Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness
Abstract
1. Introduction
2. Medically Important Fungi with the Potential for Zoonotic Transmission to Humans in Africa
2.1. Emergomycosis
2.2. Blastomycosis
2.3. Coccidomycosis
2.4. Cryptococosis
2.5. Dermatophytosis
2.6. Histoplasmosis
2.7. Sporotrichosis
2.8. Talaromycosis
2.9. Lobomycosis
2.10. Paracoccidioidomycosis
2.11. Aspergillosis
2.12. Eumycetoma
2.13. Malassezia Infection (Pityriasis)
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIDS | Acquired Immunodeficiency Syndrome |
CNS | Central nervous system |
HIV | Human Immunodeficiency Virus |
Appendix A
References
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal Diseases as Neglected Pathogens: A Wake-Up Call to Public Health Officials. In Advances in Clinical Immunology, Medical Microbiology, COVID-19, and Big Data; Jenny Stanford Publishing: Singapore, 2021; ISBN 978-1-00-318043-2. [Google Scholar]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Vallabhaneni, S.; Mody, R.K.; Walker, T.; Chiller, T. The Global Burden of Fungal Diseases. Infect. Dis. Clin. N. Am. 2016, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Rayens, E.; Norris, K.A. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, ofab593. [Google Scholar] [CrossRef] [PubMed]
- Low, C.-Y.; Rotstein, C. Emerging Fungal Infections in Immunocompromised Patients. F1000 Med. Rep. 2011, 3, 14. [Google Scholar] [CrossRef]
- Kundu, R.; Bansal, Y.; Singla, N. The Zoonotic Potential of Fungal Pathogens: Another Dimension of the One Health Approach. Diagnostics 2024, 14, 2050. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- American Academy of Microbiology Colloquia Reports. One Health: Fungal Pathogens of Humans, Animals, and Plants. In Report on an American Academy of Microbiology Colloquium Held in Washington, DC, on October 18, 2017; American Society for Microbiology: Washington, DC, USA, 2019. [Google Scholar]
- Carpouron, J.E.; de Hoog, S.; Gentekaki, E.; Hyde, K.D. Emerging Animal-Associated Fungal Diseases. J. Fungi 2022, 8, 611. [Google Scholar] [CrossRef]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Vinayagamoorthy, K.; Gangavaram, D.R.; Skiada, A.; Prakash, H. Emergomycosis, an Emerging Thermally Dimorphic Fungal Infection: A Systematic Review. J. Fungi 2023, 9, 1039. [Google Scholar] [CrossRef]
- He, D.; Quan, M.; Zhong, H.; Chen, Z.; Wang, X.; He, F.; Qu, J.; Zhou, T.; Lv, X.; Zong, Z. Emergomyces Orientalis Emergomycosis Diagnosed by Metagenomic Next-Generation Sequencing. Emerg. Infect. Dis. 2021, 27, 2740–2742. [Google Scholar] [CrossRef]
- Schwartz, I.S.; Lerm, B.; Hoving, J.C.; Kenyon, C.; Horsnell, W.G.; Basson, W.J.; Otieno-Odhiambo, P.; Govender, N.P.; Colebunders, R.; Botha, A. Emergomyces Africanus in Soil, South Africa. Emerg. Infect. Dis. 2018, 24, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Samaddar, A.; Sharma, A. Emergomycosis, an Emerging Systemic Mycosis in Immunocompromised Patients: Current Trends and Future Prospects. Front. Med. 2021, 8, 670731. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Krishnamurthy, K. Blastomycosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Schwartz, I.S.; Muñoz, J.F.; Kenyon, C.R.; Govender, N.P.; McTaggart, L.; Maphanga, T.G.; Richardson, S.; Becker, P.; Cuomo, C.A.; McEwen, J.G.; et al. Blastomycosis in Africa and the Middle East: A Comprehensive Review of Reported Cases and Reanalysis of Historical Isolates Based on Molecular Data. Clin. Infect. Dis. 2021, 73, e1560–e1569. [Google Scholar] [CrossRef] [PubMed]
- Pullen, M.F.; Alpern, J.D.; Bahr, N.C. Blastomycosis—Some Progress but Still Much to Learn. J. Fungi 2022, 8, 824. [Google Scholar] [CrossRef]
- Linder, K.A.; Kauffman, C.A.; Miceli, M.H. Blastomycosis: A Review of Mycological and Clinical Aspects. J. Fungi 2023, 9, 117. [Google Scholar] [CrossRef]
