Rme1: Unveiling a Novel Repressor in the Cellulolytic Pathway of Trichoderma reesei
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Culture Conditions
2.2. Identification of Rme1 and Phylogenetic and Structural Analyses
2.3. Construction of Deletion Cassette and Fungal Transformation
2.4. Evaluation of the Growth and Conidiation Profile of the Δrme1 Strain
2.5. Gene Expression Analysis by RT-qPCR
2.6. Protein and Enzyme Assays
2.7. Prediction of Rme1 Binding Motif and Search for Its Putative Targets
2.8. Docking Analysis
2.9. Heterologous Expression of Rme1 in E. coli
2.10. Electrophoretic Mobility Shift Assay (EMSA)
3. Results
3.1. Identification of TRIREDRAFT_27649 as a Putative Regulator of Cellulase Production in T. reesei
3.2. Rme1 Is Required for Normal Conidiation in T. reesei
3.3. Rme1 Controls the Expression of Holocellulases in T. reesei
3.4. Rme1 Binds to the Promoters of cel7a and cre1 Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos Antoniêto, A.C.; Maués, D.B.; Nogueira, K.M.V.; de Paula, R.G.; Steindorff, A.S.; Kennedy, J.F.; Pandey, A.; Gupta, V.K.; Silva, R.N. Engineering of Holocellulase in Biomass-Degrading Fungi for Sustainable Biofuel Production. J. Clean. Prod. 2022, 371, 133488. [Google Scholar] [CrossRef]
- Liu, G.; Qu, Y. Engineering of Filamentous Fungi for Efficient Conversion of Lignocellulose: Tools, Recent Advances and Prospects. Biotechnol. Adv. 2019, 37, 519–529. [Google Scholar] [CrossRef]
- de Paula, R.G.; Antoniêto, A.C.C.; Ribeiro, L.F.C.; Carraro, C.B.; Nogueira, K.M.V.; Lopes, D.C.B.; Silva, A.C.; Zerbini, M.T.; Pedersoli, W.R.; Costa, M.d.N.; et al. New Genomic Approaches to Enhance Biomass Degradation by the Industrial Fungus Trichoderma Reesei. Int. J. Genom. 2018, 2018, 1974151. [Google Scholar] [CrossRef]
- Novy, V.; Nielsen, F.; Cullen, D.; Sabat, G.; Houtman, C.J.; Hunt, C.G. The Characteristics of Insoluble Softwood Substrates Affect Fungal Morphology, Secretome Composition, and Hydrolytic Efficiency of Enzymes Produced by Trichoderma Reesei. Biotechnol. Biofuels 2021, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xu, Y.; Yu, X.-W. From Induction to Secretion: A Complicated Route for Cellulase Production in Trichoderma Reesei. Bioresour. Bioprocess. 2021, 8, 107. [Google Scholar] [CrossRef]
- Stricker, A.R.; Grosstessner-Hain, K.; Würleitner, E.; Mach, R.L. Xyr1 (Xylanase Regulator 1) Regulates Both the Hydrolytic Enzyme System and D-Xylose Metabolism in Hypocrea Jecorina. Eukaryot. Cell 2006, 5, 2128–2137. [Google Scholar] [CrossRef]
- dos Santos Castro, L.; de Paula, R.G.; Antoniêto, A.C.C.; Persinoti, G.F.; Silva-Rocha, R.; Silva, R.N. Understanding the Role of the Master Regulator XYR1 in Trichoderma Reesei by Global Transcriptional Analysis. Front. Microbiol. 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed]
- Kiesenhofer, D.P.; Mach, R.L.; Mach-Aigner, A.R. Influence of Cis Element Arrangement on Promoter Strength in Trichoderma Reesei. Appl. Environ. Microbiol. 2018, 84, e01742-17. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, T.; Margeot, A.; Linke, R.; Atanasova, L.; Fekete, E.; Sándor, E.; Hartl, L.; Karaffa, L.; Druzhinina, I.S.; Seiboth, B.; et al. The CRE1 Carbon Catabolite Repressor of the Fungus Trichoderma Reesei: A Master Regulator of Carbon Assimilation. BMC Genom. 2011, 12, 269. [Google Scholar] [CrossRef]
- Adnan, M.; Zheng, W.; Islam, W.; Arif, M.; Abubakar, Y.S.; Wang, Z.; Lu, G. Carbon Catabolite Repression in Filamentous Fungi. Int. J. Mol. Sci. 2018, 19, 48. [Google Scholar] [CrossRef]
- Antonieto, A.C.C.; Nogueira, K.M.V.; de Paula, R.G.; Nora, L.C.; Cassiano, M.H.A.; Guazzaroni, M.; Almeida, F.; da Silva, T.A.; Ries, L.N.A.; de Assis, L.J.; et al. A Novel Cys2His2 Zinc Finger Homolog of AZF1 Modulates Holocellulase Expression in Trichoderma Reesei. mSystems 2019, 4, e00161-19. [Google Scholar] [CrossRef] [PubMed]
