Biomarkers in Invasive Pulmonary Fungal Infections: Where Do We Stand?
Abstract
1. Introduction
2. Diagnostic Biomarkers in Invasive Pulmonary Aspergillosis
2.1. Clinical Context and Epidemiology
2.2. Galactomannan Detection
2.3. Aspergillus DNA Detection
| Sample | Se (%) | Sp (%) | Main Advantages | Main Disadvantages |
|---|---|---|---|---|
| Blood | 57–84 [66] | 58–95 [66] | Detects Aspergillus DNA earlier than GM;Plasma may offer higher Se and earlier detection than serum [68,69]; Useful in high-risk neutropenic patients non receiving AMP [11] | Sensitivity reduced in non-neutropenic patients [67]; Sensitivity possibly decreased under AMP [11]; Positive results may persist after clinical resolution; Lower specificity in patients receiving AMP [57,70] |
| BAL | 57–91 [66] | 92–97 [66] | Similar performance in neutropenic and non-neutropenic patients; Maintains Se under AMP [57,67]; Comparable to BAL GM [72] | Invasive sampling procedure; Possible reduction in specificity due to airway colonization; Requires careful clinical and radiological correlation [11] |
3. Diagnostic Biomarkers in Invasive Pulmonary Mucormycosis
3.1. Clinical Context and Epidemiology
3.2. Mucorales DNA Detection
4. Diagnostic Biomarkers in Pneumocystis jirovecii Pneumonia
4.1. Clinical Context and Epidemiology
4.2. Pneumocystis DNA Detection
4.3. Blood β-D-Glucan Detection
5. Other Invasive Pulmonary Fungal Infections
6. New Diagnostic Approaches for Invasive Pulmonary Fungal Infections
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EORTC/MSGERC | European Organization for Research and Treatment of Cancer/Mycoses Study Group Education and Research Consortium |
| IPFI | Invasive pulmonary fungal infection |
| ICU | Intensive care unit |
| IPA | Invasive pulmonary aspergillosis |
| SARI | Severe acute respiratory infections |
| IAPA | Invasive-associated pulmonary aspergillosis |
| CAPA | COVID-19-associated pulmonary aspergillosis |
| GM | Galactomannan |
| BAL | bronchoalveolar lavage |
| IS | Induced sputum |
| URT | Upper respiratory tract |
| CSF | cerebrospinal fluid |
| PEB | paraffin-embedded samples |
| CNS | central nervous system |
| EIA | Enzyme immunoassay |
| CLIA | chemiluminescent immunoassays |
| ODI | optical density index |
| LFA/LFD | lateral flow assay/device |
| TAT | turnaround time |
| POC | point-of-care |
| PCR | Polymerase chain reaction |
| AMP | anti-mold prophylaxis |
| DM | diabetes mellitus |
| ROCM | rhino-orbito-cerebral mucormycosis |
| IPM | invasive pulmonary mucormycosis |
| PJP | Pneumocystis jirovecii pneumonia |
| BDG | β-D-glucan detection |
| qPCR | Quantitative PCR |
References
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Heylen, J.; Vanbiervliet, Y.; Maertens, J.; Rijnders, B.; Wauters, J. Acute Invasive Pulmonary Aspergillosis: Clinical Presentation and Treatment. Semin. Respir. Crit. Care Med. 2024, 45, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Feys, S.; Carvalho, A.; Clancy, C.J.; Gangneux, J.P.; Hoenigl, M.; Lagrou, K.; Rijnders, B.J.A.; Seldeslachts, L.; Vanderbeke, L.; van de Veerdonk, F.L.; et al. Influenza-associated and COVID-19-associated pulmonary aspergillosis in critically ill patients. Lancet Respir. Med. 2024, 12, 728–742. [Google Scholar] [CrossRef]
- Pasquier, G. COVID-19-associated mucormycosis in India: Why such an outbreak? J. Mycol. Med. 2023, 33, 101393. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kumar, P.; Rauf, A.; Chaudhary, A.; Prajapati, P.K.; Emran, T.B.; Goncalves Lima, C.M.; Conte-Junior, C.A. Mucormycosis in the COVID-19 Environment: A Multifaceted Complication. Front. Cell. Infect. Microbiol. 2022, 12, 937481. [Google Scholar] [CrossRef]
- Lecuyer, R.; Issa, N.; Camou, F.; Lavergne, R.A.; Gabriel, F.; Morio, F.; Canet, E.; Raffi, F.; Boutoille, D.; Cady, A.; et al. Characteristics and Prognosis Factors of Pneumocystis jirovecii Pneumonia According to Underlying Disease: A Retrospective Multicenter Study. Chest 2024, 165, 1319–1329. [Google Scholar] [CrossRef]
- Giannella, M.; Lanternier, F.; Dellière, S.; Groll, A.H.; Mueller, N.J.; Alastruey-Izquierdo, A.; Slavin, M.A. Invasive fungal disease in the immunocompromised host: Changing epidemiology, new antifungal therapies, and management challenges. Clin. Microbiol. Infect. 2025, 31, 29–36. [Google Scholar] [CrossRef]
- Lass-Florl, C. How to make a fast diagnosis in invasive aspergillosis. Med. Mycol. 2019, 57, S155–S160. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Samardzic, E.; Knoll, M. Serology anno 2021—Fungal infections: From invasive to chronic. Clin. Microbiol. Infect. 2021, 27, 1230–1241. [Google Scholar] [CrossRef]
- Jaramillo Cartagena, A.; Asowata, O.E.; Ng, D.; Babady, N.E. An overview of the laboratory diagnosis of Pneumocystis jirovecii pneumonia. J. Clin. Microbiol. 2025, 63, e0036124. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Jenks, J.D.; Hoenigl, M.; Prattes, J. Blood Aspergillus PCR: The Good, the Bad, and the Ugly. J. Fungi 2020, 6, 18. [Google Scholar] [CrossRef]
- Dannaoui, E. Recent Developments in the Diagnosis of Mucormycosis. J. Fungi 2022, 8, 457. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef]
- Nucci, M.; Nouer, S.A.; Cappone, D.; Anaissie, E. Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: An opportunity to improve the outcome. Haematologica 2013, 98, 1657–1660. [Google Scholar] [CrossRef]
- Feys, S.; Almyroudi, M.P.; Braspenning, R.; Lagrou, K.; Spriet, I.; Dimopoulos, G.; Wauters, J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J. Fungi 2021, 7, 1067. [Google Scholar] [CrossRef]
- Verweij, P.E.; Rijnders, B.J.A.; Bruggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Latge, J.P.; Kobayashi, H.; Debeaupuis, J.P.; Diaquin, M.; Sarfati, J.; Wieruszeski, J.M.; Parra, E.; Bouchara, J.P.; Fournet, B. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect. Immun. 1994, 62, 5424–5433. [Google Scholar] [CrossRef] [PubMed]
- Mennink-Kersten, M.A.; Donnelly, J.P.; Verweij, P.E. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect. Dis. 2004, 4, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Stynen, D.; Goris, A.; Sarfati, J.; Latge, J.P. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis. J. Clin. Microbiol. 1995, 33, 497–500. [Google Scholar] [CrossRef]