- Akram, S.M.; Koirala, J. Coccidioidomycosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Kirkland, T.N.; Fierer, J. Coccidioides Immitis and Posadasii; A Review of Their Biology, Genomics, Pathogenesis, and Host Immunity. Virulence 2018, 9, 1426–1435. [Google Scholar] [CrossRef]
- Crum, N.F. Coccidioidomycosis: A Contemporary Review. Infect. Dis. Ther. 2022, 11, 713–742. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Chaturvedi, S. Cryptococcus Gattii: A Resurgent Fungal Pathogen. Trends Microbiol. 2011, 19, 564–571. [Google Scholar] [CrossRef]
- Pescador Ruschel, M.A.; Thapa, B. Cryptococcal Meningitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Kruithoff, C.; Gamal, A.; McCormick, T.S.; Ghannoum, M.A. Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life 2023, 14, 1. [Google Scholar] [CrossRef]
- Keshwania, P.; Kaur, N.; Chauhan, J.; Sharma, G.; Afzal, O.; Alfawaz Altamimi, A.S.; Almalki, W.H. Superficial Dermatophytosis across the World’s Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS Omega 2023, 8, 31575–31599. [Google Scholar] [CrossRef]
- Segal, E.; Elad, D. Human and Zoonotic Dermatophytoses: Epidemiological Aspects. Front. Microbiol. 2021, 12, 713532. [Google Scholar] [CrossRef] [PubMed]
- Kottferová, L.; Molnár, L.; Major, P.; Sesztáková, E.; Kuzyšinová, K.; Vrabec, V.; Kottferová, J. Hedgehog Dermatophytosis: Understanding Trichophyton Erinacei Infection in Pet Hedgehogs and Its Implications for Human Health. J. Fungi 2023, 9, 1132. [Google Scholar] [CrossRef] [PubMed]
- Aimoldina, A.; Smagulova, A.; Batpenova, G.; Konnikov, N.; Algazina, T.; Jetpisbayeva, Z.; Azanbayeva, D.; Amantayev, D.; Kiyan, V. Mycological Profile and Associated Factors Among Patients with Dermatophytosis in Astana, Kazakhstan. J. Fungi 2025, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Madhu, R. The Great Indian Epidemic of Superficial Dermatophytosis: An Appraisal. Indian. J. Dermatol. 2017, 62, 227–236. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton Indotineae-An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide-A Multidimensional Perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef]
- Deng, R.; Wang, X.; Li, R. Dermatophyte Infection: From Fungal Pathogenicity to Host Immune Responses. Front. Immunol. 2023, 14, 1285887. [Google Scholar] [CrossRef]
- Sonego, B.; Corio, A.; Mazzoletti, V.; Zerbato, V.; Benini, A.; di Meo, N.; Zalaudek, I.; Stinco, G.; Errichetti, E.; Zelin, E. Trichophyton Indotineae, an Emerging Drug-Resistant Dermatophyte: A Review of the Treatment Options. J. Clin. Med. 2024, 13, 3558. [Google Scholar] [CrossRef]
- Akram, S.M.; Koirala, J. Histoplasmosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ocansey, B.K.; Kosmidis, C.; Agyei, M.; Dorkenoo, A.M.; Ayanlowo, O.O.; Oladele, R.O.; Darre, T.; Denning, D.W. Histoplasmosis in Africa: Current Perspectives, Knowledge Gaps, and Research Priorities. PLoS Negl. Trop. Dis. 2022, 16, e0010111. [Google Scholar] [CrossRef]
- Falci, D.R.; Monteiro, A.A.; Braz Caurio, C.F.; Magalhães, T.C.O.; Xavier, M.O.; Basso, R.P.; Melo, M.; Schwarzbold, A.V.; Ferreira, P.R.A.; Vidal, J.E.; et al. Histoplasmosis, An Underdiagnosed Disease Affecting People Living With HIV/AIDS in Brazil: Results of a Multicenter Prospective Cohort Study Using Both Classical Mycology Tests and Histoplasma Urine Antigen Detection. Open Forum Infect. Dis. 2019, 6, ofz073. [Google Scholar] [CrossRef]
- de Lima Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix Schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef]
