Therapy and Antifungal Susceptibility Profile of Microsporum canis
Abstract
:1. Introduction
2. Conventional Therapy for Animals and Humans
2.1. Conventional Therapy in Humans
2.2. Conventional Therapy in Animals
3. Antifungal Susceptibility Profile
3.1. Broth Microdilution Procedures
3.2. E-Test Procedure
3.3. Disk Diffusion Procedures
4. Agreement of CLSI and Agar-Based Diffusion Methods
5. Antifungal Resistance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ginter-Hanselmayer, G.; Weger, W.; Ilkit, M.; Smolle, J. Epidemiology of tinea capitis in Europe: Current state and changing patterns. Mycoses 2007, 50, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Moriello, K.A.; Coyner, K.; Paterson, S.; Mignon, B. Diagnosis and treatment of dermatophytosis in dogs and cats. Vet. Dermatol. 2017, 28, 266–e68. [Google Scholar] [CrossRef] [PubMed]
- Degreef, H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 2008, 166, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Sasanelli, M.; Lia, R.; Capelli, G.; Otranto, D. The epidemiology of canine and feline dermatophytoses in southern Italy. Mycoses 2004, 47, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Capelli, G.; Guillot, J.; Otranto, D. Isolation of Microsporum canis from the hair coat of pet dogs and cats belonging to owners diagnosed with M. canis tinea corporis. Vet. Dermatol. 2006, 17, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Cafarchia, C.; Capelli, G.; Fasciocco, D.; Otranto, D.; Giangaspero, A. Dermatophytoses in cats and humans in central Italy: Epidemiological aspects. Mycoses 2007, 50, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, C.; Mugisha, P.; Mulyowa, G.K.; Elsner, P.; Hipler, U.C.; Gräser, Y.; Uhrlaß, S.; Nenoff, P. Identification of the causative dermatophyte of tinea capitis in children attending Mbarara Regional Referral Hospital in Uganda by PCR-ELISA and comparison with conventional mycological diagnostic methods. Med. Mycol. 2016, 55, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, C.; Bouchara, J.-P.; Mignon, B. Updates on the epidemiology of dermatophyte infections. Mycopathologia 2008, 166, 335–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourguignon, E.; Diegues Guimarães, L.; Sell Ferreira, T.; Silva Favarato, E. Dermatology in Dogs and Cats. In Insights from Veterinary Medicine, 1st ed.; Payan-Carreira, R., Ed.; InTech: London, UK, 2013; Volume 1, pp. 3–34. [Google Scholar]
- Sparkes, A.H.; Werrett, G.; Stokes, C.R.; Gruffydd-Jones, T.J. Microsporum canis: Inapparent carriage by cats and the viability of arthrospores. J. Small Anim. Pract. 1994, 35, 397–401. [Google Scholar] [CrossRef]
- Mancianti, F.; Nardoni, S.; Corazza, M.; D’achille, P.; Ponticelli, C. Environmental detection of Microsporum canis arthrospores in the households of infected cats and dogs. J. Feline Med. Surg. 2003, 5, 323–328. [Google Scholar] [CrossRef]
- Bond, R. Superficial veterinary mycoses. Clin. Dermatol. 2010, 28, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, A.; Vinay, K.; Dogra, S. Emergence of recalcitrant dermatophytosis in India. Lancet Infect. Dis. 2018, 18, 250–251. [Google Scholar] [CrossRef]
- Adimi, P.; Hashemi, S.J.; Mahmoudi, M.; Mirhendi, H.; Shidfar, M.R.; Emmami, M.; Rezaei-Matehkolaei, A.; Gramishoar, M.; Kordbacheh, P. In-vitro Activity of 10 antifungal agents against 320 dermatophyte strains using microdilution method in Tehran. Iran. J. Pharm. Res. 2013, 12, 537–545. [Google Scholar]