- Chong, G.M.; Maertens, J.A.; Lagrou, K.; Driessen, G.J.; Cornelissen, J.J.; Rijnders, B.J. Diagnostic Performance of Galactomannan Antigen Testing in Cerebrospinal Fluid. J. Clin. Microbiol. 2016, 54, 428–431. [Google Scholar] [CrossRef]
- Viscoli, C.; Machetti, M.; Gazzola, P.; De Maria, A.; Paola, D.; Van Lint, M.T.; Gualandi, F.; Truini, M.; Bacigalupo, A. Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebral aspergillosis. J. Clin. Microbiol. 2002, 40, 1496–1499. [Google Scholar] [CrossRef]
- Komorowski, A.S.; Hall, C.W.; Atwal, S.; Johnstone, R.; Walker, R., 3rd; Mertz, D.; Piessens, E.A.; Yamamura, D.; Kasper, E.M. Cerebrospinal fluid galactomannan detection for the diagnosis of central nervous system aspergillosis: A diagnostic test accuracy systematic review and meta-analysis. Clin. Microbiol. Infect. 2024, 30, 1244–1253. [Google Scholar] [CrossRef]
- Albert, E.; Alcaraz, M.J.; Gimenez, E.; Clari, M.A.; Torres, I.; Colomina, J.; Olea, B.; Tormo, M.; Pinana, J.L.; Oltra, R.; et al. Comparative performance of the Platelia Aspergillus Antigen and Aspergillus Galactomannan antigen Virclia Monotest immunoassays in serum and lower respiratory tract specimens: A “real-life” experience. Microbiol. Spectr. 2024, 12, e0391023. [Google Scholar] [CrossRef]
- Calero, A.L.; Alonso, R.; Gadea, I.; Vega, M.D.M.; Garcia, M.M.; Munoz, P.; Machado, M.; Bouza, E.; Garcia-Rodriguez, J. Comparison of the Performance of Two Galactomannan Detection Tests: Platelia Aspergillus Ag and Aspergillus Galactomannan Ag Virclia Monotest. Microbiol. Spectr. 2022, 10, e0262621. [Google Scholar] [CrossRef]
- Montesinos, I.; Albichr, I.S.; Collinge, E.; Delaere, B.; Huang, T.D.; Bogaerts, P.; Deckers, C.; Hamouda, M.; Honore, P.M.; Bulpa, P.; et al. Diagnostic Value of Serum Biomarkers for Invasive Aspergillosis in Haematologic Patients. J. Fungi 2024, 10, 661. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Sahin, E.A.; Tunccan, O.G.; Yildiz, S.; Ozkurt, Z.N.; Yegin, Z.A.; Kalkanci, A. Comparative Analysis of Chemiluminescence Immunoassay (CLIA)-Based Tests in the Diagnosis of Invasive Aspergillosis in Patients With Hematologic Malignancies. Mycoses 2025, 68, e70064. [Google Scholar] [CrossRef] [PubMed]
- Lo Cascio, G.; Lepera, V.; Sorrentino, A.; Caleca, D.; Gigante, P.; Tocci, G.; Bazaj, A.; Mancini, A.; Bolzoni, M.; Cattadori, E.; et al. Evaluation of a New Automated Mono-Test for the Detection of Aspergillus Galactomannan: Comparison of Aspergillus Galactomannan Ag VirCLIA((R)) Mono-Test with Platelia(TM)Aspergillus Ag ELISA Assay. J. Fungi 2024, 10, 793. [Google Scholar] [CrossRef]
- Alhan, O.; Saba, R.; Akalin, E.H.; Ener, B.; Ture Yuce, Z.; Deveci, B.; Guncu, M.M.; Kahveci, H.N.; Yilmaz, A.F.; Odabasi, Z. Diagnostic Efficacy of Aspergillus Galactomannan Lateral Flow Assay in Patients with Hematological Malignancies: A Prospective Multicenter Study. Mycopathologia 2023, 188, 643–653. [Google Scholar] [CrossRef]
- Guo, J.; Xiao, C.; Tian, W.; Lv, L.; Hu, L.; Ni, L.; Wang, D.; Li, W.; Qiao, D.; Wu, W. Performance of the Aspergillus galactomannan lateral flow assay with a digital reader for the diagnosis of invasive aspergillosis: A multicenter study. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 249–257. [Google Scholar] [CrossRef]
- Kupper, C.; Erb, T.M.; Trager, J.; Meintker, L.; Valenza, G.; Bogdan, C.; Held, J. The Aspergillus galactomannan Ag VIRCLIA(R) Monotest and the sona Aspergillus galactomannan lateral flow assay show comparable performance for the diagnosis of invasive aspergillosis. Mycoses 2024, 67, e13782. [Google Scholar] [CrossRef]
- Jenks, J.D.; Miceli, M.H.; Prattes, J.; Mercier, T.; Hoenigl, M. The Aspergillus Lateral Flow Assay for the Diagnosis of Invasive Aspergillosis: An Update. Curr. Fungal Infect. Rep. 2020, 14, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.F.; Sanchez-Ortega, I.; Cuesta, I.; Arnan, M.; Patino, B.; Fernandez de Sevilla, A.; Gudiol, C.; Ayats, J.; Cuenca-Estrella, M. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin. Infect. Dis. 2014, 59, 1696–1702. [Google Scholar] [CrossRef]
- Cordonnier, C.; Botterel, F.; Ben Amor, R.; Pautas, C.; Maury, S.; Kuentz, M.; Hicheri, Y.; Bastuji-Garin, S.; Bretagne, S. Correlation between galactomannan antigen levels in serum and neutrophil counts in haematological patients with invasive aspergillosis. Clin. Microbiol. Infect. 2009, 15, 81–86. [Google Scholar] [CrossRef]
- Hope, W.W.; Kruhlak, M.J.; Lyman, C.A.; Petraitiene, R.; Petraitis, V.; Francesconi, A.; Kasai, M.; Mickiene, D.; Sein, T.; Peter, J.; et al. Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis: Implications for antifungal therapy. J. Infect. Dis. 2007, 195, 455–466. [Google Scholar] [CrossRef]
- Leeflang, M.M.; Debets-Ossenkopp, Y.J.; Wang, J.; Visser, C.E.; Scholten, R.J.; Hooft, L.; Bijlmer, H.A.; Reitsma, J.B.; Zhang, M.; Bossuyt, P.M.; et al. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst. Rev. 2015, 2015, CD007394. [Google Scholar] [CrossRef]
- Bukkems, L.M.P.; van Dommelen, L.; Regis, M.; van den Heuvel, E.; Nieuwenhuizen, L. The Use of Galactomannan Antigen Assays for the Diagnosis of Invasive Pulmonary Aspergillosis in the Hematological Patient: A Systematic Review and Meta-Analysis. J. Fungi 2023, 9, 674. [Google Scholar] [CrossRef]
- Lamberink, H.; Huygens, S.; Aerts, R.; Lagrou, K.; van Dijk, K.; Langerak, D.; Moors, I.; Boelens, J.; Reynders, M.; Maertens, J.; et al. Multicenter validation of a galactomannan chemiluminescence immunoassay for the diagnosis of pulmonary aspergillosis on serum of patients with hematological disease. J. Clin. Microbiol. 2025, 63, e0105324. [Google Scholar] [CrossRef]
- Cummings, J.R.; Jamison, G.R.; Boudreaux, J.W.; Howles, M.J.; Walsh, T.J.; Hayden, R.T. Cross-reactivity of non-Aspergillus fungal species in the Aspergillus galactomannan enzyme immunoassay. Diagn. Microbiol. Infect. Dis. 2007, 59, 113–115. [Google Scholar] [CrossRef]
- Ghorra, N.; Goushchi, A.; Konopnicki, D.; Libois, A.; Lagrou, K.; Wind, A.; Montesinos, I.; Hallin, M.; Deyi, V.Y.M. Disseminated histoplasmosis diagnosed by cross-reactivity with the Aspergillus galactomannan antigen in an HIV-positive patient. J. Mycol. Med. 2022, 32, 101244. [Google Scholar] [CrossRef]
