Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Extraction and Purification of dsRNA
2.3. cDNA Synthesis, Cloning, and Sequencing
2.4. Sequence and Phylogenetic Analysis
2.5. Virus-Free Fungal Strains Obtained via Protoplast Regeneration
2.6. RNA Extraction and RT-PCR Detection
2.7. Biological Properties of Fungal Isolates
2.7.1. Mycelial Growth and Colony Morphology
2.7.2. Pathogenicity Assay
3. Results
3.1. The Biological Characteristics of Strain 22c-8
3.2. Double-Stranded RNA Segments in Strain 22C-8
3.3. Molecular Characterization of MpChrV2 in Strain 22C-8
3.4. Sequence Analysis of the 5′- and 3′-Untranslated Regions
3.5. Phylogenetic Analysis of MpChrV2
3.6. Derivation of Virus-Free Fungal Strains
3.7. Biological Effects of MpChrV2 on Macrophomina phaseolina Strain 22C-8
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, J.; Jiang, D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu. Rev. Microbiol. 2024, 78, 595–620. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 2014, 52, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus years of fungal viruses. Virology 2015, 479, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Botella, L.; Suzuki, N. Mycovirus diversity and evolution revealed/inferred from recent studies. Annu. Rev. Phytopathol. 2022, 60, 307–336. [Google Scholar] [CrossRef]
- Son, M.; Yu, J.; Kim, K.H. Five Questions about Mycoviruses. PLoS Pathog. 2015, 11, e1005172. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, X.; Liu, X.; Yang, B.; Wang, N.; Wang, Q.; Yu, W.; Qi, X.; Peng, J.; Hsiang, T. Complete genome sequence of a novel chrysovirus infecting Talaromyces neofusisporus. Arch. Virol. 2022, 167, 2789–2793. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, S.; Xiao, X.; Cheng, J.; Fu, Y.; Chen, T.; Jiang, D.; Xie, J. Discovery of Two Mycoviruses by High-Throughput Sequencing and Assembly of Mycovirus-Derived Small Silencing RNAs From a Hypovirulent Strain of Sclerotinia sclerotiorum. Front. Microbiol. 2019, 10, 1415. [Google Scholar] [CrossRef]
- Sato, Y.; Suzuki, N. Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense. Curr. Opin. Microbiol. 2023, 75, 102337. [Google Scholar] [CrossRef]
- Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges and opportunities in Myanmar. Sustainability 2020, 12, 3515. [Google Scholar] [CrossRef]
- Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients 2022, 14, 4079. [Google Scholar] [CrossRef]
- Mili, A.; Das, S.; Nandakumar, K.; Lobo, R. A comprehensive review on Sesamum indicum L.: Botanical, ethnopharmacological, phytochemical, and pharmacological aspects. J. Ethnopharmacol. 2021, 281, 114503. [Google Scholar] [CrossRef]
- Takahashi, M.; Nishizaki, Y.; Sugimoto, N.; Takeuchi, H.; Nakagawa, K.; Akiyama, H.; Sato, K.; Inoue, K. Determination and purification of sesamin and sesamolin in sesame seed oil unsaponified matter using reversed-phase liquid chromatography coupled with photodiode array and tandem mass spectrometry and high-speed countercurrent chromatography. J. Sep. Sci. 2016, 39, 3898–3905. [Google Scholar] [CrossRef]
- Cheng, H.; Gao, X.; Sun, H.; Na, Y.; Xu, J. First report of fruit blight caused by Alternaria alternata on sesame in Northeast China. Plant Dis. 2021, 105, 3299. [Google Scholar] [CrossRef]
- Noh, E.; Panth, M.; Yang, X.; Barnes, J.M.; Wang, H. First Report of Xanthomonas euvesicatoria pv. Sesame Causing Leaf Spot on Sesame (Sesamum indicum L.) in South Carolina, USA. Plant Dis. 2024, 108, 2916. [Google Scholar]
- Zech-Matterne, V.; Tengberg, M.; Van Andringa, W. Sesamum indicum L. (Sesame) in 2nd Century BC Pompeii, Southwest Italy, and a Review of Early Sesame Finds in Asia and Europe. Veg. Hist. Archaeobotany 2015, 24, 673–681. [Google Scholar] [CrossRef]
- Yadav, R.; Kalia, S.; Rangan, P.; Pradheep, K.; Rao, G.P.; Kaur, V.; Pandey, R.; Rai, V.; Vasimalla, C.C.; Langyan, S.; et al. Current Research Trends and Prospects for Yield and Quality Improvement in Sesame, an Important Oilseed Crop. Front. Plant Sci. 2022, 13, 863521. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.C. Diseases in sesamum in India and their control. Pesticides 1981, 15, 10. [Google Scholar]