- Kassir, Y.; Simchen, G. Regulation of Mating and Meiosis in Yeast by the Mating Type Region. Genetics 1976, 82, 187–206. [Google Scholar] [CrossRef]
- Covitz, P.A.; Herskowitz, I.; Mitchell, A.P. The Yeast RME1 Gene Encodes a Putative Zinc Finger Protein That Is Directly Repressed by A1-A2. Genes Dev. 1991, 5, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- de Paula, R.G.; Antoniêto, A.C.C.; Carraro, C.B.; Lopes, D.C.B.; Persinoti, G.F.; Peres, N.T.A.; Martinez-Rossi, N.M.; Silva-Rocha, R.; Silva, R.N. The Duality of the MAPK Signaling Pathway in the Control of Metabolic Processes and Cellulase Production in Trichoderma Reesei. Sci. Rep. 2018, 8, 14931. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, M.; Schuster, A.; Silva, R.D.N.; Kubicek, C.P. The G-Alpha Protein GNA3 of Hypocrea Jecorina (Anamorph Trichoderma Reesei) Regulates Cellulase Gene Expression in the Presence of Light. Eukaryot. Cell 2009, 8, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 Years of the SMART Protein Domain Annotation Resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Malavazi, I.; Goldman, G.H. Gene Disruption in Aspergillus Fumigatus Using a PCR-Based Strategy and In Vivo Recombination in Yeast. In Methods in Molecular Biology; Brand, A.C., MacCallum, D.M., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 845, pp. 99–118. ISBN 978-1-61779-538-1. [Google Scholar]
- Gruber, F.; Visser, J.; Kubicek, C.P.; de Graaff, L.H. The Development of a Heterologous Transformation System for the Cellulolytic Fungus Trichoderma Reesei Based on a PyrG-Negative Mutant Strain. Curr. Genet. 1990, 18, 71–76. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Steiger, M.G.; Mach, R.L.; Mach-Aigner, A.R. An Accurate Normalization Strategy for RT-QPCR in Hypocrea Jecorina (Trichoderma Reesei). J. Biotechnol. 2010, 145, 30–37. [Google Scholar] [CrossRef]
- Persikov, A.V.; Singh, M. De Novo Prediction of DNA-Binding Specificities for Cys2His 2 Zinc Finger Proteins. Nucleic Acids Res. 2014, 42, 97–108. [Google Scholar] [CrossRef]
- Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics 2011, 27, 1017–1018. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.Y. HDOCK: A Web Server for Protein-Protein and Protein-DNA/RNA Docking Based on a Hybrid Strategy. Nucleic Acids Res. 2017, 45, W365–W373. [Google Scholar] [CrossRef] [PubMed]
- Derntl, C.; Gudynaite-Savitch, L.; Calixte, S.; White, T.; MacH, R.L.; MacH-Aigner, A.R. Mutation of the Xylanase Regulator 1 Causes a Glucose Blind Hydrolase Expressing Phenotype in Industrially Used Trichoderma Strains. Biotechnol. Biofuels 2013, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Schoen, T.J.; Calise, D.G.; Bok, J.W.; Giese, M.A.; Nwagwu, C.D.; Zarnowski, R.; Andes, D.; Huttenlocher, A.; Keller, N.P. Aspergillus Fumigatus Transcription Factor ZfpA Regulates Hyphal Development and Alters Susceptibility to Antifungals and Neutrophil Killing during Infection. PLoS Pathog. 2023, 19, e1011152. [Google Scholar] [CrossRef] [PubMed]
- Otoo, B.; Calise, D.G.; Park, S.C.; Bok, J.W.; Keller, N.P.; Rawa, M.S.A. ZfpA-Dependent Quorum Sensing Shifts in Morphology and Secondary Metabolism in Aspergillus Flavus. Environ. Microbiol. 2025, 27, e70100. [Google Scholar] [CrossRef]
- Steyaert, J.M.; Weld, R.J.; Mendoza-Mendoza, A.; Stewart, A. Reproduction without Sex: Conidiation in the Filamentous Fungus Trichoderma. Microbiology 2010, 156, 2887–2900. [Google Scholar] [CrossRef]
- Karimi Aghcheh, R.; Németh, Z.; Atanasova, L.; Fekete, E.; Paholcsek, M.; Sándor, E.; Aquino, B.; Druzhinina, I.S.; Karaffa, L.; Kubicek, C.P. The VELVET A Orthologue VEL1 of Trichoderma Reesei Regulates Fungal Development and Is Essential for Cellulase Gene Expression. PLoS ONE 2014, 9, e112799. [Google Scholar] [CrossRef]