- Bueno, J.G.; Martinez, C.; Zapata, B.; Sanclemente, G.; Gallego, M.; Mesa, A.C. In vitro activity of flucon-azole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin. Exp. Dermatol. 2010, 35, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Norris, H.A.; Elewski, B.E.; Ghannoum, M.A. Optimal growth conditions for the determination of the antifungal susceptibility of three species of dermatophytes with the use of a microdilution method. J. Am. Acad. Dermatol. 1999, 40, S9–S13. [Google Scholar] [CrossRef]
- Elewski, B.E. Onychomycosis: Pathogenesis, diagnosis, and management. Clin. Microbiol. Rev. 1998, 11, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Sugiura, K.; Hashimoto, T.; Ueda, A.; Konno, Y.; Tatsumi, Y. Efficacy coefficients determined using nail permeability and antifungal activity in keratin-containing media are useful for predicting clinical efficacies of topical drugs for onychomycosis. PLoS ONE 2016, 11, e0159661. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.K.; Sharma, P.C. Determination of minimum inhibitory concentrations of itraconazole, terbinafine and ketoconazole against dermatophyte species by broth microdilution method. Indian J. Med. Microbiol. 2015, 33, 533–537. [Google Scholar] [PubMed]
- Piraccini, B.M.; Alessandrini, A. Onychomycosis: A review. J. Fungi 2015, 1, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012, 2012, 713687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, A.K.; Mahajan, R. Management of tinea corporis, tinea cruris, and tinea pedis: A comprehensive review. Indian Dermatol. Online J. 2016, 7, 77–86. [Google Scholar] [PubMed]
- Gupta, A.K.; William, J.V.; Zaman, M.; Singh, J. In vitro pharmacodynamic characteristics of griseofulvin against dermatophyte isolates of Trichophyton tonsurans from tinea capitis patients. Med. Mycol. 2009, 47, 796–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Scientific Counsel Companion Animal Parasites (ESCCAP) Guideline. Superficial Mycoses in Dogs and Cats. 2011. Available online: http://www.esccap.org/ (accessed on 15 April 2018).
- Guillot, J.; Malandain, E.; Jankowski, F.; Rojzner, K.; Fournier, C.; Touati, F.; Chermette, R.; Seewald, W.; Schenker, R. Evaluation of the efficacy of oral lufenuron combined with topical enilconazole for the management of dermatophytosis in catteries. Vet. Rec. 2002, 150, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Paterson, S. Miconazole/chlorhexidine shampoo as an adjunct to systemic therapy in controlling dermatophytosis in cats. J. Small Anim. Pract. 1999, 40, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, A.H.; Robinson, A.; MacKay, A.D.; Shaw, S.E. A study of the efficacy of topical and systemic therapy for the treatment of feline Microsporum canis infection. J. Feline Med. Surg. 2000, 2, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Moriello, K.A.; DeBoer, D.J. Efficacy of griseofulvin and itraconazole in the treatment of experimentally induced dermatophytosis in cats. J. Am. Vet. Med. Assoc. 1995, 207, 439–444. [Google Scholar] [PubMed]
- Mancianti, F.; Pedonese, F.; Millanta, F.; Guarnieri, L. Efficacy of oral terbinafine in feline dermatophytosis due to Microsporum canis. J. Feline Med. Surg. 1999, 1, 37–41. [Google Scholar] [CrossRef]