- Tortorano, A.M.; Esposto, M.C.; Prigitano, A.; Grancini, A.; Ossi, C.; Cavanna, C.; Cascio, G.L. Cross-reactivity of Fusarium spp. in the Aspergillus Galactomannan enzyme-linked immunosorbent assay. J. Clin. Microbiol. 2012, 50, 1051–1053. [Google Scholar] [CrossRef]
- Fekkar, A.; Brun, S.; D’Ussel, M.; Uzunov, M.; Cracco, C.; Dhedin, N.; Buffet, P.; Mazier, D.; Datry, A. Serum cross-reactivity with Aspergillus galactomannan and cryptococcal antigen during fatal disseminated Trichosporon dermatis infection. Clin. Infect. Dis. 2009, 49, 1457–1458. [Google Scholar] [CrossRef]
- Hesse, S.E.; Luethy, P.M.; Beigel, J.H.; Zelazny, A.M. Penicillium citrinum: Opportunistic pathogen or idle bystander? A case analysis with demonstration of galactomannan cross-reactivity. Med. Mycol. Case Rep. 2017, 17, 8–10. [Google Scholar] [CrossRef]
- Giacchino, M.; Chiapello, N.; Bezzio, S.; Fagioli, F.; Saracco, P.; Alfarano, A.; Martini, V.; Cimino, G.; Martino, P.; Girmenia, C. Aspergillus galactomannan enzyme-linked immunosorbent assay cross-reactivity caused by invasive Geotrichum capitatum. J. Clin. Microbiol. 2006, 44, 3432–3434. [Google Scholar] [CrossRef]
- Van Der Veer, J.; Lewis, R.J.; Emtiazjoo, A.M.; Allen, S.D.; Wheat, L.J.; Hage, C.A. Cross-reactivity in the Platelia Aspergillus enzyme immunoassay caused by blastomycosis. Med. Mycol. 2012, 50, 396–398. [Google Scholar] [CrossRef]
- Bart-Delabesse, E.; Basile, M.; Al Jijakli, A.; Souville, D.; Gay, F.; Philippe, B.; Bossi, P.; Danis, M.; Vernant, J.P.; Datry, A. Detection of Aspergillus galactomannan antigenemia to determine biological and clinical implications of beta-lactam treatments. J. Clin. Microbiol. 2005, 43, 5214–5220. [Google Scholar] [CrossRef] [PubMed]
- Sulahian, A.; Touratier, S.; Ribaud, P. False positive test for Aspergillus antigenemia related to concomitant administration of piperacillin and tazobactam. N. Engl. J. Med. 2003, 349, 2366–2367. [Google Scholar] [CrossRef]
- Metan, G. The interaction between piperacillin-tazobactam and Aspergillus galactomannan antigenemia assay: Is the story over? Infection 2013, 41, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, L.; Liu, Y.; Zhou, H.; Chen, J.; She, M.; Wang, Y. Diagnostic value of bronchoalveolar lavage fluid galactomannan assay for invasive pulmonary aspergillosis in adults: A meta-analysis. J. Clin. Pharm. Ther. 2022, 47, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Schub, T.; Klugherz, I.; Wagener, J.; Prattes, J.; Hoenigl, M.; Suerbaum, S.; Held, J.; Dichtl, K. Serum antigen tests for the diagnosis of invasive aspergillosis: A retrospective comparison of five Aspergillus antigen assays and one beta-D-glucan assay. J. Clin. Microbiol. 2024, 62, e0095024. [Google Scholar] [CrossRef]
- Buil, J.B.; Huygens, S.; Dunbar, A.; Schauwvlieghe, A.; Reynders, M.; Langerak, D.; van Dijk, K.; Bruns, A.; Haas, P.J.; Postma, D.F.; et al. Retrospective Multicenter Evaluation of the VirClia Galactomannan Antigen Assay for the Diagnosis of Pulmonary Aspergillosis with Bronchoalveolar Lavage Fluid Samples from Patients with Hematological Disease. J. Clin. Microbiol. 2023, 61, e0004423. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, X.; Zhang, Y.; Li, X.; Yang, K.; Wang, Y.; Guo, K. Diagnostic accuracy of galactomannan and lateral flow assay in invasive aspergillosis: A diagnostic meta-analysis. Heliyon 2024, 10, e34569. [Google Scholar] [CrossRef]
- Mercier, T.; Guldentops, E.; Lagrou, K.; Maertens, J. Galactomannan, a Surrogate Marker for Outcome in Invasive Aspergillosis: Finally Coming of Age. Front. Microbiol. 2018, 9, 661. [Google Scholar] [CrossRef]
- Mercier, T.; Wera, J.; Chai, L.Y.A.; Lagrou, K.; Maertens, J. A Mortality Prediction Rule for Hematology Patients with Invasive Aspergillosis Based on Serum Galactomannan Kinetics. J. Clin. Med. 2020, 9, 610. [Google Scholar] [CrossRef]
- Chai, L.Y.; Kullberg, B.J.; Johnson, E.M.; Teerenstra, S.; Khin, L.W.; Vonk, A.G.; Maertens, J.; Lortholary, O.; Donnelly, P.J.; Schlamm, H.T.; et al. Early serum galactomannan trend as a predictor of outcome of invasive aspergillosis. J. Clin. Microbiol. 2012, 50, 2330–2336. [Google Scholar] [CrossRef]
- Wehbe, S.; Chaftari, A.M.; Hachem, R.; Dagher, H.; Haddad, A.; Philip, A.; Jiang, Y.; Zakhour, R.; Bakht, P.; Shrestha, J.; et al. Prognostic Value of Serum and Bronchoalveolar Lavage Fluid Galactomannan Levels in Invasive Aspergillosis: An 8-Year Experience at a Tertiary Cancer Center. J. Fungi 2025, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Friedman, M.M.; Dupont, B. Receptor-mediated clearance of Aspergillus galactomannan. J. Infect. Dis. 1987, 155, 1005–1010. [Google Scholar] [CrossRef]
- White, P.L.; Bretagne, S.; Caliendo, A.M.; Loeffler, J.; Patterson, T.F.; Slavin, M.; Wingard, J.R. Aspergillus Polymerase Chain Reaction-An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin. Infect. Dis. 2021, 72, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, M.; Mengoli, C.; Barnes, R.; Donnelly, J.P.; Loeffler, J.; Jones, B.L.; Klingspor, L.; Maertens, J.; Morton, C.O.; White, L.P. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst. Rev. 2019, 9, CD009551. [Google Scholar] [CrossRef]
- Siopi, M.; Karakatsanis, S.; Roumpakis, C.; Korantanis, K.; Eldeik, E.; Sambatakou, H.; Sipsas, N.V.; Tsirigotis, P.; Pagoni, M.; Meletiadis, J. Performance, Correlation and Kinetic Profile of Circulating Serum Fungal Biomarkers of Invasive Aspergillosis in High-Risk Patients with Hematologic Malignancies. J. Fungi 2021, 7, 211. [Google Scholar] [CrossRef]
- Siopi, M.; Karakatsanis, S.; Roumpakis, C.; Korantanis, K.; Sambatakou, H.; Sipsas, N.V.; Tsirigotis, P.; Pagoni, M.; Meletiadis, J. A Prospective Multicenter Cohort Surveillance Study of Invasive Aspergillosis in Patients with Hematologic Malignancies in Greece: Impact of the Revised EORTC/MSGERC 2020 Criteria. J. Fungi 2021, 7, 27. [Google Scholar] [CrossRef]
- Lamberink, H.; Wagemakers, A.; Sigaloff, K.C.E.; van Houdt, R.; de Jonge, N.A.; van Dijk, K. The impact of the updated EORTC/MSG criteria on the classification of hematological patients with suspected invasive pulmonary aspergillosis. Clin. Microbiol. Infect. 2022, 28, 1120–1125. [Google Scholar] [CrossRef]
