Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Billiard, S.; López-Villavicencio, M.; Devier, B.; Hood, M.E.; Fairhead, C.; Giraud, T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol. Rev. 2011, 86, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Heitman, J.; Sun, S.; James, T.Y. Evolution of fungal sexual reproduction. Mycologia 2013, 105, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.W.; Jacobson, D.J.; Fisher, M.C. The evolution of asexual fungi: Reproduction, speciation and classification. Annu. Rev. Phytopathol. 1999, 37, 197–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.M.; Wilken, P.M.; van der Nest, M.A.; Wingfield, M.J.; Wingfield, B.D. It’s all in the genes: The regulatory pathways of sexual reproduction in filamentous ascomycetes. Genes 2019, 10, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandon, S.; Capowiez, Y.; Dubois, Y.; Michalakis, Y.; Olivieri, I. Local adaptation and gene-for-gene coevolution in a metapopulation model. Proc. R. Soc. Lond. B Biol. Sci. 1996, 263, 1003–1009. [Google Scholar]
- Elliott, C.G. Reproduction in Fungi. Genetical and Physiological Aspects; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Harrington, T.C.; McNew, D.L. Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Curr. Genet. 1997, 32, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Wilken, P.M.; Steenkamp, E.T.; Wingfield, M.J.; De Beer, Z.W.; Wingfield, B.D. DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PloS ONE 2014, 9, e92180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.H.; Roux, J.; Wingfield, B.D.; Wingfield, M.J. Non-Mendelian segregation influences the infection biology and genetic structure of the African tree pathogen Ceratocystis albifundus. Fungal Biol. 2018, 122, 222–230. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A.; McDermott, J.M. Population genetics of plant pathogenic fungi. Bioscience 1993, 43, 311–319. [Google Scholar] [CrossRef]
- Heitman, J. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 2010, 8, 86–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.H.; Roux, J.; Wingfield, B.D.; Wingfield, M.J. Variation in growth rates and aggressiveness of naturally occurring self-fertile and self-sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathol. 2015, 64, 1103–1109. [Google Scholar] [CrossRef]
- McGuire, I.C.; Marra, R.E.; Milgroom, M.G. Mating-type heterokaryosis and selfing in Cryphonectria parasitica. Fungal Genet. Biol. 2004, 41, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Roux, J.; Wingfield, M.J. Ceratocystis species: Emerging pathogens of non-native plantation Eucalyptus and Acacia species. South For. 2009, 71, 115–120. [Google Scholar] [CrossRef]
- Lee, D.H.; Roux, J.; Wingfield, B.D.; Barnes, I.; Mostert, L.; Wingfield, M.J. The genetic landscape of Ceratocystis albifundus populations in South Africa reveals a recent fungal introduction event. Fungal Biol. 2016, 120, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, M.J.; De Beer, C.; Visser, C.; Wingfield, B.D. A new Ceratocystis species defined using morphological and ribosomal DNA sequence comparisons. Syst. Appl. Microbiol. 1996, 19, 191–202. [Google Scholar] [CrossRef]
- Möller, E.M.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic. Acids. Res. 1992, 20, 6115–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991, 10, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, I.; Nakabonge, G.; Roux, J.; Wingfield, B.D.; Wingfield, M.J. Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol. 2005, 54, 189–195. [Google Scholar] [CrossRef]
Sampling Sites | Host | Isolate Number | |
---|---|---|---|
Non- native area (Acacia planation) | Bloemendal | Acacia mearnsii | aCMW38486-38527, CMW43527-43595, CMW44082, CMW44111-44115 |
Native areas (Kruger National Park) | Pretoriuskop | Terminalia sericea | CMW 41508-41530, CMW42118-42126, CMW43680 |
Tsohowane | CMW 41531-41545, CMW41580-41588, | ||
Lower Sabie | CMW 41546-41549 | ||
Lower Sabie | Lannea stuhlmannii | CMW 41550-41564, CMW 41566-41572, CMW 41574-41579 |
Primers | Sequences | Reference |
---|---|---|
AG7F a | CGA GAC AGC AAC ACA AGC CC | Barnes et al. [19] |
AG8R b | GGG GCG GTG GTG CAA TTG TC | |
AG15F | CTT GAC CGA CCT GCC GAT TG | |
AG16R | GGA TAG CAG CGA CAA GGA CC |
Sampling Sites | ID of Bark Flaps | Number of Isolates Successfully Recovered | Total Number of Isolates Showing a Heterozygous Profile | ||
---|---|---|---|---|---|
AG 7/8 | AG 15/16 | ||||
Non-native area (Acacia planation) | Bloemendal | Acacia mearnsii 1 | 7 | 3 | 5 |
Acacia mearnsii 2 | 11 | 6 | 5 | ||
Acacia mearnsii 3 | 12 | 5 | 2 | ||
Acacia mearnsii 4 | 14 | 5 | 7 | ||
Acacia mearnsii 5 | 9 | 4 | 3 | ||
Acacia mearnsii 6 | 13 | 2 | 4 | ||
Acacia mearnsii 7 | 15 | 6 | 7 | ||
Acacia mearnsii 8 | 13 | 2 | 7 | ||
Acacia mearnsii 9 | 12 | 8 | 6 | ||
Acacia mearnsii 10 | 10 | 9 | 4 | ||
Total | 116 | 50 | 50 | ||
Outcrossing events observed (%) | 43.1% | 43.1% | |||
Native areas (Kruger National Park) | Pretoriuskop | Terminalia sericea 17-1 | 7 | 1 | 4 |
Terminalia sericea 17-2 | 6 | 1 | 2 | ||
Terminalia sericea 17-9 | 14 | - | 6 | ||
Terminalia sericea 7-9 | 6 | - | 1 | ||
Lower Sabie | Terminalia sericea 23 | 4 | - | - | |
Lannea stuhlmannii 26 | 28 | 2 | 6 | ||
Tsohowane | Terminalia sericea 37 | 15 | - | 3 | |
Terminalia sericea 38 | 9 | - | - | ||
Total | 89 | 4 | 22 | ||
Outcrossing events observed (%) | 4.5% | 24.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Wingfield, B.D.; Roux, J.; Wingfield, M.J. Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers. J. Fungi 2020, 6, 48. https://doi.org/10.3390/jof6020048
Lee D-H, Wingfield BD, Roux J, Wingfield MJ. Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers. Journal of Fungi. 2020; 6(2):48. https://doi.org/10.3390/jof6020048
Chicago/Turabian StyleLee, Dong-Hyeon, Brenda D. Wingfield, Jolanda Roux, and Michael J. Wingfield. 2020. "Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers" Journal of Fungi 6, no. 2: 48. https://doi.org/10.3390/jof6020048
APA StyleLee, D.-H., Wingfield, B. D., Roux, J., & Wingfield, M. J. (2020). Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers. Journal of Fungi, 6(2), 48. https://doi.org/10.3390/jof6020048