- Castañón-Olivares, L.R.; Manzano-Gayosso, P.; López-Martínez, R.; De la Rosa-Velázquez, I.A.; Soto-Reyes-Solís, E. Effectiveness of terbinafine in the eradication of Microsporum canis from laboratory cats. Mycoses 2003, 44, 95–97. [Google Scholar] [CrossRef]
- Kotnik, T. Drug efficacy of terbinafine hydrochloride (Lamisil) during oral treatment of cats, experimentally infected with Microsporum canis. J. Vet. Med. B Infect. Dis. Vet. Public Health 2002, 49, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.H.; Chen, C.; Han, H.S.; Kano, R. The first report of terbinafine resistance Microsporum canis from a cat. J. Vet. Med. Sci. 2018, 80, 898–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingfield Digby, S.S.; Hald, M.; Arendrup, M.C.; Hjort, S.V.; Kofoed, K. Darier Disease Complicated by Terbinafine-resistant Trichophyton rubrum. Acta. Derm. Venereol. 2017, 97, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Salehi, Z.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- CLSI/Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-Forming Filamentous Fungi; Approved Standard M38-A, M51; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2002. [Google Scholar]
- Alastruey-Izquierdo, A.; Melhem, M.S.; Bonfietti, L.X.; Rodriguez-Tudela, J.L. Susceptibility test for fungi: Clinical and laboratorial correlations in medical mycology. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Chatuverdi, V.; Espinel-Ingroff, A.; Pfaller, M.A.; Rinaldi, M.G.; Lee-Yang, W.; Warnock, D.W. Intra and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J. Clin. Microbiol. 2004, 42, 2977–2979. [Google Scholar]
- Chadeganipour, M.; Nilipour, S.; Havaei, A. In vitro evaluation of griseofulvin against clinical isolates of dermatophytes from Isfahan. Mycoses 2004, 47, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Zaman, M.; Gupta, A.K. Evaluation of microdilution and disk diffusion methods for antifungal susceptibility testing of dermatophytes. Med. Mycol. 2007, 45, 595–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, C.R.; Miranda, K.C.; de Fatima Lisboa Fernandes, O.; Soares, A.J.; do Rosário Rodrigues Silva, M. In vitro susceptibility testing of dermatophytes isolated in Goiania, Brazil, against five antifungal agents by broth microdilution method. Rev. Inst. Med. Trop. Sao Paulo 2009, 51, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoi, S.; Kano, R.; Hasegawa, A.; Kamata, H. In vitro activities of antifungal agents against clinical isolates of dermatophytes from animals. J. Vet. Med. Sci. 2012, 74, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Wraith, L.A.; Cai, B.; Nyirady, J.; Isham, N. Susceptibility of dermatophyte isolates obtained from a large worldwide terbinafine tinea capitis clinical trial. Br. J. Dermatol. 2008, 159, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Barchiesi, F.; Silvestri, C.; Arzeni, D.; Ganzetti, G.; Castelletti, S.; Simonetti, O.; Cirioni, O.; Kamysz, W.; Kamysz, E.; Spreghini, E.; et al. In vitro susceptibility of dermatophytes to conventional and alternative antifungal agents. Med. Mycol. 2009, 47, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyilasi, I.; Kocsube, S.; Krizsán, K.; Galgo, L.; Papp, T.; Pesti, M.; Nagy, K. Susceptibility of clinically important dermatophytes against statins and different statin antifungal combinations. Med. Mycol. 2014, 52, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Afshari, M.A.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran. Iran. J. Microbiol. 2016, 8, 36–46. [Google Scholar] [PubMed]
