Culture-Dependent and -Independent Wastewater Surveillance for Multiple Pathogenic Yeasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Yeast Isolation and Identification
2.3. Growth Studies
2.4. DNA Extraction from Wastewater
2.5. Multiplex PCR
3. Results
3.1. Culture-Dependant Surveillance Indicate the Presence of Pathogenic Yeast Species
3.2. Several Species Can Grow in Wastewater
3.3. Culture-Independent Surveillance Identifies Various Pathogenic Yeasts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Sanglard, D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med. 2016, 3, 11. [Google Scholar] [CrossRef]
- Chowdhary, A.; Meis, J.F. Emergence of azole resistant Aspergillus fumigatus and one health: Time to implement environmental stewardship. Environ. Microbiol. 2018, 20, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Snelders, E.; Kema, G.H.J.; Mellado, E.; Melchers, W.J.G. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewater: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Okoh, A.I.; Odjadjare, E.E.; Igbinosa, E.O.; Osode, A.N. Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr. J. Biotechnol. 2007, 6, 2932–2944. [Google Scholar] [CrossRef]
- Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 2004, 154, 105–110. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Leddy, M.; Usmani, M.; Cotruvo, J.A.; Tien, C.T.; Dorsey, S.; Graubics, K.; Fanelli, B.; Zhou, I.; Registe, N.; et al. Microbiome analysis for wastewater surveillance during COVID-19. mBio 2022, 13, e00591-22. [Google Scholar] [CrossRef]
- McCall, C.; Wu, H.; Miyani, B.; Xagoraraki, I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Res. 2020, 184, 116160. [Google Scholar] [CrossRef]
- Anis, E.; Kopel, E.; Singer, S.R.; Kaliner, E.; Moerman, L.; Moran-Gilad, J.; Sofer, D.; Manor, Y.; Shulman, L.M.; Mendelson, E.; et al. Insidious reintroduction of wild poliovirus into Israel. Eurosurveillance 2013, 18, 20586. [Google Scholar] [CrossRef]
- Paul, J.R.; Trask, J.D.; Culotta, C.S. Poliomyelitic virus in sewage. Science 1939, 90, 258–259. [Google Scholar] [CrossRef]
- Wise, J. Poliovirus is detected in sewage from north and east London. BMJ 2022, 377, o1546. [Google Scholar] [CrossRef] [PubMed]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xiao, A.; Zhang, J. Wastewater surveillance of SARS-CoV-2 across 40 U.S. states from February to June 2020. Water Res. 2021, 202, 117400. [Google Scholar] [CrossRef]
- Babler, K.; Sharkey, M.; Arenas, S.; Amirali, A.; Beaver, C.; Comerford, S.; Goodman, K.; Grills, G.; Holung, M.; Kobetz, E.; et al. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. Sci. Total Environ. 2023, 898, 165459. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.; Crank, K.; Papp, K.; Innes, G.K.; Schmitz, B.W.; Chavez, J.; Gerrity, D. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in southern Nevada. Environ. Sci. Technol. 2023, 57, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Chavez, J.; Iverson, T.; Hergert, J.; Oakeson, K.; LaCross, N.; Njoku, C.; Gorzalski, A.; Gerrity, D. Candida auris discovery through community wastewater surveillance during healthcare outbreak, Nevada, USA, 2022. Emerg. Infect. Dis. 2023, 29, 422–425. [Google Scholar] [CrossRef]
- Zulli, A.; Chan, E.M.G.; Shelden, B.; Duong, D.; Xu, X.S.; White, B.J.; Wolfe, M.K.; Boehm, A.B. Prospective study of Candida auris nucleic acids in wastewater solids in 190 wastewater treatment plants in the United States suggests widespread occurrence. mBio 2024, 15, e0090824. [Google Scholar] [CrossRef]
- COVID-19 Prevention Research Programme: Wastewater Surveillance for SARS-CoV-2. Wastewater Sampling Guide. Available online: https://www.samrc.ac.za/wbe/SARS-CoV-2WastewaterCollectionManual.pdf (accessed on 29 September 2024).