- Shumaila, S.; Khan, M.R. Management of root rot of mungbean caused by Macrophomina phaseolina through seed treatment with fungicides. Indian Phytopathol. 2016, 69, 26–35. [Google Scholar]
- Kaur, S.; Dhillon, G.S.; Brar, S.K.; Vallad, G.E.; Chand, R.; Chauhan, V.B. Emerging phytopathogen Macrophomina phaseolina: Biology, economic importance and current diagnostic trends. Crit. Rev. Microbiol. 2012, 38, 136–151. [Google Scholar] [CrossRef]
- Marquez, N.; Giachero, M.L.; Declerck, S.; Ducasse, D.A. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Front. Plant Sci. 2021, 12, 634397. [Google Scholar] [CrossRef]
- Shirai, M.; Eulgem, T. Molecular interactions between the soilborne pathogenic fungus Macrophomina phaseolina and its host plants. Front. Plant Sci. 2023, 14, 1264569. [Google Scholar] [CrossRef]
- Islam, M.; Haque, M.; Islam, M.; Emdad, E.; Halim, A.; Hossen, Q.M.; Hossain, M.Z.; Ahmed, B.; Rahim, S.; Rahman, M.S.; et al. Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genom. 2012, 13, 493. [Google Scholar] [CrossRef]
- Crous, P.W.; Slippers, B.; Wingfield, M.J.; Rheeder, J.; Marasas, W.F.O.; Philips, A.J.L.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J.Z. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 2006, 55, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.C.; Bhowmik, T.P. Estimation of yield losses in groundnut due to Macrophomina phaseolina (Tassi) Goid. Indian J. Plant Pathol. 1986, 4, 108–112. [Google Scholar]
- Gupta, G.K.; Sharma, S.K.; Ramteke, R. Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). J. Phytopathol. 2012, 160, 167–180. [Google Scholar] [CrossRef]
- Cohen, R.; Omari, N.; Porat, A.; Edelstein, M. Management of Macrophomina wilt in melons using grafting or fungicide soil application: Pathological, horticultural and economical aspects. Crop Prot. 2012, 35, 58–63. [Google Scholar] [CrossRef]
- Lakhran, L.; Ahir, R.R.; Choudhary, M.; Choudhary, S. Isolation, purification, identification and pathogenicity of Macrophomina phaseolina (Tassi) goid caused dry root rot of chickpea. J. Pharmacogn. Phytochem. 2018, 7, 3314–3317. [Google Scholar]
- Tok, F.M. Relationship between Morphologic, Phenotypic and Pathogenic Characteristics in Macrophomina phaselina Isolates from Cucumber Plants. Int. J. Innov. Approaches Agric. Res. 2019, 3, 651–660. [Google Scholar] [CrossRef]
- García-Pedrajas, M.D.; Cañizares, M.C.; Sarmiento-Villamil, J.L.; Jacquat, A.G.; Dambolena, J.S. Mycoviruses in Biological Control: From Basic Research to Field Implementation. Phytopathology 2019, 109, 1828–1839. [Google Scholar] [CrossRef]
- Milgroom, M.G.; Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu. Rev. Phytopathol. 2004, 42, 311–338. [Google Scholar] [CrossRef] [PubMed]
- Urayama, S.; Kimura, Y.; Katoh, Y.; Ohta, T.; Onozuka, N.; Fukuhara, T.; Arie, T.; Teraoka, T.; Komatsu, K.; Moriyama, H. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus. Virus Res. 2016, 223, 10–19. [Google Scholar] [CrossRef]
- Okada, R.; Ichinose, S.; Takeshita, K.; Urayama, S.I.; Fukuhara, T.; Komatsu, K.; Arie, T.; Ishihara, A.; Egusa, M.; Kodama, M.; et al. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology 2018, 519, 23–32. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Kotta-Loizou, I.; Dong, K.; Li, S.; Ni, D.; Hong, N.; Wang, G.; Xu, W. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME J. 2021, 15, 1893–1906. [Google Scholar] [CrossRef]
- Chiba, S.; Kondo, H.; Kanematsu, S.; Suzuki, N. Mycoviruses and virocontrol. Uirusu 2010, 60, 163–176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, J.; Xiao, Y.; Zhao, H.; Ni, Y.; Liu, X.; Zhao, X.; Wang, G.; Xiao, X.; Liu, H. A novel double-stranded RNA mycovirus that infects Macrophomina phaseolina. Arch. Virol. 2019, 164, 2411–2416. [Google Scholar] [CrossRef]