- Baghi, N.; Shokohi, T.; Badali, H.; Makimura, K.; Rezaei-Matehkolaei, A.; Abdollahi, M.; Didehdar, M.; Haghani, I.; Abastabar, M. In vitro activity of new azoles luliconazole and lanoconazole compared with ten other antifungal drugs against clinical dermatophyte isolates. Med. Mycol. 2016, 54, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.I.; Paula, C.R.; Viani, F.C.; Gambale, W. Susceptibility testing of Trichophyton rubrum and Microsporum canis to three azoles by E-test. J. Mycol. Med. 2001, 11, 42–43. [Google Scholar]
- Fernández-Torres, B.; Carrillo-Muñoz, A.; Ortoneda, M.; Pujol, I.; Pastor, F.J.; Guarro, J. Interlaboratory evaluation of the Etest for antifungal susceptibility testing of dermatophytes. Med. Mycol. 2003, 41, 125–130. [Google Scholar] [PubMed]
- Aktas, A.E.; Yigit, N.; Aktas, A.; Gozubuyuk, S.G. Investigation of in vitro activity of five antifungal drugs against dermatophytes species isolated from clinical samples using the E-test method. Eurasian J. Med. 2014, 46, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Muñoz, A.J.; Cárdenes, C.D.; Carrillo-Orive, B.; Rodríguez, V.; del Valle, O.; Casals, J.; Quindós, G. Antifungal activity of voriconazole against dermatophytes and Scopulariopsi brevicaulis determined by an agar diffusion method (NeoSensitabs®). Rev. Iberoam. Micol. 2005, 22, 108–111. [Google Scholar]
- Esteban, A.; Abarca, M.L.; Cabañes, F.J. Comparison of disk diffusion method and broth microdilution method for antifungal susceptibility testing of dermatophytes. Med. Mycol. 2005, 43, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nweze, E.I.; Mukherjee, P.K.; Ghannoum, M.A. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J. Clin. Microbiol. 2010, 48, 3750–3752. [Google Scholar] [CrossRef] [PubMed]
- Galuppi, R.; Gambarara, A.; Bonoli, C.; Ostanello, F.; Tampieri, M.P. Antimycotic effectiveness against dermatophytes: Comparison of two in vitro tests. Vet. Res. Commun. 2010, 34, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.F.M.; El-din, A.N.; El-hamd, M.A. Isolation, identification, and in vitro antifungal susceptibility testing of dermatophytes from clinical samples at Sohag University hospital in Egypt. Electron. Physician 2016, 8, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Arthington-Skaggs, B.; Chaturvedi, V.; Espinel-Ingroff, A.; Pfaller, M.A.; Rennie, R.; Rinaldi, M.G.; Walsh, T.J. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J. Clin. Microbiol. 2006, 44, 4353–4356. [Google Scholar] [CrossRef] [PubMed]
- Jessup, C.J.; Warner, J.; Isham, N.; Hasan, I.; Ghannoum, M.A. Antifungal susceptibility testing of dermatophytes: Estabilishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J. Clin. Microbiol. 2000, 38, 341–344. [Google Scholar] [PubMed]
- Santos, D.A.; Barros, M.E.S.; Hamdan, J.S. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J. Clin. Microbiol. 2006, 44, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Miyazi, M.; Nishimura, K. Relationship between the types of eruption and the parasitic forms of Trichophyton rubrum. Jpn. J. Med. Mycol. 1971, 12, 81–85. [Google Scholar] [CrossRef]