- Montesinos, I.; Argudin, M.A.; Hites, M.; Ahajjam, F.; Dodemont, M.; Dagyaran, C.; Bakkali, M.; Etienne, I.; Jacobs, F.; Knoop, C.; et al. Culture-Based Methods and Molecular Tools for Azole-Resistant Aspergillus fumigatus Detection in a Belgian University Hospital. J. Clin. Microbiol. 2017, 55, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Huygens, S.; Dunbar, A.; Buil, J.B.; Klaassen, C.H.W.; Verweij, P.E.; van Dijk, K.; de Jonge, N.; Janssen, J.; van der Velden, W.; Biemond, B.J.; et al. Clinical Impact of Polymerase Chain Reaction-Based Aspergillus and Azole Resistance Detection in Invasive Aspergillosis: A Prospective Multicenter Study. Clin. Infect. Dis. 2023, 77, 38–45. [Google Scholar] [CrossRef]
- Scharmann, U.; Kirchhoff, L.; Hain, A.; Buer, J.; Koldehoff, M.; Steinmann, J.; Rath, P.M. Evaluation of Three Commercial PCR Assays for the Detection of Azole-Resistant Aspergillus fumigatus from Respiratory Samples of Immunocompromised Patients. J. Fungi 2021, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Imbert, S.; Portejoie, L.; Pfister, E.; Tauzin, B.; Revers, M.; Uthurriague, J.; Hernandez-Grande, M.; Lafon, M.E.; Jubert, C.; Issa, N.; et al. A Multiplex PCR and DNA-Sequencing Workflow on Serum for the Diagnosis and Species Identification for Invasive Aspergillosis and Mucormycosis. J. Clin. Microbiol. 2023, 61, e0140922. [Google Scholar] [CrossRef]
- Cruciani, M.; White, P.L.; Barnes, R.A.; Loeffler, J.; Donnelly, J.P.; Rogers, T.R.; Heinz, W.J.; Warris, A.; Morton, C.O.; Lengerova, M.; et al. An Overview of Systematic Reviews of Polymerase Chain Reaction (PCR) for the Diagnosis of Invasive Aspergillosis in Immunocompromised People: A Report of the Fungal PCR Initiative (FPCRI)—An ISHAM Working Group. J. Fungi 2023, 9, 967. [Google Scholar] [CrossRef]
- Boch, T.; Spiess, B.; Heinz, W.; Cornely, O.A.; Schwerdtfeger, R.; Hahn, J.; Krause, S.W.; Duerken, M.; Bertz, H.; Reuter, S.; et al. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses 2019, 62, 1035–1042. [Google Scholar] [CrossRef]
- White, P.L.; Barnes, R.A.; Springer, J.; Klingspor, L.; Cuenca-Estrella, M.; Morton, C.O.; Lagrou, K.; Bretagne, S.; Melchers, W.J.; Mengoli, C.; et al. Clinical Performance of Aspergillus PCR for Testing Serum and Plasma: A Study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015, 53, 2832–2837. [Google Scholar] [CrossRef]
- Mah, J.; Nicholas, V.; Tayyar, R.; Moreno, A.; Murugesan, K.; Budvytiene, I.; Banaei, N. Superior Accuracy of Aspergillus Plasma Cell-Free DNA Polymerase Chain Reaction Over Serum Galactomannan for the Diagnosis of Invasive Aspergillosis. Clin. Infect. Dis. 2023, 77, 1282–1290. [Google Scholar] [CrossRef]
- Cruciani, M.; White, P.L.; Mengoli, C.; Loffler, J.; Morton, C.O.; Klingspor, L.; Buchheidt, D.; Maertens, J.; Heinz, W.J.; Rogers, T.R.; et al. The impact of anti-mould prophylaxis on Aspergillus PCR blood testing for the diagnosis of invasive aspergillosis. J. Antimicrob. Chemother. 2021, 76, 635–638. [Google Scholar] [CrossRef]
- Avni, T.; Levy, I.; Sprecher, H.; Yahav, D.; Leibovici, L.; Paul, M. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: A systematic review. J. Clin. Microbiol. 2012, 50, 3652–3658. [Google Scholar] [CrossRef]
- White, P.L.; Wingard, J.R.; Bretagne, S.; Loffler, J.; Patterson, T.F.; Slavin, M.A.; Barnes, R.A.; Pappas, P.G.; Donnelly, J.P. Aspergillus Polymerase Chain Reaction: Systematic Review of Evidence for Clinical Use in Comparison With Antigen Testing. Clin. Infect. Dis. 2015, 61, 1293–1303. [Google Scholar] [CrossRef]
- White, P.L.; Donnelly, J.P. Polymerase Chain Reaction of Plasma and Bronchoalveolar Lavage Fluid for Diagnosing Invasive Aspergillosis. Clin. Infect. Dis. 2023, 77, 1291–1293. [Google Scholar] [CrossRef]
- Didehdar, M.; Chegini, Z.; Moradabadi, A.; Anoushirvani, A.A.; Tabaeian, S.P.; Yousefimashouf, M.; Shariati, A. Gastrointestinal mucormycosis: A periodic systematic review of case reports from 2015 to 2021. Microb. Pathog. 2022, 163, 105388. [Google Scholar] [CrossRef]
- Jeong, W.; Keighley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.A.; Kong, D.C.M.; Chen, S.C. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019, 25, 26–34. [Google Scholar] [CrossRef]
- Danion, F.; Coste, A.; Le Hyaric, C.; Melenotte, C.; Lamoth, F.; Calandra, T.; Garcia-Hermoso, D.; Aimanianda, V.; Lanternier, F.; Lortholary, O. What Is New in Pulmonary Mucormycosis? J. Fungi 2023, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Gulli, S.P.; Hallur, V.; Kale, P.; Menezes, G.A.; Russo, A.; Singla, N. From Spores to Solutions: A Comprehensive Narrative Review on Mucormycosis. Diagnostics 2024, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Gouzien, L.; Che, D.; Cassaing, S.; Lortholary, O.; Letscher-Bru, V.; Paccoud, O.; Obadia, T.; Morio, F.; Moniot, M.; Cateau, E.; et al. Epidemiology and prognostic factors of mucormycosis in France (2012–2022): A cross-sectional study nested in a prospective surveillance programme. Lancet Reg. Health Eur. 2024, 45, 101010. [Google Scholar] [CrossRef] [PubMed]
- Samaddar, A.; Shrimali, T.; Sharma, A. Mucormycosis caused by Apophysomyces species: An experience from a tertiary care hospital in Western India and systematic review of global cases. Mycoses 2023, 66, 181–195. [Google Scholar] [CrossRef]
- Prakash, H.; Chakrabarti, A. Global Epidemiology of Mucormycosis. J. Fungi 2019, 5, 26. [Google Scholar] [CrossRef]
- Borman, A.M.; Fraser, M.; Patterson, Z.; Palmer, M.D.; Johnson, E.M. In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. J. Fungi 2021, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Safiia, J.; Diaz, M.A.; Alshaker, H.; Atallah, C.J.; Sakr, P.; Moshovitis, D.G.; Nawlo, A.; Franceschi, A.E.; Liakos, A.; Koo, S. Recent Advances in Diagnostic Approaches for Mucormycosis. J. Fungi 2024, 10, 727. [Google Scholar] [CrossRef]
- Skiada, A.; Lass-Floerl, C.; Klimko, N.; Ibrahim, A.; Roilides, E.; Petrikkos, G. Challenges in the diagnosis and treatment of mucormycosis. Med. Mycol. 2018, 56, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Tschiderer, L.; Alanio, A.; Barnes, R.A.; Chen, S.C.; Cogliati, M.; Cruciani, M.; Donnelly, J.P.; Hagen, F.; Halliday, C.; et al. The diagnosis of mucormycosis by PCR in patients at risk: A systematic review and meta-analysis. EClinicalMedicine 2025, 81, 103115. [Google Scholar] [CrossRef] [PubMed]
- Millon, L.; Scherer, E.; Rocchi, S.; Bellanger, A.P. Molecular Strategies to Diagnose Mucormycosis. J. Fungi 2019, 5, 24. [Google Scholar] [CrossRef]