- Martínez-Herrera, E.; Arenas, R.; Hernández-Castro, R.; Frías-De-León, M.G.; Rodríguez-Cerdeira, C. Uncommon Clinical Presentations of Sporotrichosis: A Two-Case Report. Pathogens 2021, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Orofino-Costa, R.; de Macedo, P.M.; Rodrigues, A.M.; Bernardes-Engemann, A.R. Sporotrichosis: An Update on Epidemiology, Etiopathogenesis, Laboratory and Clinical Therapeutics. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, R.; Chen, S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces Marneffei. Clin. Microbiol. Rev. 2023, 36, e0005122. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, M. Talaromyces marneffei. Emerg. Infect. Dis. 2021, 27, 2278. [Google Scholar] [CrossRef]
- Pruksaphon, K.; Nosanchuk, J.D.; Ratanabanangkoon, K.; Youngchim, S. Talaromyces Marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J. Fungi 2022, 8, 200. [Google Scholar] [CrossRef]
- Francesconi, V.A.; Klein, A.P.; Santos, A.P.B.G.; Ramasawmy, R.; Francesconi, F. Lobomycosis: Epidemiology, Clinical Presentation, and Management Options. Ther. Clin. Risk Manag. 2014, 10, 851–860. [Google Scholar] [CrossRef]
- Cordova, L.A.; Torres, J. Paracoccidioidomycosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Marques, S. A Paracoccidioidomycosis: Epidemiological, clinical, diagnostic and treatment up-dating. An. Bras. Dermatol. 2013, 88, 700–711. [Google Scholar] [CrossRef]
- Bocca, A.L.; Amaral, A.C.; Teixeira, M.M.; Sato, P.K.; Shikanai-Yasuda, M.A.; Soares Felipe, M.S. Paracoccidioidomycosis: Eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol. 2013, 8, 1177–1191. [Google Scholar] [CrossRef]
- San-Blas, G. Paracoccidioidomycosis and its etiologic agent Paracoccidioides brasiliensis. J. Med. Vet. Mycol. 1993, 31, 99–113. [Google Scholar]
- Giusiano, G.; Aguirre, C.; Vratnica, C.; Rojas, F.; Corallo, T.; Cattana, M.E.; Fernández, M.; Mussin, J.; de Los Angeles Sosa, M. Emergence of acute/subacute infant-juvenile paracoccidioidomycosis in Northeast Argentina: Effect of climatic and anthropogenic changes? Med. Mycol. 2019, 57, 30–37. [Google Scholar] [CrossRef]
- Brummer, E.; Castaneda, E.; Restrepo, A. Paracoccidioidomycosis: An Update. Clin. Microbiol. Rev. 1993, 6, 89–117. [Google Scholar] [CrossRef]
- Burger, E. Paracoccidioidomycosis Protective Immunity. J. Fungi 2021, 7, 137. [Google Scholar] [CrossRef]
- Marques, S.A.; Lastória, J.C.; de Camargo, R.M.P.; Marques, M.E.A. Paracoccidioidomycosis: Acute-Subacute Clinical Form, Juvenile Type. Bras. Dermatol. 2016, 91, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Kibone, W.; Okot, J.; Nsenga, L.; Olum, R.; Baluku, J.B. Fungal Diseases in Africa: Epidemiologic, Diagnostic and Therapeutic Advances. Ther. Adv. Infect. Dis. 2022, 9, 20499361221081441. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Ekeng, B.E.; Kibone, W.; Nsenga, L.; Olum, R.; Itam-Eyo, A.; Kuate, M.P.N.; Pebolo, F.P.; Davies, A.A.; Manga, M.; et al. Invasive Fungal Diseases in Africa: A Critical Literature Review. J. Fungi 2022, 8, 1236. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus Species in Indoor Environments and Their Possible Occupational and Public Health Hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef]
- Sugui, J.A.; Kwon-Chung, K.J.; Juvvadi, P.R.; Latgé, J.P.; Steinbach, W.J. Aspergillus fumigatus and related species. Cold Spring Harb. Perspect. Med. 2014, 5, a019786. [Google Scholar] [CrossRef]
- Zaini, F.; Lotfali, E.; Fattahi, A.; Siddig, E.; Farahyar, S.; Kouhsari, E.; Saffari, M. Voriconazole resistance genes in Aspergillus flavus clinical isolates. J. Mycol. Medicale 2020, 30, 100953. [Google Scholar] [CrossRef]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef]