- Wang, J.; Ni, Y.; Liu, X.; Zhao, H.; Xiao, Y.; Xiao, X.; Li, S.; Liu, H. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents. Virus Evol. 2020, 7, veaa095. [Google Scholar] [CrossRef]
- Marzano, S.L.; Nelson, B.D.; Ajayi-Oyetunde, O.; Bradley, C.A.; Hughes, T.J.; Hartman, G.L.; Eastburn, D.M.; Domier, L.L. Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens. J. Virol. 2016, 90, 6846–6863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Wan, X.; She, Y.; Li, M.; Xi, H.; Xie, J.; Wen, C. A Novel Ourmia-Like Mycovirus Confers Hypovirulence-Associated Traits on Fusarium oxysporum. Front. Microbiol. 2020, 11, 569869. [Google Scholar] [CrossRef] [PubMed]
- Nahalkova, J.; Fatehi, J. Red fluorescent protein (DsRed2) as a novel reporter in Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol. Lett. 2003, 225, 305–309. [Google Scholar] [CrossRef]
- Twizeyimana, M.; Hill, C.B.; Pawlowski, M.; Paul, C.; Hartman, G.L. A Cut-Stem Inoculation Technique to Evaluate Soybean for Resistance to Macrophomina phaseolina. Plant Dis. 2012, 8, 1210–1215. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, M.; Hong, N.; Xiao, F.; Fu, M.; Xiang, J.; Wang, G. Identification and Characterization of a Novel Hepta-Segmented dsRNA Virus From the Phytopathogenic Fungus Colletotrichum fructicola. Front. Microbiol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.; Mubeen, M.; Shakeel, Q.; Ali, S.; Iftikhar, Y.; Bajwa, R.T.; Anwar, N.; Rao, M.J.; He, Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023, 11, 2515. [Google Scholar] [CrossRef]
- Zou, C.; Cao, X.; Zhou, Q.; Yao, Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024, 16, 253. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Castón, J.R.; Coutts, R.H.A.; Hillman, B.I.; Jiang, D.; Kim, D.H.; Moriyama, H.; Suzuki, N.; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Chrysoviridae. J. Gen. Virol. 2020, 101, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, B.; Fu, Y.; Xie, J.; Cheng, J.; Ghabrial, S.A.; Li, G.; Yi, X.; Jiang, D. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc. Natl. Acad. Sci. USA 2013, 110, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
MpChrV2 | Predicted Protein | Best Match | Identity (%) | E-Value | Query Cover |
---|---|---|---|---|---|
dSRNA1 | RdRp | Aspergillus mycovirus 1816 | 48.86 | 0 | 95% |
Aspergillus thermomutatus chrysovirus 1 | 48.49 | 0 | 99% | ||
Aspergillus fumigatus chrysovirus | 48.2 | 0 | 97% | ||
dSRNA2 | CP | Erysiphe necator associated chrysovirus 1 | 49.35 | 0 | 99% |
Coniothyrium diplodiella chrysovirus 1 | 45.17 | 0 | 99% | ||
Penicillium janczewskii chrysovirus 1 | 36.05 | 5.00 × 10−139 | 94% | ||
dSRNA3 | HP | Coniothyrium diplodiella chrysovirus 1 | 50.52 | 0 | 79% |
Erysiphe necator associated chrysovirus 1 | 49.26 | 0 | 92% | ||
Neofusicoccum parvum chrysovirus 2 | 40 | 1.00 × 10−117 | 79% | ||
dSRNA4 | HP | Setosphaeria turcica chrysovirus 1 | 34.3 | 9.00 × 10−51 | 69% |
Bipolaris maydis chrysovirus 2 | 32.99 | 7.00 × 10−53 | 79% | ||
Penicillium janczewskii chrysovirus 1 | 32.49 | 1.00 × 10−68 | 58% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Song, L.; Mu, M.; Ma, J.; Li, X.; Tian, K.; Zhang, M.; Zhang, M.; Zhang, Y.; Wen, C.; et al. Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina. J. Fungi 2025, 11, 675. https://doi.org/10.3390/jof11090675
Sun P, Song L, Mu M, Ma J, Li X, Tian K, Zhang M, Zhang M, Zhang Y, Wen C, et al. Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina. Journal of Fungi. 2025; 11(9):675. https://doi.org/10.3390/jof11090675
Chicago/Turabian StyleSun, Peimeng, Luyang Song, Mengyuan Mu, Jiayi Ma, Xinyu Li, Kunni Tian, Mengyuan Zhang, Mingyue Zhang, Yuanyuan Zhang, Caiyi Wen, and et al. 2025. "Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina" Journal of Fungi 11, no. 9: 675. https://doi.org/10.3390/jof11090675
APA StyleSun, P., Song, L., Mu, M., Ma, J., Li, X., Tian, K., Zhang, M., Zhang, M., Zhang, Y., Wen, C., Wang, J., & Zhao, Y. (2025). Cloning and Characterization of the Mycovirus MpChrV2 from Macrophomina phaseolina. Journal of Fungi, 11(9), 675. https://doi.org/10.3390/jof11090675