- Fernández-Torres, B.; Cabañes, F.J.; Carrillo-Munõz, A.J.; Esteban, A.; Inza, I.; Abarca, L.; Guarro, J. Collaborative evaluation of optimal antifungal susceptibility testing condition for dermatophytes. J. Clin. Microbiol. 2002, 40, 3999–4003. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Messer, S.A.; Mills, K.; Bolmström, A. In-vitro susceptibility testing of filamentous fungi: Comparison of E-test and reference microdilution methods for determining itraconazole MICS. J. Clin. Microbiol. 2000, 38, 3359–3361. [Google Scholar] [PubMed]
- Matar, M.J.; Ostrosky-Zeichner, L.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; Rex, J.H. Correlation between Etest, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob. Agents Chemother. 2003, 47, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Liebowitz, L.D.; Ashbee, H.R.; Evans, E.G.V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D.; Global Antifungal Surveillance Group. A two-year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn. Microbiol. Infect. Dis. 2001, 4, 27–33. [Google Scholar] [CrossRef]
- CLSI/Clinical and Laboratory Standards Institute. Method for Antifungal Disk Diffusion Susceptibility Testing Non Dermatophyte Filamentous Fungi; Approved Standard M51-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Fernandez-Torres, B.; Carrillo-Munoz, A.; Inza, I.; Guarro, J. Effect of culture medium on the disk diffusion method for determining anti-fungal susceptibilities of dermatophytes. Antimicrob. Agents Chemother. 2006, 50, 2222–2224. [Google Scholar] [CrossRef] [PubMed]
- Canton, E.; Espinel-Ingroff, A.; Peman, J. Trends in antifungal susceptibility testing using CLSI reference and commercial methods. Expert Rev. Anti. Infect. Ther. 2009, 7, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Torres, B.; Carrillo, A.J.; Martín, E.; Del Palacio, A.; Moore, M.K.; Valverde, A.; Serrano, M.; Guarro, J. In vitro activities of 10 antifungal drugs against 508 dermatophyte strains. Antimicrob. Agents Chemother. 2001, 45, 2524–2528. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M. Azole Resistance in Dermatophytes: Prevalence and Mechanism of Action. J. Am. Podiatr. Med. Assoc. 2016, 106, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.M.; Ferreria, R.A.; Leite Maffei, C.M.; Martinez-Rossi, N.M. In-vitro antifungal drug susceptibilities of dermatophytes microconidia and arthroconidia. J. Antimicrob. Chemother. 2008, 62, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Tilak, R.; Kaushal, S.; Mishra, R.; Pandey, S. Clinico-mycological study of dermatophytic infections and their sensitivity to antifungal drugs in a tertiary care center. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Cauwenbergh, G.; Degreef, H.; Heykants, J.; Woestenborghs, R.; van Rooy, P.; Haeverans, K. Pharmacokinetic profile of orally administered itraconazole in human skin. J. Am. Acad. Dermatol. 1988, 18, 263–268. [Google Scholar] [CrossRef]
- Piérard, G.E. Dermatomycoses due to dermatophytees. Rev. Med. Liege 2016, 71, 147–153. [Google Scholar] [PubMed]
- Hue, B.; Hay, R.; Brasch, J.; Veraldi, S.; Schaller, M. Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival. J. Mycol. Med. 2015, 25, e44–e58. [Google Scholar]
- Jones, H.E. Problems of resistant dermatophytes. J. Am. Acad. Dermatol. 1990, 23, 779–781. [Google Scholar] [CrossRef]
- GonçalvesKrakhecke, A.; Euripedes, A.; Ferreira, J.C.; Candido, R.C. In vitro susceptibility testing of Microsporum gypseum isolated from healthy cattle and soil against itraconazole, terbinafine, fluconazole, and topical veterinarian drugs. Mycopathologia 2005, 159, 377–380. [Google Scholar]