- Fosses Vuong, M.; Hollingshead, C.M.; Waymack, J.R. Aspergillosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kang, Y.; Li, Q.; Ma, W.; Xu, C.; Jia, W.; Wang, P. Epidemiological characteristics of patients with invasive pulmonary aspergillosis infected with Aspergillus fumigatus from a tertiary hospital in Ningxia, China. Sci. Rep. 2025, 15, 13036. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Kumar, S. Aspergillosis: A comprehensive review of pathogenesis, drug resistance, and emerging therapeutics. J. Food Drug Anal. 2025, 33, 75–96. [Google Scholar] [CrossRef]
- Pham, T.Q.; Delorme, L.; Cortaredona, S.; Ranque, S.; Menu, E. Pulmonary Aspergillosis: Epidemiology and unresolved diagnostic challenges–insights from a two-year retrospective cohort study in Marseille. Respir. Med. 2025, 2025245, 108206. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Ha, X.; Song, Y. Evaluation of the clinical characteristics and survival outcomes of invasive pulmonary aspergillosis patients. Front. Microbiol. 2025, 16, 1587227. [Google Scholar] [CrossRef] [PubMed]
- Sisodia, J.; Bajaj, T. Allergic Bronchopulmonary Aspergillosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Siddig, E.E.; Ahmed, A. The Urgent Need for Developing and Implementing a Multisectoral One Health Strategy for the Surveillance, Prevention, and Control of Eumycetoma. IJID One Health 2024, 5, 100048. [Google Scholar] [CrossRef]
- Develoux, M. Epidemiologic Aspects of Mycetoma in Africa. J. Fungi 2022, 8, 1258. [Google Scholar] [CrossRef]
- Siddig, E.E.; Aradaib, I.E.; Ahmed, A. A study of case management challenge for black grain eumycetoma during the ongoing war in Sudan. Clin. Case Rep. 2024, 12, e9438. [Google Scholar] [CrossRef]
- Hashizume, H.; Taga, S.; Sakata, M.K.; Hussein, M.; Siddig, E.E.; Minamoto, T.; Fahal, A.H.; Kaneko, S. Environmental detection of eumycetoma pathogens using multiplex real-time PCR for soil DNA in Sennar State, Sudan. Trop. Med. Health 2023, 51, 71. [Google Scholar] [CrossRef]
- Santona, A.; Mhmoud, N.A.; Siddig, E.E.; Deligios, M.; Fiamma, M.; Bakhiet, S.M.; Barac, A.; Paglietti, B.; Rubino, S.; Fahal, A.H. Metagenomics of black grains: New highlights in the understanding of eumycetoma. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 307–314. [Google Scholar] [CrossRef]
- Muvunyi, C.M.; Ngabonziza, J.C.S.; Florence, M.; Mukagatare, I.; Twagirumukiza, M.; Ahmed, A.; Siddig, E.E. Diversity and Distribution of Fungal Infections in Rwanda: High Risk and Gaps in Knowledge, Policy, and Interventions. J. Fungi 2024, 10, 658. [Google Scholar] [CrossRef]
- Yoshioka, I.; Mori, Y.; Fahal, A.H.; Siddig, E.E.; Kaneko, S.; Yaguchi, T. Specific and sensitive loop-mediated isothermal amplification (LAMP) method for Madurella strains, eumycetoma filamentous fungi causative agent. PLoS Neglected Trop. Dis. 2023, 17, e0011644. [Google Scholar] [CrossRef]
- Ahmed, S.A.; El-Sobky, T.A.; De Hoog, S.; Zaki, S.M.; Taha, M. A scoping review of mycetoma profile in Egypt: Revisiting the global endemicity map. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oladele, R.O.; Ly, F.; Sow, D.; Akinkugbe, A.O.; Ocansey, B.K.; Fahal, A.H.; van De Sande, W.W. Mycetoma in West Africa. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.T.H.; Siddig, E.E.; Ngabonziza, J.C.S.; Muvunyi, C.M.; Ahmed, A. A Case Report of Venous Ulcer Mimicking Cutaneous Leishmaniasis. Clin. Case Rep. 2025, 13, e70648. [Google Scholar] [CrossRef] [PubMed]
- Konings, M.; Siddig, E.; Eadie, K.; Minlekib, C.P.; Faye, M.; Sow, D.; Fahal, A.; Verbon, A.; van de Sande, W. The development of a multiplex recombinase polymerase amplification reaction to detect the most common causative agents of eumycetoma. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1705–1714. [Google Scholar] [CrossRef]
- Salmanton-García, J.; Falci, D.R.; Cornely, O.A.; Pasqualotto, A.C.; IFI Diagnostic and Treatment Capacity Teams Brazil and Europe. Elevating fungal care: Bridging Brazil’s healthcare practices to global standards. Microbiol. Spectr. 2025, 13, e0211224. [Google Scholar] [CrossRef]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef]