- Brousse, X.; Imbert, S.; Issa, N.; Forcade, E.; Faure, M.; Chambord, J.; Ramaroson, H.; Kaminski, H.; Dumas, P.Y.; Blanchard, E. Performance of Mucorales spp. qPCR in bronchoalveolar lavage fluid for the diagnosis of pulmonary mucormycosis. Med. Mycol. 2024, 62, myae006. [Google Scholar] [CrossRef]
- Millon, L.; Herbrecht, R.; Grenouillet, F.; Morio, F.; Alanio, A.; Letscher-Bru, V.; Cassaing, S.; Chouaki, T.; Kauffmann-Lacroix, C.; Poirier, P.; et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: Retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin. Microbiol. Infect. 2016, 22, 810.E1–E8. [Google Scholar] [CrossRef]
- Millon, L.; Caillot, D.; Berceanu, A.; Bretagne, S.; Lanternier, F.; Morio, F.; Letscher-Bru, V.; Dalle, F.; Denis, B.; Alanio, A.; et al. Evaluation of Serum Mucorales Polymerase Chain Reaction (PCR) for the Diagnosis of Mucormycoses: The MODIMUCOR Prospective Trial. Clin. Infect. Dis. 2022, 75, 777–785. [Google Scholar] [CrossRef]
- Bellanger, A.P.; Gbaguidi-Haore, H.; Berceanu, A.; Gouzien, L.; El Machhour, C.; Bichard, D.; Lanternier, F.; Scherer, E.; Millon, L.; French Mycoses Study Group. Use of the Mucorales qPCR on blood to screen high-risk hematology patients is associated with better survival. Med. Mycol. 2024, 62, myae030. [Google Scholar] [CrossRef]
- Rocchi, S.; Scherer, E.; White, P.L.; Guitton, A.; Alanio, A.; Botterel, F.; Bougnoux, M.E.; Buitrago, M.J.; Cogliati, M.; Cornu, M.; et al. Interlaboratory assays from the fungal PCR Initiative and the Modimucor Study Group to improve qPCR detection of Mucorales DNA in serum: One more step toward standardization. J. Clin. Microbiol. 2025, 63, e0152524. [Google Scholar] [CrossRef] [PubMed]
- Mercier, T.; Reynders, M.; Beuselinck, K.; Guldentops, E.; Maertens, J.; Lagrou, K. Serial Detection of Circulating Mucorales DNA in Invasive Mucormycosis: A Retrospective Multicenter Evaluation. J. Fungi 2019, 5, 113. [Google Scholar] [CrossRef]
- Rafanomezantsoa, L.C.; Sabourin, E.; Guennouni Sebbouh, N.; Sitterle, E.; Ben Halima, N.; Raveloarisaona, Y.S.; Quesne, G.; Dannaoui, E.; Bougnoux, M.E. Agreement between two real-time commercial PCR kits and an in-house real-time PCR for diagnosis of mucormycosis. Microbiol. Spectr. 2024, 12, e0358523. [Google Scholar] [CrossRef]
- Kamel, T.; Boulain, T. Pneumocystis pneumonia in French intensive care units in 2013–2019: Mortality and immunocompromised conditions. Ann. Intensive Care 2024, 14, 80. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Dettori, S.; Di Pilato, V.; Asperges, E.; Ball, L.; Berti, E.; Blennow, O.; Bruzzone, B.; Calvet, L.; Capra Marzani, F.; et al. Mortality of Pneumocystis jirovecii pneumonia in intensive care units: A post-hoc analysis of an international multicenter study by ESGCIP and EFISG. Ann. Med. 2025, 57, 2511043. [Google Scholar] [CrossRef]
- Kamel, T.; Janssen-Langenstein, R.; Quelven, Q.; Chelly, J.; Valette, X.; Le, M.P.; Bourenne, J.; Garot, D.; Fillatre, P.; Labruyere, M.; et al. Pneumocystis pneumonia in intensive care: Clinical spectrum, prophylaxis patterns, antibiotic treatment delay impact, and role of corticosteroids. A French multicentre prospective cohort study. Intensive Care Med. 2024, 50, 1228–1239. [Google Scholar] [CrossRef]
- Hansel, L.; Schumacher, J.; Denis, B.; Hamane, S.; Cornely, O.A.; Koehler, P. How to diagnose and treat a patient without human immunodeficiency virus infection having Pneumocystis jirovecii pneumonia? Clin. Microbiol. Infect. 2023, 29, 1015–1023. [Google Scholar] [CrossRef]
- Bateman, M.; Oladele, R.; Kolls, J.K. Diagnosing Pneumocystis jirovecii pneumonia: A review of current methods and novel approaches. Med. Mycol. 2020, 58, 1015–1028. [Google Scholar] [CrossRef]
- Franconi, I.; Leonildi, A.; Erra, G.; Fais, R.; Falcone, M.; Ghelardi, E.; Lupetti, A. Comparison of different microbiological procedures for the diagnosis of Pneumocystis jirovecii pneumonia on bronchoalveolar-lavage fluid. BMC Microbiol. 2022, 22, 143. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Desoubeaux, G.; Sarfati, C.; Hamane, S.; Bergeron, A.; Azoulay, E.; Molina, J.M.; Derouin, F.; Menotti, J. Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clin. Microbiol. Infect. 2011, 17, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Lagrou, K.; Chen, S.; Masur, H.; Viscoli, C.; Decker, C.F.; Pagano, L.; Groll, A.H. Pneumocystis jirovecii Disease: Basis for the Revised EORTC/MSGERC Invasive Fungal Disease Definitions in Individuals Without Human Immunodeficiency Virus. Clin. Infect. Dis. 2021, 72, S114–S120. [Google Scholar] [CrossRef]
- Senecal, J.; Smyth, E.; Del Corpo, O.; Hsu, J.M.; Amar-Zifkin, A.; Bergeron, A.; Cheng, M.P.; Butler-Laporte, G.; McDonald, E.G.; Lee, T.C. Non-invasive diagnosis of Pneumocystis jirovecii pneumonia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 23–30. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E.G.; Afshar, A.; Assiri, B.; Boyles, T.; Hsu, J.M.; Khuong, N.; Prosty, C.; So, M.; Sohani, Z.N.; Butler-Laporte, G.; et al. Pneumocystis jirovecii pneumonia in people living with HIV: A review. Clin. Microbiol. Rev. 2024, 37, e0010122. [Google Scholar] [CrossRef]
- Tomas, A.L.; Cardoso, F.; Esteves, F.; Matos, O. Serological diagnosis of pneumocystosis: Production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii. Sci. Rep. 2016, 6, 36287. [Google Scholar] [CrossRef]
- Montesinos, I.; Brancart, F.; Schepers, K.; Jacobs, F.; Denis, O.; Delforge, M.L. Comparison of 2 real-time PCR assays for diagnosis of Pneumocystis jirovecii pneumonia in human immunodeficiency virus (HIV) and non-HIV immunocompromised patients. Diagn. Microbiol. Infect. Dis. 2015, 82, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Fauchier, T.; Hasseine, L.; Gari-Toussaint, M.; Casanova, V.; Marty, P.M.; Pomares, C. Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients. J. Clin. Microbiol. 2016, 54, 1487–1495. [Google Scholar] [CrossRef]
- Sarasombath, P.T.; Thongpiya, J.; Chulanetra, M.; Wijit, S.; Chinabut, P.; Ongrotchanakun, J.; Jitmuang, A.; Wanachiwanawin, D. Quantitative PCR to Discriminate Between Pneumocystis Pneumonia and Colonization in HIV and Non-HIV Immunocompromised Patients. Front. Microbiol. 2021, 12, 729193. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Norris, K.A. Colonization by Pneumocystis jirovecii and its role in disease. Clin. Microbiol. Rev. 2012, 25, 297–317. [Google Scholar] [CrossRef]
