B.; Matowane, G.; Chen, W.; Sun, Y.; Letsimo, E.M.; Parvez, M.; Yu, J.H.; Mashele, S.S.; Syed, K. Genome-wide annotation and comparative analysis of cytochrome P450 monooxygenases in basidiomycete biotrophic plant pathogens. PLoS ONE 2015, 10, e0142100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phylum | Species | Voucher | BioProject ID | Number of Contigs | Max Length of Contig (Mb) | N50 Length of Contig (Mb) |
---|---|---|---|---|---|---|
Ascomycota | Neurospora crassa | OR74A | PRJNA13841 | 21 | 9.80 | 6.00 |
Tuber melanosporum | Mel28 | PRJEA38847 | 398 | 2.79 | 0.64 | |
Basidiomycota | Agaricus bisporus | H97 | PRJNA61005 | 13 | 3.34 | 2.55 |
Auricularia subglabra | TFB-10046 SS5 | PRJNA60553 | 1531 | 2.21 | 0.49 | |
Fomitiporia mediterranea | MF3/22 | PRJNA56107 | 1412 | 9.60 | 4.29 | |
Ganoderma lucidum | G.260125-1 | PRJNA71455 | 82 | 4.83 | 1.39 | |
Ganoderma sinense | ZZ0214-1 | PRJNA42807 | 69 | 4.26 | 2.26 | |
Hericium alpestre | DSM 108284 | PRJNA521006 | 3534 | 0.21 | 0.02 | |
Heterobasidion irregulare | TC 32-1 | PRJNA46703 | 15 | 3.59 | 2.57 | |
Phellinidium pouzarii | DSM 108285 | PRJNA521454 | 1776 | 0.26 | 0.04 | |
Pleurotus ostreatus | PC9 | PRJNA647232 | 17 | 4.83 | 3.50 | |
Polyporus arcularius | HHB13444 | PRJNA196048 | 2540 | 0.31 | 0.05 | |
Porodaedalea pini | BCRC 35384 | PRJNA380037 | 220 | 2.99 | 0.57 | |
Pyrrhoderma noxium | FFPRI411160 | PRJNA377805 | 13 | 4.53 | 2.74 | |
Rickenella mellea | SZMC22713 | PRJNA334780 | 848 | 2.92 | 0.36 | |
Sanghuangporus baumii | 821 | PRJNA304358 | 217 | 1.38 | 0.27 | |
Sanghuangporus sanghuang | MS2 | PRJNA731629 | 26 | 2.98 | 2.06 | |
Sanghuangporus vaninii | Kangneng | PRJNA564179 | 37 | 3.67 | 2.02 | |
Schizophyllum commune | H4-8 | PRJNA32757 | 36 | 7.10 | 2.55 | |
Schizopora paradoxa | KUC8140 | PRJNA239088 | 1291 | 1.82 | 0.12 | |
Taiwanofungus camphoratus | S27 | PRJNA244959 | 360 | 2.22 | 1.03 | |
Trametes versicolor | FP-101664 SS1 | PRJNA56097 | 283 | 5.13 | 2.88 | |
Wolfiporia cocos | MD-104 | PRJNA52943 | 348 | 5.11 | 2.54 |
Contig | Characteristic | Genome | Characteristic |
---|---|---|---|
Total number | 26 | Genome assembly (Mb) | 33.34 |
Total length (Mb) | 33.34 | Number of protein-coding genes | 8278 |
N50 length (Mb) | 2.06 | Average length of protein-coding genes (bp) | 1597 |
Max length (Mb) | 2.98 | Repeat size (Mb) | 1.25 |
Min length (kb) | 80.44 | Transposable elements (Mb) | 0.96 |
Coverage (%) | 99.98 | tRNA (bp) | 7836 |
GC content (%) | 48.04 |
Characteristic | S. baumii | S. sanghuang | S. vaninii | |
---|---|---|---|---|
Genome structure | Genome size (Mb) | 31.64 | 33.34 | 34.52 |
Number of contigs | 339 | 26 | 56 | |
N50 length of contig (Mb) | 0.18 | 2.06 | 2.02 | |
Protein-coding genes | 8455 | 8278 | 11,310 | |
GC content (%) | 47.25 | 48.04 | 47.95 | |
Gene involved in the pathway of medicinal metabolites | Terpenoid backbone biosynthesis | 15 | 14 | 15 |
Polysaccharide biosynthesis | 40 | 41 | 46 | |
Flavonoid biosynthesis | 6 | 8 | 7 | |
Gene encoding CAZymes | CBM | 39 | 38 | 38 |
CE | 15 | 23 | 18 | |
GH | 155 | 162 | 160 | |
GT | 54 | 62 | 61 | |
PL | 5 | 9 | 8 | |
AA | 45 | 52 | 53 | |
Sum | 313 | 346 | 338 | |
Gene encoding cytochromes P450 | B-class P450 | 1 | 0 | 0 |
Cytochrome P450 | 8 | 12 | 9 | |
E-class P450, CYP2D | 1 | 1 | 1 | |
E-class P450, group I | 68 | 66 | 80 | |
E-class P450, group IV | 7 | 8 | 14 | |
P450, CYP52 | 5 | 3 | 6 | |
Pisatin demethylase-like | 4 | 6 | 2 | |
Undetermined | 18 | 25 | 24 | |
Sum | 112 | 121 | 136 | |
Gene cluster of secondary metabolites | TS | 12 | 10 | 11 |
T1PKS | 1 | 4 | 1 | |
NRPS | 3 | 1 | 3 | |
Other molecules | 2 | 1 | 1 | |
Sum | 18 | 16 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.-H.; Wu, S.-H.; Zhou, L.-W. The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution. J. Fungi 2021, 7, 787. https://doi.org/10.3390/jof7100787
Jiang J-H, Wu S-H, Zhou L-W. The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution. Journal of Fungi. 2021; 7(10):787. https://doi.org/10.3390/jof7100787
Chicago/Turabian StyleJiang, Ji-Hang, Sheng-Hua Wu, and Li-Wei Zhou. 2021. "The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution" Journal of Fungi 7, no. 10: 787. https://doi.org/10.3390/jof7100787
APA StyleJiang, J.-H., Wu, S.-H., & Zhou, L.-W. (2021). The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution. Journal of Fungi, 7(10), 787. https://doi.org/10.3390/jof7100787