- Nogueira, K.M.V.; De Paula, R.G.; Antoniêto, A.C.C.; Dos Reis, T.F.; Carraro, C.B.; Silva, A.C.; Almeida, F.; Rechia, C.G.V.; Goldman, G.H.; Silva, R.N. Characterization of a Novel Sugar Transporter Involved in Sugarcane Bagasse Degradation in Trichoderma Reesei. Biotechnol. Biofuels 2018, 11, 84. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, L.; Alam, M.A.; Pardeshi, L.; Miao, Z.; Wang, F.; Tan, K.; Hynes, M.J.; Kelly, J.M.; Wong, K.H. Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus Nidulans. MBio 2022, 13, e03734-21. [Google Scholar] [CrossRef] [PubMed]
- de Assis, L.J.; Ulas, M.; Ries, L.N.A.; El Ramli, N.A.M.; Sarikaya-Bayram, O.; Braus, G.H.; Bayram, O.; Goldman, G.H. Regulation of Aspergillus Nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. MBio 2018, 9, e00840-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, W.; Cao, Y.; Zheng, F.; Zhao, G.; Lv, X.; Meng, X.; Liu, W. Interdependent Recruitment of CYC8/TUP1 and the Transcriptional Activator XYR1 at Target Promoters Is Required for Induced Cellulase Gene Expression in Trichoderma Reesei. PLoS Genet. 2021, 17, e1009351. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, M.; Liu, Z.; Song, X.; Qu, Y.; Qin, Y. Carbon Catabolite Repression Involves Physical Interaction of the Transcription Factor CRE1/CreA and the Tup1–Cyc8 Complex in Penicillium Oxalicum and Trichoderma Reesei. Biotechnol. Biofuels 2021, 14, 244. [Google Scholar] [CrossRef]
- Chen, L.; Zou, G.; Wang, J.; Wang, J.; Liu, R.; Jiang, Y.; Zhao, G.; Zhou, Z. Characterization of the Ca2+-Responsive Signaling Pathway in Regulating the Expression and Secretion of Cellulases in Trichoderma Reesei Rut-C30. Mol. Microbiol. 2016, 100, 560–575. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, A.; Liu, P.; Fan, X.; Wu, C.; Li, N.; Wei, L.; Wang, W.; Wei, D. ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes on Cellulose in Trichoderma Reesei. Appl. Environ. Microbiol. 2021, 87, e0059321. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wu, C.; Liu, P.; Wang, W.; Wei, D. The Transcription Factor ACE3 Controls Cellulase Activities and Lactose Metabolism via Two Additional Regulators in the Fungus Trichoderma Reesei. J. Biol. Chem. 2019, 294, 18435–18450. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, F.; Wang, L.; Zhao, G.; Chen, G.; Zhang, W.; Liu, W. Rce1, a Novel Transcriptional Repressor, Regulates Cellulase Gene Expression by Antagonizing the Transactivator Xyr1 in Trichoderma Reesei. Mol. Microbiol. 2017, 105, 65–83. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Liu, P.; Lin, A.; Fan, X.; Wu, C.; Li, N.; Wei, L.; Wei, D. The Novel Repressor Rce2 Competes with Ace3 to Regulate Cellulase Gene Expression in the Filamentous Fungus Trichoderma Reesei. Mol. Microbiol. 2021, 116, 1298–1314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniêto, A.C.C.; Maués, D.B.; Candido, M.; Taveira, I.C.; Silva, R.N. Rme1: Unveiling a Novel Repressor in the Cellulolytic Pathway of Trichoderma reesei. J. Fungi 2025, 11, 658. https://doi.org/10.3390/jof11090658
Antoniêto ACC, Maués DB, Candido M, Taveira IC, Silva RN. Rme1: Unveiling a Novel Repressor in the Cellulolytic Pathway of Trichoderma reesei. Journal of Fungi. 2025; 11(9):658. https://doi.org/10.3390/jof11090658
Chicago/Turabian StyleAntoniêto, Amanda Cristina Campos, David Batista Maués, Marcelo Candido, Iasmin Cartaxo Taveira, and Roberto N. Silva. 2025. "Rme1: Unveiling a Novel Repressor in the Cellulolytic Pathway of Trichoderma reesei" Journal of Fungi 11, no. 9: 658. https://doi.org/10.3390/jof11090658
APA StyleAntoniêto, A. C. C., Maués, D. B., Candido, M., Taveira, I. C., & Silva, R. N. (2025). Rme1: Unveiling a Novel Repressor in the Cellulolytic Pathway of Trichoderma reesei. Journal of Fungi, 11(9), 658. https://doi.org/10.3390/jof11090658