- Rahimlou, S.; Amend, A.S.; James, T.Y. Malassezia in environmental studies is derived from human inputs. mBio 2025, 16, e0114225. [Google Scholar] [CrossRef]
- Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J. Fungi 2022, 8, 708. [Google Scholar] [CrossRef]
- Badiane, A.S.; Ramarozatovo, L.S.; Doumbo, S.N.; Dorkenoo, A.M.; Mandengue, C.; Dunaisk, C.M.; Ball, M.; Dia, M.K.; Ngaya, G.S.L.; Mahamat, H.H.; et al. Diagnostic Capacity for Cutaneous Fungal Diseases in the African Continent. Int. J. Dermatol. 2023, 62, 1131–1141. [Google Scholar] [CrossRef]
- Bongomin, F.; Ekeng, B.E.; Kwizera, R.; Salmanton-García, J.; Kibone, W.; van Rhijn, N.; Govender, N.P.; Meya, D.B.; Osaigbovo, I.I.; Hamer, D.H.; et al. Fungal diseases in Africa: Closing the gaps in diagnosis and treatment through implementation research and advocacy. J. Mycol. Medicale 2023, 33, 101438. [Google Scholar] [CrossRef] [PubMed]
- Jafarlou, M. Unveiling the menace: A thorough review of potential pandemic fungal disease. Front. Fungal Biol. 2024, 5, 1338726. [Google Scholar] [CrossRef] [PubMed]
- Pantić, N.; Barać, A.; Mano, V.; Dedeić-Ljubović, A.; Malkodanski, I.; Jaksić, O.; Gkentzi, D.; Mitrović, M.; Munteanu, O.; Šišević, D.; et al. Mapping the path to excellence: Evaluation of the diagnostic and treatment tools for invasive fungal infections in the balkans. J. Infect. Public Health 2024, 17, 102493. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, B.; Varela, D.; Fontecha, G.; Torres, K.; Cornely, O.A.; Salmanton-García, J. Strengthening Fungal Infection Diagnosis and Treatment: An In-depth Analysis of Capabilities in Honduras. Open Forum Infect. Dis. 2024, 11, ofae578. [Google Scholar] [CrossRef]
- Prattes, J.; Heldt, S.; Eigl, S.; Hoenigl, M. Point of Care Testing for the Diagnosis of Fungal Infections: Are We There Yet? Curr. Fungal Infect. Rep. 2016, 10, 43–50. [Google Scholar] [CrossRef]
- Luethy, P.M. Point-of-Care Testing for the Diagnosis of Fungal Infections: Current Testing Applications and Potential for the Future. Clin. Lab. Med. 2023, 43, 209–220. [Google Scholar] [CrossRef]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57 (Suppl. S3), S139–S170. [Google Scholar] [CrossRef]
- Pagano, L.; Fernández, O.M. Clinical aspects and recent advances in fungal diseases impacting human health. J. Antimicrob. Chemother. 2025, 80 (Suppl. S1), i2–i8. [Google Scholar] [CrossRef]
- Ma, Y.; Cen, W.; Duan, M.; Yang, J.; Wang, Y.; Gao, L.; Miao, G.; Feng, W. Patients knowledge attitudes and practices regarding superficial fungal infections suggest public health and patient education are warranted. Sci. Rep. 2025, 15, 15112. [Google Scholar] [CrossRef]
- Gashema, P.; Sesonga, P.; Iradukunda, P.G.; Muvunyi, R.; Mugisha, J.C.; Ndayisenga, J.; Musafiri, T.; Habimana, R.; Bigirimana, R.; Kabanda, A.; et al. Enhancing Global Health Security in Sub-Saharan Africa: The case for integrated One Health surveillance against zoonotic diseases and environmental threats. One Health 2025, 21, 101136. [Google Scholar] [CrossRef]
Disease | Causative Agents | Animal Hosts | Mode of Transmission | Clinical Manifestation in Animals | Clinical Manifestation in Humans |
---|---|---|---|---|---|
Emergomycosis | Emmonsia spp. | Rodents | Inhalation of the fungus | Deep mycosis | Disseminated mycosis |
Blastomycosis | Blastomyces dermatitidis | Cats, dogs, horses, marine mammals | Inhalation of airborne conidia | Cutaneous, pulmonary, disseminated infection | Cutaneous, pulmonary, disseminated infection |