- Harrigan, W.F.; McCance, E.M. Laboratory Methods in Microbiology; Academic Press: Cambridge, UK, 1966; Volume 54. [Google Scholar]
- Reyneke, B.; Ndlovu, T.; Khan, S.; Khan, W. Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability. Appl. Microbiol. Biotechnol. 2017, 101, 7371–7383. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Fang, W.; Pan, W.; Lackner, M.; Liao, W.; Padiee, P.; Zomorodian, K.; Badali, H.; Hagen, F.; Lass-Flörl, C.; et al. YEAST PANEL multiplex PCR for identification of clinically important yeast species: Stepwise diagnostic strategy, useful for developing countries. Diagn. Microbiol. Infect. Dis. 2019, 93, 112–119. [Google Scholar] [CrossRef]
- Babič, M.N.; Zalar, P.; Zenko, B.; Džeroski, S.; Gunde-Cimerman, N. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol. 2016, 20, 30–39. [Google Scholar] [CrossRef]
- Monapathi, M.E.; Horn, S.; Vogt, T.; van Wyk, D.; Mienie, C.; Ezeokoli, O.T.; Coertze, R.; Rhode, O.; Bezuidenhout, C.C. Antifungal agents, yeast abundance and diversity in surface water: Potential risks to water users. Chemosphere 2021, 274, 129718. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.O.; Missagia, B.S.; Brandão, L.R.; Callisto, M.; Barbosa, F.A.R.; Rosa, C.A. Water quality and diversity of yeast from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil. Braz. J. Microbiol. 2012, 43, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Basílio, M.C.; Fernandes, D.; Domingues, M.; Paiva, J.M.; Benoliel, M.J.; Crespo, M.T.; San Romão, M.V. Occurrence of filamentous fungi and yeasts in three different drinking water sources. Water Res. 2009, 43, 3813–3819. [Google Scholar] [CrossRef]
- Yamaguchi, M.U.; Rampazzo, R.C.P.; Yamada-Ogatta, S.F.; Nakamura, C.V.; Ueda-Nakamura, T.; Filho, B.P. D Yeasts and filamentous fungi in bottled mineral water and tap water from municipal supplies. Braz. Arch. Biol. Technol. 2007, 50, 1–9. [Google Scholar] [CrossRef]
- Ayanbimpe, G.M.; Abbah, V.E.; Ior, C.A. Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria. Microbiol. Res. 2012, 3, e24. [Google Scholar] [CrossRef]
- Cooke, W.B. Fungi associated with the activated-sludge process of sewage treatment at the Lebanon, Ohio, sewage treatment plant. Ohio J. Sci. 1970, 70, 129–146. [Google Scholar]
- Cooke, W.B.; Pipes, W.O. The occurrence of fungi in activated sludge. Mycopathologia 1969, 40, 249–270. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Okoniewska, E. The comparative mycological analysis of wastewater and sewage sludges from selected wastewater treatment plants. Desalination 2005, 185, 363–370. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Li, X.; Wang, Z.; Xu, Y.; Ren, S.; Chen, X.; Xu, Y.; Hao, H.; Wang, H. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresour. Technol. 2013, 129, 264–273. [Google Scholar] [CrossRef]
- Zein, S.E.I.; Hindy, J.R.; Kanj, S.S. Invasive Saprochaete infections: An emerging threat to immunocompromised patients. Pathogens 2020, 9, 922. [Google Scholar] [CrossRef] [PubMed]
- Nakase, T.; Itoh, M.; Suzuki, M.; Komagata, K.; Kodama, T. Candida palmioleophila sp. nov., a yeast capable of assimilating crude palm oil, formerly identified as Torulopsis candida. J. Gen. Appl. Microbiol. 1988, 34, 493–498. [Google Scholar] [CrossRef]
- Jensen, R.H.; Arendrup, M.C. Candida palmioleophila: Characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. J. Clin. Microbiol. 2011, 49, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Treviño-Trejo, A.A.; Vázquez-Leyva, S.; Vallejo-Castillo, L.; Macías-Palacios, Z.; Pérez-Tapia, S.M.; Cruz-Maya, J.A.; Jan-Roblero, J. Candida palmioleophila Carba14 is capable of degrading carbamazepine. Bioremediation J. 2023, 28, 191–201. [Google Scholar] [CrossRef]
- Parslow, B.Y.; Thornton, C.R. Continuing shifts in epidemiology and antifungal susceptibility highlight the need for improved disease management of invasive candidiasis. Microorganisms 2022, 10, 1208. [Google Scholar] [CrossRef] [PubMed]
- Chamnipa, N.; Thanonkeo, S.; Klanrit, P.; Thanonkeo, P. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Braz. J. Microbiol. 2018, 49, 378–391. [Google Scholar] [CrossRef]