- Santos, D.A.; Hamdan, J.S. In vitro activities of four antifungal drugs against Trichophyton rubrum isolates exhibiting resistance to fluconazole. Mycoses 2007, 50, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Scholz, R.; Meinhof, W. Susceptibility of Trichophyton rubrum to griseofulvin. Mycoses 1991, 34, 411–414. [Google Scholar] [CrossRef] [PubMed]
References | Agent Tested | Protocol | Length of Treatment | Animals | RCT | Blinded | Outcome: Improvement in Clinical Signs and Mycology |
---|---|---|---|---|---|---|---|
[25] | Enilconazole + Griseofulvin (group 1) vs. Enilconazole + Luferunol (group 2) | 0.2% enilconazole weekly, topically; Griseofulvin 25 mg/kg/BID, PO; Lufenuron 60 mg/kg PO two administration one month apart. | 1 month | 100 cats (group 1 36 cats; group 2 64 cats) | No | No | Failure |
[26] | Griseofulvin vs. Miconazole/Chlorhexidin + Griseofulvin | Griseofulvin: 50 mg/kg/SID PO; 2% Miconazole/2% Chlorhexidine, topically | 2 ½ months | 14 cats (7 griseofulvin; 7 griseofulvin + Miconazole/Chlorhexidine | No | No | Complete 14/14 with both (lesion in the group receiving topical therapy decreased more quickly than in the group receiving systemic therapy alone) |
[27] | Griseofulvin + Miconazole/Chlorhexidine vs. Griseofulvin alone | Griseofulvin 50 mg/kg/SID, PO; 2% Miconazole/2% Chlorhexidine, topically | 3 months | 21 cats | No | No | Complete 21/21 (benefit from the addition of twice-weekly chlorhexidine-miconazole shampooing to systemic griseofulvin therapy alone) |
[28] | Griseofulvin vs. Itraconazole vs. Control | Griseofulvin: 50 mg/kg/SID, PO (group 1); Itraconazole: 10 mg/kg/SID, PO, (group 2); Control (group 3) | 3 months | 15 cats (5 group 1; 5 group 2; 5 group 3) | Yes | No | Complete 10/15 (itraconazole-treated group was the first to achieve a cure, followed by the griseofulvin-treated group) |
[29] | Terbinafine | 30 mg/kg/SID, PO | 14 days | 12 cats | No | No | Complete 11/12 |
[30] | Terbinafine | 8.25 mg/kg/SID, PO | 21 days | 9 cats | No | No | Complete 9/9 |
[31] | Terbinafine | 10–20 mg/kg/SID (group 1); 30–40 mg/kg/SID (group 2) PO | 4 months | 18 cats (9 group 1; 9 group 2) | No | No | Complete 18/18 |
M. canis Strains | Pre-Incubation (Days-°C)/Media | Type of Inoculum/Inoculum Size | Medium | % of Inhibition | MIC Range Value | Incubation (Days/°C) | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FLU | IT | KTZ | TER | GRI | POS | VOR | |||||||
5 | 4–5 days-30 °C/PDA | Hypha + conidia/0.5–4 × 104 | RPMI | 50 | 0.125 ≥ 64 | 0.001–0.125 | 0.001 ≥ 0.5 | 0.125–64 | 0.015–0.125 | 0.001–0.25 | 35 °C/4 days | [37] | |
11 | 4–7 days-30 °C/SDB | Hypha + conidia | SAB | 50 | nd | nd | nd | nd | <0.25–16 | nd | nd | 37 °C/14 days | [38] |
7 | 7–10 days/30 °C/PDA | Hypha + conidia/1–2 × 104 | RPMI | 50 | 0.5–2 | 0.03–1 | nd | 0.002–0.125 | 0.06–2 | 0.03–0.5 | nd | 30 °C/5 days | [39] |
19 | 7 days/28 °C/PDA | Hypha + conidia/1–2 × 104 | RPMI | 80 | 2–32 | 0.03–4 | 0.03–4 | 0.03–1 | 0.06–8 | nd | nd | 28 °C/5 days | [40] |
20 | 14 days/27 °C/PDA | Hypha + conidia/0.4–5 × 104 | RPMI | 80 | - | 0.06–4 | 0.125–16 | 0.03–16 | nd | nd | nd | 27 °C/3 days | [41] |
16 | 7–10 days/28 °C/ | Hypha + conidia | RPMI | 50 | 0.625–256 | 0.0009–0.5 | 0.0625–4 | 0.03–8 | 0.02–128 | nd | 0.02-8 | 28 °C/7 days | [14] |
94 | 7 days/30 °C/PDA | Conidia//0.5–4 × 104 | RPMI | nd | nd | nd | nd | 0.004–0.25 | nd | nd | nd | 35 °C/4 days | [42] |