- Vaconsin, L.M.; Bonnal, C.; Argy, N.; Dessajan, J.; Wicky, P.H.; Thy, M.; de Montmollin, E.; Sonneville, R.; Bouadma, L.; Houze, S.; et al. Significance of positive semi-quantitative PCR tests on bronchoalveolar lavage for Pneumocystis jirovecii pneumonia in HIV-negative immunocompromised ICU patients with acute respiratory failure. Ann. Intensive Care 2025, 15, 173. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, C.; Sun, Y.; Chen, X.; Wang, Y.; Xiang, H.; Liang, Y.; Wei, F.; Zhang, Y. Diagnostic tests performance in detecting Pneumocystis jirovecii: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 789–805. [Google Scholar] [CrossRef]
- Brown, L.; Rautemaa-Richardson, R.; Mengoli, C.; Alanio, A.; Barnes, R.A.; Bretagne, S.; Chen, S.C.A.; Cordonnier, C.; Donnelly, J.P.; Heinz, W.J.; et al. Polymerase Chain Reaction on Respiratory Tract Specimens of Immunocompromised Patients to Diagnose Pneumocystis Pneumonia: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2024, 79, 161–168. [Google Scholar] [CrossRef]
- Goterris, L.; Mancebo Fernandez, M.A.; Aguilar-Company, J.; Falco, V.; Ruiz-Camps, I.; Martin-Gomez, M.T. Molecular Diagnosis of Pneumocystis jirovecii Pneumonia by Use of Oral Wash Samples in Immunocompromised Patients: Usefulness and Importance of the DNA Target. J. Clin. Microbiol. 2019, 57, e01287-19. [Google Scholar] [CrossRef]
- Guigue, N.; Alanio, A.; Menotti, J.; Castro, N.D.; Hamane, S.; Peyrony, O.; LeGoff, J.; Bretagne, S. Utility of adding Pneumocystis jirovecii DNA detection in nasopharyngeal aspirates in immunocompromised adult patients with febrile pneumonia. Med. Mycol. 2015, 53, 241–247. [Google Scholar] [CrossRef]
- Dhanalakshmi, S.; Thambu David, S.; Gupta, R.; Varughese, S.; Varghese, G.M.; George, B.; Michael, J.S. Effectiveness of a real-time PCR for diagnosis of Pneumocystis pneumonia in immunocompromised patients—Experience from a tertiary care center, India. J. Mycol. Med. 2022, 32, 101241. [Google Scholar] [CrossRef]
- Pinlaor, S.; Mootsikapun, P.; Pinlaor, P.; Phunmanee, A.; Pipitgool, V.; Sithithaworn, P.; Chumpia, W.; Sithithaworn, J. PCR diagnosis of Pneumocystis carinii on sputum and bronchoalveolar lavage samples in immuno-compromised patients. Parasitol. Res. 2004, 94, 213–218. [Google Scholar] [CrossRef] [PubMed]
- van Halsema, C.; Johnson, L.; Baxter, J.; Douthwaite, S.; Clowes, Y.; Guiver, M.; Ustianowski, A. Short Communication: Diagnosis of Pneumocystis jirovecii Pneumonia by Detection of DNA in Blood and Oropharyngeal Wash, Compared with Sputum. AIDS Res. Hum. Retroviruses 2016, 32, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Epstein, D.; Budvytiene, I.; Banaei, N. Accuracy of Pneumocystis jirovecii Plasma Cell-Free DNA PCR for Noninvasive Diagnosis of Pneumocystis Pneumonia. J. Clin. Microbiol. 2022, 60, e0010122. [Google Scholar] [CrossRef] [PubMed]
- Cederwall, S.; Ottander, E.; Bjorkhem, D.; Oldberg, K.; Pahlman, L.I. Performance of Quantitative PCR to Distinguish Pneumocystis jirovecii Pneumonia From Colonisation in Immunocompromised Patients. Mycoses 2025, 68, e70120. [Google Scholar] [CrossRef]
- Morjaria, S.; Frame, J.; Franco-Garcia, A.; Geyer, A.; Kamboj, M.; Babady, N.E. Clinical Performance of (1,3) Beta-D Glucan for the Diagnosis of Pneumocystis Pneumonia (PCP) in Cancer Patients Tested With PCP Polymerase Chain Reaction. Clin. Infect. Dis. 2019, 69, 1303–1309. [Google Scholar] [CrossRef]
- Karageorgopoulos, D.E.; Vouloumanou, E.K.; Ntziora, F.; Michalopoulos, A.; Rafailidis, P.I.; Falagas, M.E. beta-D-glucan assay for the diagnosis of invasive fungal infections: A meta-analysis. Clin. Infect. Dis. 2011, 52, 750–770. [Google Scholar] [CrossRef]
- De Carolis, E.; Marchionni, F.; Torelli, R.; Angela, M.G.; Pagano, L.; Murri, R.; De Pascale, G.; De Angelis, G.; Sanguinetti, M.; Posteraro, B. Comparative performance evaluation of Wako beta-glucan test and Fungitell assay for the diagnosis of invasive fungal diseases. PLoS ONE 2020, 15, e0236095. [Google Scholar] [CrossRef]
- Mercier, T.; Guldentops, E.; Patteet, S.; Beuselinck, K.; Lagrou, K.; Maertens, J. Beta-d-Glucan for Diagnosing Pneumocystis Pneumonia: A Direct Comparison between the Wako beta-Glucan Assay and the Fungitell Assay. J. Clin. Microbiol. 2019, 57, 6. [Google Scholar] [CrossRef]
- Cento, V.; Alteri, C.; Mancini, V.; Gatti, M.; Lepera, V.; Mazza, E.; Moioli, M.C.; Merli, M.; Colombo, J.; Orcese, C.A.; et al. Quantification of 1,3-beta-d-glucan by Wako beta-glucan assay for rapid exclusion of invasive fungal infections in critical patients: A diagnostic test accuracy study. Mycoses 2020, 63, 1299–1310. [Google Scholar] [CrossRef]
- Tran, T.; Beal, S.G. Application of the 1,3-beta-D-Glucan (Fungitell) Assay in the Diagnosis of Invasive Fungal Infections. Arch. Pathol. Lab. Med. 2016, 140, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Del Corpo, O.; Butler-Laporte, G.; Sheppard, D.C.; Cheng, M.P.; McDonald, E.G.; Lee, T.C. Diagnostic accuracy of serum (1-3)-beta-D-glucan for Pneumocystis jirovecii pneumonia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.; Al-Ramadi, B.; Finkelman, M.; Hedstrom, U.; Kristensen, J.; Ali-Zadeh, H.; Klingspor, L. Assessment of the clinical utility of serial beta-D-glucan concentrations in patients with persistent neutropenic fever. J. Med. Microbiol. 2008, 57, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Qu, J.M.; Korbila, I.P.; Zhu, Y.G.; Vasileiou, V.A.; Falagas, M.E. Accuracy of beta-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: A meta-analysis. Clin. Microbiol. Infect. 2013, 19, 39–49. [Google Scholar] [CrossRef]
- Desmet, S.; Van Wijngaerden, E.; Maertens, J.; Verhaegen, J.; Verbeken, E.; De Munter, P.; Meersseman, W.; Van Meensel, B.; Van Eldere, J.; Lagrou, K. Serum (1-3)-beta-D-glucan as a tool for diagnosis of Pneumocystis jirovecii pneumonia in patients with human immunodeficiency virus infection or hematological malignancy. J. Clin. Microbiol. 2009, 47, 3871–3874. [Google Scholar] [CrossRef]
