Fungi in the Chilean Altiplano: Analyses of Diversity and Yeasts with Applied Enzymatic Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Locations and Characterization of Soil Samples
2.2. Extraction of DNA from Soil, Preparation of Libraries, and DNA Sequencing
2.3. Sequence Processing and Taxonomic Identification
2.4. Data Processing and Statistical Analysis of Data
2.5. Isolation and Identification of Yeasts
2.6. Evaluation of Isolates for Growth at Different Temperatures and Carbon Sources, and Secretion of Enzymes
2.7. Extraction of Extracellular Proteins and Enzyme Activity Assays
3. Results
3.1. Fungal Diversity Determined by Amplicon Metagenomics
3.2. Fungal Diversity Comparison Among Sites
3.3. Isolation and Identification of Yeasts
3.4. Growth Temperatures of Yeasts
3.5. Yeast Growth on Different Carbon Sources
3.6. Extracellular Enzyme Activity of Yeasts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bofpari1 | Bofedal de Parinacota site1 |
Bofpari2 | Bofedal de Parinacota site2 |
Chung1 | Lago Chungará site1 |
Chung2 | Lago Chungará site2 |
Chung3 | Lago Chungará site3 |
Chung4 | Lago Chungará site4 |
Crist2 | Cristo Redentor site2 |
Crist3 | Cristo Redentor site3 |
Cuev1 | Guardería Las Cuevas site1 |
Cuev2 | Guardería Las Cuevas site2 |
Nevpu1 | Nevados de Putre site1 |
Nevpu2 | Nevados de Putre site2 |
Nevpu3 | Nevados de Putre site3 |
Nevpu4 | Nevados de Putre site4 |
Paya1 | Mirador Payachatas site1 |
Paya2 | Mirador Payachatas site2 |
Ara | arabinose |
Cel | cellobiose |
Gal | galactose |
Glu | glucose |
Gly | glycerol |
Lac | lactose |
Mal | maltose |
Man | mannitol |
Mel | melibiose |
Raf | raffinose |
Rha | rhamnose |
Rib | ribose |
Sac | saccharose |
Sor | sorbitol |
Tre | trehalose |
Xyl | xylose |
References
- Coleine, C.; Stajich, J.E.; Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. 2022, 37, 517–528. [Google Scholar] [CrossRef]
- Selbmann, L.; Egidi, E.; Isola, D.; Onofri, S.; Zucconi, L.; de Hoog, G.S.; Chinaglia, S.; Testa, L.; Tosi, S.; Balestrazzi, A.; et al. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst. 2013, 147, 237–246. [Google Scholar] [CrossRef]
- Bahram, M.; Netherway, T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. 2022, 46, fuab058. [Google Scholar] [CrossRef]
- Botha, A. The importance and ecology of yeasts in soil. Soil. Biol. Biochem. 2011, 43, 1–8. [Google Scholar] [CrossRef]
- Devi, R.P.; Yamunasri, P.; Balachandar, D.; Murugananthi, D. Potentials of Soil Yeasts for Plant Growth and Soil Health in Agriculture: A Review. J. Pure Appl. Microbiol. 2025, 19, 1–18. [Google Scholar] [CrossRef]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Yurkov, A.M. Yeasts of the soil—Obscure but precious. Yeast 2018, 35, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Flores, O.; Alcaíno, J.; Cifuentes, V. Yeast Thriving in Cold Terrestrial Habitats: Biodiversity and Industrial/Biotechnological Applications. In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Springer International Publishing: Cham, Switzerland, 2019; pp. 253–268. [Google Scholar]
- Buzzini, P.; Turchetti, B.; Yurkov, A. Extremophilic yeasts: The toughest yeasts around. Yeast 2018, 35, 487–497. [Google Scholar] [CrossRef]
- Buzzini, P.; Lachance, M.-A.; Yurkov, A. Yeasts in Natural Ecosystems: Ecology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Buzzini, P.; Margesin, R. Cold-Adapted Yeasts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Boekhout, T.; Amend, A.S.; El Baidouri, F.; Gabaldón, T.; Geml, J.; Mittelbach, M.; Robert, V.; Tan, C.S.; Turchetti, B.; Vu, D.; et al. Trends in yeast diversity discovery. Fungal Divers. 2022, 114, 491–537. [Google Scholar] [CrossRef]
- Liu, L.; Hart, M.M.; Zhang, J.; Cai, X.; Gai, J.; Christie, P.; Li, X.; Klironomos, J.N.; Anderson, I. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiol Ecol. 2015, 91, fiv078. [Google Scholar] [CrossRef]