- Chu, Y.; Li, M.; Jin, J.; Dong, X.; Xu, K.; Jin, L.; Qiao, Y.; Ji, H. Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. J. Fungi 2023, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Douglass, A.P.; Offei, B.; Braun-Galleani, S.; Coughlan, A.Y.; Martos, A.A.R.; Ortiz-Merino, R.A.; Byrne, K.P.; Wolfe, K.H. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PloS Pathog. 2018, 14, e1007138. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Jensen, R.H.; Le Pape, P.; Arendrup, M.C. Molecular basis of antifungal drug resistance in yeasts. Int. J. Antimicrob. Agents 2017, 50, 599–606. [Google Scholar] [CrossRef]
- Aboutalebian, S.; Ahmadikia, K.; Fakhim, H.; Chabavizadeh, J.; Okhovat, A.; Nikaeen, M.; Mirhendi, H. Direct detection and identification of the most common bacteria and fungi causing otitis externa by a stepwise multiplex PCR. Front. Cell Infect. Microbiol. 2021, 11, 644060. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Moreira, D.; da Costa, G.L.; de Lima Neto, R.G.; Pinto, T.; Salomão, B.; Machado Fumian, T.; Ferreira Mannarino, C.; Prado, T.; Pereira Miagostovich, M.; de Souza Ramos, L.; et al. Screening of Candida spp. in wastewater in Brazil during COVID-19 pandemic: Workflow for monitoring fungal pathogens. BMC Biotechnol. 2024, 24, 43. [Google Scholar] [CrossRef] [PubMed]
- Steffen, H.C.; Smith, K.; van Deventer, C.; Weiskerger, C.; Bosch, C.; Brandão, J.; Wolfaardt, G.; Botha, A. Health risk posed by direct ingestion of yeasts from polluted river water. Water Res. 2023, 231, 119599. [Google Scholar] [CrossRef]
- Ren, B.; Shi, X.; Guo, J.; Jin, P. Novel insights on biofilm development in sewers: Cross-kingdom exchange of quorum-sensing signaling molecules. J. Clean. Prod. 2024, 484, 144302. [Google Scholar] [CrossRef]
Species | 05/2023 | 07/2023 | 09/2023 | 11/2023 | 01/2024 | 03/2024 | Total No. |
---|---|---|---|---|---|---|---|
Candida albicans | 4 | 3 | 6 | 0 | 2 | 3 | 18 |
Candida glabrata | 11 | 6 | 8 | 3 | 3 | 10 | 41 |
Candida palmioleophila | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
Candida parapsilosis | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Candida stellimalicola | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Candida tropicalis | 0 | 3 | 1 | 0 | 4 | 0 | 8 |
Candida sp. | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Clavispora lusitaniae | 5 | 0 | 0 | 0 | 1 | 0 | 6 |
Dipodascus capitatus | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Exophiala dermatitidis | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Hanseniaspora pseudoguilliermondii | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Magnusiomyces capitatus | 0 | 0 | 0 | 1 | 0 | 1 | 2 |
Meyerozyma guilliermondii | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Pichia cactophila | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Pichia kudriavzevii/C. krusei | 2 | 4 | 5 | 13 | 11 | 10 | 45 |
Pichia sporocuriosa | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Saccharomyces cerevisiae | 4 | 9 | 10 | 5 | 3 | 0 | 31 |
Magnusiomyces clavatus | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Sporopachydermia lactativora | 0 | 1 | 0 | 1 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, T.; Bester, P.A.; Sebolai, O.M.; Albertyn, J.; Pohl, C.H. Culture-Dependent and -Independent Wastewater Surveillance for Multiple Pathogenic Yeasts. J. Fungi 2025, 11, 86. https://doi.org/10.3390/jof11020086
Baker T, Bester PA, Sebolai OM, Albertyn J, Pohl CH. Culture-Dependent and -Independent Wastewater Surveillance for Multiple Pathogenic Yeasts. Journal of Fungi. 2025; 11(2):86. https://doi.org/10.3390/jof11020086
Chicago/Turabian StyleBaker, Tyla, Phillip Armand Bester, Olihile Moses Sebolai, Jacobus Albertyn, and Carolina Henritta Pohl. 2025. "Culture-Dependent and -Independent Wastewater Surveillance for Multiple Pathogenic Yeasts" Journal of Fungi 11, no. 2: 86. https://doi.org/10.3390/jof11020086
APA StyleBaker, T., Bester, P. A., Sebolai, O. M., Albertyn, J., & Pohl, C. H. (2025). Culture-Dependent and -Independent Wastewater Surveillance for Multiple Pathogenic Yeasts. Journal of Fungi, 11(2), 86. https://doi.org/10.3390/jof11020086