- Huang, Y.; Yi, J.; Song, J.J.; Du, L.J.; Li, X.M.; Cheng, L.L.; Yan, S.X.; Li, H.L.; Liu, Y.M.; Zhan, H.T.; et al. Negative serum (1,3)-beta-D-glucan has a low power to exclude Pneumocystis jirovecii pneumonia (PJP) in HIV-uninfected patients with positive qPCR. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 102. [Google Scholar] [CrossRef]
- Dichtl, K.; Seybold, U.; Wagener, J. Evaluation of a Turbidimetric beta-d-Glucan Test for Detection of Pneumocystis jirovecii Pneumonia. J. Clin. Microbiol. 2018, 56, e00286-18. [Google Scholar] [CrossRef]
- Damiani, C.; Le Gal, S.; Da Costa, C.; Virmaux, M.; Nevez, G.; Totet, A. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1→3)-beta-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization. J. Clin. Microbiol. 2013, 51, 3380–3388. [Google Scholar] [CrossRef]
- Wu, H.H.; Chen, Y.X.; Fang, S.Y. Clinicopathological features of isolated pulmonary cryptococcosis in HIV-negative patients. J. Int. Med. Res. 2020, 48, 300060520927877. [Google Scholar] [CrossRef]
- Howard-Jones, A.R.; Sparks, R.; Pham, D.; Halliday, C.; Beardsley, J.; Chen, S.C. Pulmonary Cryptococcosis. J. Fungi 2022, 8, 1156. [Google Scholar] [CrossRef] [PubMed]
- Setianingrum, F.; Rautemaa-Richardson, R.; Denning, D.W. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med. Mycol. 2019, 57, 133–150. [Google Scholar] [CrossRef]
- Yamamura, D.; Xu, J. Update on Pulmonary Cryptococcosis. Mycopathologia 2021, 186, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Di, C.; Zhang, F.; Yu, J.; Ran, J.; Wang, K.; Li, Z.; Zhao, H.; Chen, H.; et al. Evaluation of a lateral flow immunochromatographic assay for detecting cryptococcal antigens in bronchoalveolar lavage fluid from HIV-negative patients with pulmonary cryptococcosis. Microbiol. Spectr. 2026, 14, e0108325. [Google Scholar] [CrossRef]
- Smith, D.J.; Free, R.J.; Thompson, G.R., 3rd; Baddley, J.W.; Pappas, P.G.; Benedict, K.; Gold, J.A.W.; Endemic Mycoses Diagnostic Algorithm Subject Matter Expert Group; Tushla, L.A.; Chiller, T.; et al. Clinical Testing Guidance for Coccidioidomycosis, Histoplasmosis, and Blastomycosis in Patients With Community-Acquired Pneumonia for Primary and Urgent Care Providers. Clin. Infect. Dis. 2024, 78, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Thammasit, P.; Amsri, A.; Pruksaphon, K.; Deng, F.; Nosanchuk, J.D.; Youngchim, S. An overview of rapid non-culture-based techniques in various clinical specimens for the laboratory diagnosis of Talaromyces marneffei. Front. Cell. Infect. Microbiol. 2025, 15, 1591429. [Google Scholar] [CrossRef]
- Theel, E.S.; Kus, J.V.; Grys, T.E.; Ampel, N.M.; Schwartz, I.S.; Zhang, S.X. Practical Guidance for Clinical Microbiology Laboratories: Antibody and antigen detection methods for dimorphic fungal infections. Clin. Microbiol. Rev. 2025, 38, e0000520. [Google Scholar] [CrossRef]
- Abdallah, W.; Myint, T.; LaRue, R.; Minderman, M.; Gunn, S.; Wheat, L.J.; Hage, C.A. Diagnosis of Histoplasmosis Using the MVista Histoplasma Galactomannan Antigen Qualitative Lateral Flow-Based Immunoassay: A Multicenter Study. Open Forum Infect. Dis. 2021, 8, ofab454. [Google Scholar] [CrossRef]
- Wong, S.Y.; Wong, K.F. Penicillium marneffei Infection in AIDS. Pathol. Res. Int. 2011, 2011, 764293. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Martin-Gomez, M.T. Timely Diagnosis of Histoplasmosis in Non-endemic Countries: A Laboratory Challenge. Front. Microbiol. 2020, 11, 467. [Google Scholar] [CrossRef]
- Vasconcellos, I.; Dalla Lana, D.F.; Pasqualotto, A.C. The Role of Molecular Tests in the Diagnosis of Disseminated Histoplasmosis. J. Fungi 2019, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Nasrawi, F.; Fayed, M.A.; Peterson, M.W. Diagnostic Performance of Coccidioidomycosis PCR Testing in Lung Nodules: A Retrospective Study in Central California. J. Fungi 2025, 11, 814. [Google Scholar] [CrossRef]
- Williams, S.L.; Chiller, T. Update on the Epidemiology, Diagnosis, and Treatment of Coccidioidomycosis. J. Fungi 2022, 8, 666. [Google Scholar] [CrossRef] [PubMed]
- Saravanababu, T.; Elsayed, S.; Gupta, R.; Delport, J.; Rahimi Shahmirzadi, M.; AlMutawa, F. Diagnosing Blastomycosis: A Review of Laboratory Methods and Clinical Utility. J. Fungi 2025, 11, 589. [Google Scholar] [CrossRef]
- Rousselot, J.; Millon, L.; Scherer, E.; Bourgeois, N.; Imbert, S.; Dupont, D.; Debourgogne, A.; Maubon, D.; Bellanger, A.P.; Thornton, C.R. Detection of Mucorales antigen in bronchoalveolar lavage samples using a newly developed lateral-flow device. J. Clin. Microbiol. 2025, 63, e0022625. [Google Scholar] [CrossRef]
- Vanbiervliet, Y.; Aerts, R.; Maessen, L.; Wauters, J.; Maertens, J.; Lagrou, K. Laboratory innovations to diagnose invasive mould infections―what is relevant, what is not? Clin. Microbiol. Infect. 2025. [Google Scholar] [CrossRef]
- Delliere, S.; Guitard, J.; Sabou, M.; Angebault, C.; Moniot, M.; Cornu, M.; Hamane, S.; Bougnoux, M.E.; Imbert, S.; Pasquier, G.; et al. Detection of circulating DNA for the diagnosis of invasive fusariosis: Retrospective analysis of 15 proven cases. Med. Mycol. 2022, 60, myac049. [Google Scholar] [CrossRef]
- Castelli, M.V.; Buitrago, M.J.; Bernal-Martinez, L.; Gomez-Lopez, A.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Development and validation of a quantitative PCR assay for diagnosis of scedosporiosis. J. Clin. Microbiol. 2008, 46, 3412–3416. [Google Scholar] [CrossRef]
- Davies, G.E.; Thornton, C.R. A Lateral-Flow Device for the Rapid Detection of Scedosporium Species. Diagnostics 2024, 14, 847. [Google Scholar] [CrossRef]
- Pruksaphon, K.; Khamto, N.; Amsri, A.; Wagatsuma, M.; Nosanchuk, J.D.; Higuchi, Y.; Youngchim, S. Exploring the structural basis and functional immunodynamics of immunoglobulin M in host defense against fungal pathogens. Front. Immunol. 2025, 16, 1666690. [Google Scholar] [CrossRef]
- Trecourt, A.; Rabodonirina, M.; Donzel, M.; Simon, B.; Mauduit, C.; Traverse-Glehen, A.; Meyronet, D.; Ginevra, C.; Bouyssi, A.; Chapey-Picq, E.; et al. Detection of fungal pathogens by a histomolecular approach using targeted-massive parallel sequencing on formalin-fixed tissues: A retrospective study. Clin. Microbiol. Infect. 2025, 31, 855–860. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Q.; Tang, S.; Huang, H.; Kou, L.; Zhou, Y.; Ruan, H.; Yuan, Y.; He, C.; Ying, B. Clinical evaluation of droplet digital PCR in suspected invasive pulmonary aspergillosis. Clin. Chim. Acta 2025, 569, 120153. [Google Scholar] [CrossRef] [PubMed]