Coccidomycosis | Coccidioides immitis; Coccidioides posadasii | Cattle, cats, dogs, horses, snakes, reptiles, marine mammals | Inhalation of conidia and skin trauma | Self-limiting to chronic dissemination | Cutaneous, pulmonary, disseminated infection |
Cryptococosis | Cryptococcus neoformans; Cryptococcus gattii | Cattle, goats, cats, dogs, horses, marine mammals | Inhalation of the fungus; implantation of the fungus into the skin | Respiratory tract, CNS, eyes, and skin | Cutaneous, eye, respiratory, and central nervous system infection |
Dermatophytosis | Microsporum spp.; Trichophyton spp. | Cats, dogs, cattle, goats, horses, camels, pigs, rodents, bats | Direct contact with the infected animals or material contaminated from the site of the infection | Ring lesion with central healing and crusts at the peripheral area, some degree of folliculitis | Tinea |
Histoplasmosis | Histoplasma capsulatum | Cattle, sheep, horses, dogs, cats, birds, bats, rats, skunks, opossums | Inhalation of the fungus | Cutaneous, pulmonary, disseminated infection | Cutaneous, pulmonary, disseminated infection |
Sporotrichosis | Sporothrix schenckii; Sporothix brasiliensis | Dogs, cats, horses, cows, camels, dolphins, goats, mules, birds, pigs, rats, armadillos | Direct inoculation of the organism into skin wounds via contact with plants, soil, or penetrating foreign bodies | Lymphocutaneous, cutaneous, and disseminated | Lymphocutaneous, cutaneous, and disseminated |
Talaromycosis | Talaromyces marneffei | Bamboo rats, dogs, cats | Unknown, but it is hypothesized that it occurs by inhalation of the fungus from the environment | Cutaneous, respiratory, and disseminated disease | Cutaneous, respiratory, and disseminated disease |
Lobomycosis | Lacazia loboi | Dolphins | Traumatic inoculation | Cutaneous disease | Cutaneous disease |
Paracoccidomycosis | Paracoccidioides brasiliensis; Paracoccidioides lutzii | Dogs, armadillos, monkeys | Inhalation of the fungus, inoculation of the organism into the subcutaneous tissues | Cutaneous (skin ulcers), adenitis, and disseminated disease | Mucocutenous, respiratory and disseminated disease |
Aspergillosis | Aspergillus spp. | Domestic animals (dogs, horses, cats, poultry), birds, wildlife | Inhalation of airborne spores | Pulmonary mainly; cutaneous and disseminated | Pulmonary mainly; cutaneous and disseminated |
Eumycetoma | More than 70 fungal species; most prevalent ones include Madurella spp.; Falciformispora spp.; Fusarium spp.; Medicopsis spp. | Cats, dogs, horses, turtles, fish, cattle, tigers | Inoculation of the causative agents into the subcutaneous tissue | Subcutaneous disease mainly; however, disseminated infection can also occur | Subcutaneous disease if the disease affected the extremities; respiratory (lung involvement); CNS |
Malassezia infection (pityriasis) | Malassezia spp. | Dogs, cats, cows, sheep, pigs, horses, wild animals | Normal commensals of the skin | Dermatitis, alopecia, stenosis, otitis externa | Chronic superficial disease of the skin (pityriasis versicolor), folliculitis, seborrhoeic dermatitis and dandruff, fungaemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Mohamed, N.S.; Siddig, E.E. Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness. J. Fungi 2025, 11, 569. https://doi.org/10.3390/jof11080569
Ahmed A, Mohamed NS, Siddig EE. Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness. Journal of Fungi. 2025; 11(8):569. https://doi.org/10.3390/jof11080569
Chicago/Turabian StyleAhmed, Ayman, Nouh Saad Mohamed, and Emmanuel Edwar Siddig. 2025. "Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness" Journal of Fungi 11, no. 8: 569. https://doi.org/10.3390/jof11080569
APA StyleAhmed, A., Mohamed, N. S., & Siddig, E. E. (2025). Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness. Journal of Fungi, 11(8), 569. https://doi.org/10.3390/jof11080569