- Liu, D.; Wang, H.; An, S.; Bhople, P.; Davlatbekov, F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci. Total Environ. 2019, 660, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, N.; Yu, L. Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles 2020, 24, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Gao, Q.B.; Zhang, F.Q.; Wang, J.L.; Chen, S.L. Environmental filtering affects fungal communities more than dispersal limitation in a high-elevation hyperarid basin on Qinghai-Tibet Plateau. FEMS Microbiol Lett. 2021, 368, fnab033. [Google Scholar] [CrossRef]
- Hussain, S.; Liu, H.; Liu, S.; Yin, Y.; Yuan, Z.; Zhao, Y.; Cao, H. Distribution and Assembly Processes of Soil Fungal Communities along an Altitudinal Gradient in Tibetan Plateau. J. Fungi 2021, 7, 1082. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Z.; Liu, S.; Zhang, M.; Cao, X.; Chen, M.; Xu, G.; Xing, H.; Li, F.; Feng, Q. Altitudinal Variation Influences Soil Fungal Community Composition and Diversity in Alpine-Gorge Region on the Eastern Qinghai-Tibetan Plateau. J. Fungi 2022, 8, 807. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wu, J.H.; Sun, Y.X.; Zhang, Y.Y.; Zhao, Y.F.; Huang, Z.; Duan, W.H. Climate and geochemistry at different altitudes influence soil fungal community aggregation patterns in alpine grasslands. Sci. Total Environ. 2023, 881, 163375. [Google Scholar] [CrossRef]
- Zeng, Q.; Lebreton, A.; Auer, L.; Man, X.; Jia, L.; Wang, G.; Gong, S.; Lombard, V.; Buée, M.; Wu, G.; et al. Stable functional structure despite high taxonomic variability across fungal communities in soils of old-growth montane forests. Microbiome 2023, 11, 217. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Duan, Y.; Sun, H.; Chu, H.; Jia, S.; Chen, H.; Tang, W. Soil fungal communities varied across aspects of restored grassland in former mining areas of the Qinghai-Tibet Plateau. PLoS ONE 2024, 19, e0295019. [Google Scholar] [CrossRef]
- Aceituno, P. Elementos del clima en el Altiplano Sudamericano. Rev. Geofísica-IPGH 1996, 44, 63–69. [Google Scholar]
- Tapia, J.; Murray, J.; Ormachea, M.; Tirado, N.; Nordstrom, D.K. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Sci. Total Environ. 2019, 678, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Aszalós, J.M.; Szabó, A.; Megyes, M.; Anda, D.; Nagy, B.; Borsodi, A.K. Bacterial Diversity of a High-Altitude Permafrost Thaw Pond Located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 2020, 20, 754–765. [Google Scholar] [CrossRef]
- Demergasso, C.; Dorador, C.; Meneses, D.; Blamey, J.; Cabrol, N.; Escudero, L.; Chong, G. Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J. Geophys. Res. Biogeosci. 2010, 115, G00D09. [Google Scholar] [CrossRef]
- Mackie, S.L.; Koduri, G.; Hill, C.L.; Wakefield, R.J.; Hutchings, R.; Loy, C.; Dasgupta, B.; Wyatt, J.C. Soil Bacterial Communities From the Chilean Andean Highlands: Taxonomic Composition and Culturability. Front. Bioeng. Biotechnol. 2019, 7, e000100. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Dorador, C.; Oyanedel, J.P.; Tobar, I.; Hengst, M.; Maya, G.; Harrod, C.; Vila, I. Microbial diversity and trophic components of two high altitude wetlands of the Chilean Altiplano. Earth Sci. Ecol. Environ. Biol. 2015, 79, 45–56. [Google Scholar] [CrossRef]
- Gomez-Montano, L.; Jumpponen, A.; Gonzales, M.; Cusicanqui, J.; Valdivia, C.; Motavalli, P.; Herman, M.; Garrett, K. Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods. Soil. Biol. Biochem. 2013, 65, 50–59. [Google Scholar] [CrossRef]
- Ramirez, A.C.; Bregnard, D.; Junier, T.; Cailleau, G.; Dorador, C.; Bindschedler, S.; Junier, P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol. 2023, 23, 68. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Lab Press: New York, NY, USA, 2001. [Google Scholar]
- Fehlmann, T.; Reinheimer, S.; Geng, C.; Su, X.; Drmanac, S.; Alexeev, A.; Zhang, C.; Backes, C.; Ludwig, N.; Hart, M.; et al. cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs. Clin. Epigenetics 2016, 8, 123. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- BBTools. Available online: http://jgi.doe.gov/data-and-tools/bbtools/ (accessed on 10 August 2024).