- Demir, K.K.; Anderson, G.; Budvytiene, I.; Banaei, N. Accuracy and actionability of mold PCR on bronchoalveolar lavage fluid for diagnosis of invasive mold disease. J. Clin. Microbiol. 2025, 63, e0114525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Li, Y.; Wang, N.; Zhang, Y. Clinical performance of metagenomic next-generation sequencing for diagnosis of invasive fungal disease after hematopoietic cell transplant. Front. Cell. Infect. Microbiol. 2024, 14, 1210857. [Google Scholar] [CrossRef]
- Babady, N.E.; Chiu, C.Y.; Craney, A.; Gaston, D.C.; Hicklen, R.S.; Hogan, C.A.; John, T.M.; Stewart, A.G. Diagnosis and management of invasive fungal diseases by next-generation sequencing: Are we there yet? Expert Rev. Mol. Diagn. 2024, 24, 1083–1096. [Google Scholar] [CrossRef]
- Martinsen, E.M.H.; Eagan, T.M.L.; Leiten, E.O.; Haaland, I.; Husebo, G.R.; Knudsen, K.S.; Drengenes, C.; Sanseverino, W.; Paytuvi-Gallart, A.; Nielsen, R. The pulmonary mycobiome—A study of subjects with and without chronic obstructive pulmonary disease. PLoS ONE 2021, 16, e0248967. [Google Scholar] [CrossRef]
- Cuthbertson, L.; Felton, I.; James, P.; Cox, M.J.; Bilton, D.; Schelenz, S.; Loebinger, M.R.; Cookson, W.O.C.; Simmonds, N.J.; Moffatt, M.F. The fungal airway microbiome in cystic fibrosis and non-cystic fibrosis bronchiectasis. J. Cyst. Fibros. 2021, 20, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Angebault, C.; Vandenborght, L.E.; Bassinet, L.; Wizla, N.; Ferroni, A.; Dessein, R.; Remus, N.; Thumerelle, C.; Fauchet, N.; Epaud, R.; et al. Airway Mycobiota-Microbiota During Pulmonary Exacerbation of Cystic Fibrosis Patients: A Culture and Targeted Sequencing Study. Mycoses 2025, 68, e70024. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, Y.; Yan, C.; Lu, Z.; Zhou, Q.; Wang, J.; Wang, Y.; Cheng, L.; Zhang, L.; He, Y.; et al. Comparing the performance of targeted next-generation sequencing and metagenomic next-generation sequencing in diagnosing pneumonia: A systematic review and network meta-analysis. Diagn. Microbiol. Infect. Dis. 2026, 114, 117234. [Google Scholar] [CrossRef] [PubMed]
- Adam, D.; Bensaada, D.; Stulanovic, N.; Focant, J.F.; Stefanuto, P.H.; Rigali, S. Comparative volatilomics identifies ubiquitous sulfur compounds inhibiting the fungal pathogen Rasamsonia argillacea. Microbiol. Spectr. 2025, 14, e0266625. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Harrison, F.; Kavanagh, K. Proteomic characterization of Aspergillus fumigatus-host interactions using the ex-vivo pig lung (EVPL) model. Virulence 2025, 16, 2530675. [Google Scholar] [CrossRef]
- Adejor, J.; Tumukunde, E.; Li, G.; Shehu, T.A.; Wu, L.; Jiang, Z.; Wang, S. Stepping out of the dark: How metabolomics shed light on fungal biology. FEMS Microbiol. Rev. 2025, 49, fuaf028. [Google Scholar] [CrossRef]
- Viswanathan, V.S.; Toro, P.; Corredor, G.; Mukhopadhyay, S.; Madabhushi, A. The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 2022, 257, 413–429. [Google Scholar] [CrossRef] [PubMed]

| Method | Sample | Se (%) | Sp (%) | Main Advantages | Main Limitations |
|---|---|---|---|---|---|
| EIA | Serum | 21–92 [35,36,37] | 78–100 [35,36,37] | Widely validated; included in EORTC/MSGERC criteria [13] Good screening tool in neutropenic patients [2,14] | Batch testing; Long turnaroundtime; Reduced sensitivity under antifungal prophylaxis [32]; Cross-reactivity (β-lactams, other fungi, intravenous gluconate formulations, or cow’s milk in children) [38,39,40,41,42,43,44,45,46,47] |
| BAL | 35–89 [36,48] | 79–100 [36,48] | Higher sensitivity than serum in non-neutropenic, ICU patients or patients receiving mold-active antifungals prophylaxis or treatment [2,14] | Requires bronchoscopy; Possible colonization findings | |
| CSF | 69–81.1 [22] | 94.4 [22] | Not validated by commercial kits but recognized by EORTC/MSGERC criteria [13] | ||
| CLIA | Serum | 11–100 [23,24,25,26,27,30,37,49] | 65–100 [23,24,25,26,27,30,37,49] | Single-sample, fully automated, shorter TAT, reduced contamination risk | New assay-specific cut-offs require clinical and laboratory adaptation; Fewer validation studies: cut-off needs standardization |
| BAL | 52–100 [23,24,30,50] | 65–100 [23,24,30,50] | Comparable to EIA; Flexible workflow | Interpretation thresholds still under evaluation | |
| LFA/LFD | Serum/BAL | 46–92 [51] | 82–98 [51] | Rapid (<1 h); minimal equipment; suitable for POC or ICU settings | Lower analytical sensitivity. Subjective visual readout; not quantitative; Poor reproducibility [30] |
| Sample | Se (%) | Sp (%) | Key Considerations |
|---|---|---|---|
| BAL | 98–99% [111] | 85–95% [111] | Highest sensitivity: best for infection–colonization discrimination [98,111,115]; Invasive procedure; not always feasible in fragile or severely hypoxemic patients |
| IS | 95–99% (HIV) [102,111]; 80–96% (non-HIV) [102,111,114] | 80–98% [102,111] | Less invasive alternative; High sensitivity in HIV; potentially like BAL, although this is less consistent in non-HIV groups; specificity reduced by colonization [98,100,101,102,111,114,115,118] |
| URT | 70–95% [102,111] | 90–100% [102,111] | Simple collection; Lower sensitivity, particularly in non-HIV; a negative result does not exclude PJP; very good specificity [98,102,111,113] |
| Blood | Low–moderate | 90–100% [102] | Minimally invasive; Low sensitivity, mainly positive in disseminated or high-burden disease (HIV patients); excellent specificity [98,102,116,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Montesinos, I.; Rodriguez-Villalobos, H. Biomarkers in Invasive Pulmonary Fungal Infections: Where Do We Stand? J. Fungi 2026, 12, 104. https://doi.org/10.3390/jof12020104
Montesinos I, Rodriguez-Villalobos H. Biomarkers in Invasive Pulmonary Fungal Infections: Where Do We Stand? Journal of Fungi. 2026; 12(2):104. https://doi.org/10.3390/jof12020104
Chicago/Turabian StyleMontesinos, Isabel, and Hector Rodriguez-Villalobos. 2026. "Biomarkers in Invasive Pulmonary Fungal Infections: Where Do We Stand?" Journal of Fungi 12, no. 2: 104. https://doi.org/10.3390/jof12020104
APA StyleMontesinos, I., & Rodriguez-Villalobos, H. (2026). Biomarkers in Invasive Pulmonary Fungal Infections: Where Do We Stand? Journal of Fungi, 12(2), 104. https://doi.org/10.3390/jof12020104