9 | SDA | Conidia | RPMI | 80 | 0.06–128 | nd | nd | 64–256 | nd | nd | nd | 35 °C/7 days | [43] |
1 | 14 days/30 °C/PDA | Conidia//0.5–5 × 104 | RPMI | 100 | 0.01–64 | nd | nd | nd | nd | nd | -nd | 30 °C/4 days | [44] |
7 | 7 days/28 °C/SDA | Conidia/103–104 | RPMI | 50 | 0.03–64 | 0.03–16 | 0.03–16 | 0.03–16 | 0.03–16 | nd | nd | 28 °C/5 days | [45] |
2 | 7 days/30 °C/PDA | nr | RPMI | 90 | 2–4 | 0.125 | nd | nd | 2 | nd | nd | 35 °C/4–5 days | [46] |
M. canis Strains | Pre-Incubation (Days-°C)/Media | Type of Inoculum/Inoculum Size | Medium | MIC Range Value | Incubation (Days/°C) | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FLU | IT | KTZ | TBN | GRI | POS | VOR | ||||||
7 days/28 °C/PDA | Hypha + conidia/106 cells/mL | SDA | >256 | >32 | >32 | nd | nd | nd | nd | 25 °C/3–5 days | [47] | |
6 | 10–15days–28 °C/PDA | Hypha + conidia/105–106 cfu/mL | RPMI agar | >256 | 0.25–1 | 0.125–1 | nd | nd | nd | nd | 28 °C/3 days | [48] |
20 | 14 days–27 °C/PDA | Hypha + conidia/105–106 cfu/mL | RPMI agar | nd | 0.064–1 | 0.19–0.75 | nd | nd | nd | nd | 27 °C/4 days | [41] |
5 | 15 days–28 °C/PDA | Hypha + conidia/105–106 cfu/mL | RPMI agar | 2–8 | 1–32 | 32 | nd | nd | nd | nd | 28 °C/3–4 days | [49] |
M. canis Strains | Pre-Incubation Days/°C/Media | Type of Inoculum/Inoculum Size | Medium Agar | MIC range values (mm) | Incubation (Days/°C) | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FLU (µg/disk) | ITZ (µg/disk) | KTZ (µg/disk) | TER (µg/disk) | GRI (µg/disk) | POS (µg/disk) | VOR (µg/disk) | ||||||
34 | 7–14/28 °C/PDA | Hypha + conidia/104–106 cells/mL | PDA | <14–≥22 (25) | 0 ≥ 16 (10) | nd | nd | nd | nd | ≥14 (1) | 28 °C/2–7 | [50] |
10 | 14/28 °C/PDA | Hypha + conidia | SAB | nd | 22–48 | nd | 83–89 | nd | nd | nd | 28 °C/7 | [51] |
5 | 7–14/27 °C/PDA | Hypha + conidia/104 cells/mL | RPMI | nd | 20–26 (2) | 21–27 (0.005) | nd | nd | nd | 25–33 (0.005) | 28 °C/5 | [45] |
7 | 7–10/30 °C/PDA | Hypha + conidia/106 cells/mL | Dermasel | 0–0 (25) | 14–20 (10) | nd | 56–72 (1) | 40–50 (10) | 22–32 (5) | nd | 30 °C/4–7 | [42] |
8 | 4–15/30 °C/PDA | Hypha + conidia/106 cells/mL | MH | 0–0 (25) | 25–40 (8) | 15–40 (15) | 36–67 (1) | 35–68 (10) | nd | 45–68 (1) | 37 °C/14 | [52] |
19 | 14/30 °C/PDA | Hypha + conidia | RPMI | nd | 0–38 (10) | 0–62 (15) | nd | 0–82 (25) | nd | nd | 30 °C/14 | [53] |
7 | 7–10/28 °C/SDA | Conidia/×104 cells/mL | MH-glucose-Methylene blue | nd | 23.0 ± 0.25 (10) | 22.0 ± 0.25 (10) | 16.0 ± 0.12 (30) | 16.0 ± 0.2 (25) | nd | nd | 28 °C/7 | [45] |
58 | 28/25 °C/Dermasel | Hypha + conidia | MH | <14–≥22 (25) | nd | nd | nd | 0–>10 (10) | nd | nd | 25 °C/5–10 | [54] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aneke, C.I.; Otranto, D.; Cafarchia, C. Therapy and Antifungal Susceptibility Profile of Microsporum canis. J. Fungi 2018, 4, 107. https://doi.org/10.3390/jof4030107
Aneke CI, Otranto D, Cafarchia C. Therapy and Antifungal Susceptibility Profile of Microsporum canis. Journal of Fungi. 2018; 4(3):107. https://doi.org/10.3390/jof4030107
Chicago/Turabian StyleAneke, Chioma I., Domenico Otranto, and Claudia Cafarchia. 2018. "Therapy and Antifungal Susceptibility Profile of Microsporum canis" Journal of Fungi 4, no. 3: 107. https://doi.org/10.3390/jof4030107
APA StyleAneke, C. I., Otranto, D., & Cafarchia, C. (2018). Therapy and Antifungal Susceptibility Profile of Microsporum canis. Journal of Fungi, 4(3), 107. https://doi.org/10.3390/jof4030107