- Murali, A.; Bhargava, A.; Wright, E.S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- Wright, E.S. Using DECIPHERv2 0 to analyze big biological sequence data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- UNITE Community. UNITE General FASTA Release for Fungi 2, Version 04.02.2020; UNITE Community: London, UK, 2020. [Google Scholar]
- Trees, R.P. The neighbor-joining method: A new method for. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Friedman, J.; Alm, E.J. Inferring correlation networks from genomic survey data. Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 219. [Google Scholar] [CrossRef]
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure Dynamics Function using NetworkX. In Proceedings of the Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; pp. 11–15. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Michel, V.; Gramfort, A.; Varoquaux, G.; Eger, E.; Keribin, C.; Thirion, B. A supervised clustering approach for fMRI-based inference of brain states. Pattern Recognit. 2012, 45, 2041–2049. [Google Scholar] [CrossRef]
- Baeza, M.; Retamales, P.; Sepúlveda, D.; Lodato, P.; Jiménez, A.; Cifuentes, V. Isolation, characterization and long term preservation of mutant strains of Xanthophyllomyces dendrorhous. J. Basic. Microbiol. 2009, 49, 135–141. [Google Scholar] [CrossRef]
- Marangon, A.V.; Bertoni, T.A.; Kioshima, E.S.; Falleiros De Pádua, R.A.; Venturini, S.; Svidzinski, T.I. Dehydrated gelatin drops: A good method for fungi maintenance and preservation. New Microbiol. 2003, 26, 305–309. [Google Scholar] [PubMed]
- Fujita, S.I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef] [PubMed]
- Hankin, L.; Anagnostakis, S.L. The use of solid media for detection of enzyme production by fungi. Mycologia 1975, 67, 597–607. [Google Scholar] [CrossRef]
- Strauss, M.L.; Jolly, N.P.; Lambrechts, M.G.; van Rensburg, P. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 2001, 91, 182–190. [Google Scholar] [CrossRef]
- Teather, R.M.; Wood, P.J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 1982, 43, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Slifkin, M. Tween 80 opacity test responses of various Candida species. J. Clin. Microbiol. 2000, 38, 4626–4628. [Google Scholar] [CrossRef] [PubMed]
- Pathan, A.A.; Bhadra, B.; Begum, Z.; Shivaji, S. Diversity of yeasts from puddles in the vicinity of midre lovénbreen glacier, arctic and bioprospecting for enzymes and fatty acids. Curr. Microbiol. 2010, 60, 307–314. [Google Scholar] [CrossRef]
- Bains, J.; Capalash, N.; Sharma, P. Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol. Lett. 2003, 25, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Casciello, C.; Tonin, F.; Berini, F.; Fasoli, E.; Marinelli, F.; Pollegioni, L.; Rosini, E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnol. Rep. 2017, 13, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.B.; Hilda, A.; Anbu, P. Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 2005, 46, 119–126. [Google Scholar] [CrossRef]
- Buzzini, P.; Martini, A. Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J. Appl. Microbiol. 2002, 93, 1020–1025. [Google Scholar] [CrossRef]
- Suliasih Widawati, S.; Ikhwani, A.Z.N.; Suyadi Sudiana, I.M. Phytase activity of phytase-producing bacteria isolated from mangrove sediment. IOP Conf. Ser. Earth Environ. Sci. 2022, 976, 012041. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Peace, E.; Broda, P. Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl. Microbiol. Biotechnol. 1985, 21, 238–244. [Google Scholar] [CrossRef]
- Tian, J.; Wu, B.; Chen, H.; Jiang, N.; Kang, X.; Liu, X. Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. J. Soils Sediments 2017, 17, 2856–2865. [Google Scholar] [CrossRef]
- Barnes, C.J.; Maldonado, C.; Frøslev, T.G.; Antonelli, A.; Rønsted, N. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes. Front. Microbiol. 2016, 7, 1377. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Alcaíno, J.; Cifuentes, V.; Turchetti, B.; Buzzini, P. Cold-Active Enzymes from Cold-Adapted Yeasts. In Biotechnology of Yeasts Filamentous Fungi; Sibirny, A.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 297–324. [Google Scholar]
- Matinja, A.I.; Kamarudin, N.H.A.; Leow, A.T.C.; Oslan, S.N.; Ali, M.S.M. Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. Int. J. Mol. Sci. 2022, 23, 15394. [Google Scholar] [CrossRef] [PubMed]
- Adapa, V.; Ramya, L.N.; Pulicherla, K.K.; Rao, K.R. Cold active pectinases: Advancing the food industry to the next generation. Appl. Biochem. Biotechnol. 2014, 172, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef]
- Lau, J.T.; Whelan, F.J.; Herath, I.; Lee, C.H.; Collins, S.M.; Bercik, P.; Surette, M.G. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 2016, 8, 72. [Google Scholar] [CrossRef]
- Rodrigues, C.J.C.; de Carvalho, C.C.C.R. Cultivating marine bacteria under laboratory conditions: Overcoming the “unculturable” dogma. Front. Bioeng. Biotechnol. 2022, 10, 964589. [Google Scholar] [CrossRef]
Enzyme Activity | Abbrev. | Medium | Reveal Procedure | Positive Results * | Reference |
---|---|---|---|---|---|
Amylase | Amy | YMG with 0.2% soluble starch | plate flooding with 1 mL of iodine solution | clear halo | [49] |
Alkaline phosphatase | AP | YMG with 0.01 M phenolphthalein diphosphate | plate opened and inverted over a container of ammonium hydroxide | pink halo | [49] |
Cellulase | Cel | YMG with 0.5% carboxymethylcellulose | plate flooded with 1 mg/mL of Congo Red solution for 15 min, poured off, and then flooded with 1 M NaCl for 15 min | clear halo | [50,51] |
Esterase | Est | 1% bacto-peptone, 0.5% NaCl, 0.4% CaCl2 * 2H2O, 1% Tween 80 | - | white precipitate halo | [52] |
Gelatinase | Gel | YMG with 16% gelatin instead of agar | - | liquefaction of gelatine | [53] |
Laccase | Lac | YNB with 1% glucose and 5 mM guaiacol | - | brown halo | [54] |
Ligninase | Lig | YNB with 1% glucose and 0.8 g/L lignin | clear halo | [55] | |
Lipase | Lip | YMG with 1% tributyrin | - | clear halo | [56] |
Pectinase | Pec | 0.67% YNB medium, pH 7.0 with 1% pectin | flooded with 1% hexadecyltrimethylammonium bromide | clear halo | [49,57] |
Phytase | Phy | Medium 0.5% (NH4) 2SO4, 0.01% NaCl, 0.05% KCl, 0.001% FeSO4, 0.01% MgSO4.7H2O, 0.01% CaCl2.2H2O, 0.001% MnSO4, pH 6.0, 0.5% sodium phytate. | - | clear halo | [58] |
Protease | Pro | YMG with 2% casein, pH 6.5 | - | white precipitate halo | [50] |
Xylanase | Xyl | YMG with 0.5% xylane | - | clear halo | [59] |
Yeast Isolate | Amy | AP | Cel | Est | Gel | Lac | Lig | Lip | Pec | Phy | Pro | Xyl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[Candida] sp. T12-26 | - | 6.2 (-) | - | - | - | - | - | 1.5 | - | 6 | 1 | + |
[Cryptococcus] sp. T1-16 | - | - | - | - | +++ | - | - | - | - | - | 7 | - |
C. capitatum T3-3 | 5 (30) | - | - | - | - | - | - | 2.4 | 4.5 (30) | 7 | 2.2 | - |
C. laryngis T12-4 | - | 2.5 | - | - | + | - | - | - | - | 16 | 2.3 | - |
H. festucosa CR3-5 | 2 | - | 3 | 5 (-) | - | - | - | 1.8 | - | - | - | - |
Holtermanniella sp. T3-22 | 5.5 (-) | - | - | 4.7 | - | - | - | 2.5 | - | - | 2.6 | - |
N. adeliensis CR2-8 | 1 | 4.2 | - | 4.1 | - | - | - | - | - | - | 1.6 | + |
N. albidosimilis T4-11 | 1 | 3 | - | 5.4 (10) | - | - | - | 2 | - | - | - | - |
N. albidosimilis T4-24 | - | 3.3 | - | 5 | - | - | - | 2.2 | 4.8 (30) | - | 3.6 | - |
N. bhutanensis T2-15 | - | - | - | - | - | - | - | 3 | 4.6 | - | - | - |
N. vaughanmartiniae T2-21 | 1 | 4 | - | 3.6 | - | - | - | - | 3 | 4 | 5.4 (30) | + |
Naganishia sp. T6-25 | - | 3.8 | - | 4.9 | - | - | - | 1.7 | - | 1 | 2.2 | + |
Naganishia sp. T6-7 | - | 4.3 | - | 4.1 | - | - | - | 2.2 | 1.3 | 4 | - | - |
S. salmonicolor T14-27 | - | 4 | - | - | - | - | - | 2.3 | - | - | 1 | - |
S. salmonicolor T2-23 | - | 3.2 | - | - | - | - | - | - | - | - | - | - |
S. salmonicolor T6-18 | - | 4.6 (-) | - | - | - | - | - | - | - | - | 1 | + |
S. salmonicolor T6-19 | - | 2.3 | - | - | - | - | - | 2.8 (-) | - | 6 | 1 | - |
uncl. Bulleribasidiaceae T3-10 | - | - | - | 2.4 | +++ | - | - | - | - | 9 | 9.6 | - |
V. tephrensis CR3-12 | 2 | - | 5 (30) | 2.4 | - | - | - | 1.7 | - | 3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaíno, J.; Veloso, C.; Coche, M.; Troncoso, D.; Baeza, M. Fungi in the Chilean Altiplano: Analyses of Diversity and Yeasts with Applied Enzymatic Potential. J. Fungi 2025, 11, 561. https://doi.org/10.3390/jof11080561
Alcaíno J, Veloso C, Coche M, Troncoso D, Baeza M. Fungi in the Chilean Altiplano: Analyses of Diversity and Yeasts with Applied Enzymatic Potential. Journal of Fungi. 2025; 11(8):561. https://doi.org/10.3390/jof11080561
Chicago/Turabian StyleAlcaíno, Jennifer, Claudio Veloso, Maximiliano Coche, Danae Troncoso, and Marcelo Baeza. 2025. "Fungi in the Chilean Altiplano: Analyses of Diversity and Yeasts with Applied Enzymatic Potential" Journal of Fungi 11, no. 8: 561. https://doi.org/10.3390/jof11080561
APA StyleAlcaíno, J., Veloso, C., Coche, M., Troncoso, D., & Baeza, M. (2025). Fungi in the Chilean Altiplano: Analyses of Diversity and Yeasts with Applied Enzymatic Potential. Journal of Fungi, 11(8), 561. https://doi.org/10.3390/jof11080561