Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations
Abstract
1. Introduction
2. Epidemiology of Azole-Resistant A. fumigatus
3. Mechanisms of Azole Resistance in A. fumigatus
4. Diagnosis of Azole-Resistant Aspergillosis
5. Azole-Resistant A. fumigatus: Impact on Treatment Strategies
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC); European Chemicals Agency (ECHA); European Environment Agency (EEA); European Medicines Agency (EMA); European Commission’s Joint Research Centre (JRC). Impact of the use of azole fungicides, other than as human medicines, on the development of azole-resistant Aspergillus spp. EFSA J. 2025, 23, e9200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Francesco, M.A. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023, 12, 1305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lestrade, P.P.A.; Meis, J.F.; Melchers, W.J.G.; Verweij, P.E. Triazole resistance in Aspergillus fumigatus: Recent insights and challenges for patient management. Clin. Microbiol. Infect. 2019, 25, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Zubovskaia, A.; Vazquez, J.A. Invasive Aspergillosis in the Intensive Care Unit. J. Fungi 2025, 11, 70. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denning, D.W.; Pleuvry, A.; Cole, D.C. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med. Mycol. 2013, 51, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zarif, A.; Thomas, A.; Vayro, A. Chronic Pulmonary Aspergillosis: A Brief Review. Yale J. Biol. Med. 2021, 94, 673–679. [Google Scholar] [PubMed] [PubMed Central]
- Arendrup, M.C.; Mavridou, E.; Mortensen, K.L.; Snelders, E.; Frimodt-Møller, N.; Khan, H.; Melchers, W.J.; Verweij, P.E. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS ONE 2010, 5, e10080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burks, C.; Darby, A.; Gómez Londoño, L.; Momany, M.; Brewer, M.T. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 2021, 17, e1009711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Meis, J.F. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013, 9, e1003633, Erratum in PLoS Pathog. 2013, 9, e1003633. https://doi.org/10.1371/annotation/4ffcf1da-b180-4149-834c-9c723c5dbf9b. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; van den Heuvel, J.; Debets, A.J.M.; Verweij, P.E.; Melchers, W.J.G.; Zwaan, B.J.; Schoustra, S.E. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides. Proc. Biol. Sci. 2017, 284, 20170635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heo, S.T.; Tatara, A.M.; Jiménez-Ortigosa, C.; Jiang, Y.; Lewis, R.E.; Tarrand, J.; Tverdek, F.; Albert, N.D.; Verweij, P.E.; Meis, J.F.; et al. Changes in In Vitro Susceptibility Patterns of Aspergillus to Triazoles and Correlation with Aspergillosis Outcome in a Tertiary Care Cancer Center, 1999–2015. Clin. Infect. Dis. 2017, 65, 216–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Rhijn, N.; Rhodes, J. Evolution of antifungal resistance in the environment. Nat. Microbiol. 2025, 10, 1804–1815. [Google Scholar] [CrossRef] [PubMed]
- Seidel, D.; Cornely, O.; Zarrouk, M.; Koehler, P.; Meis, J.F.; Salmanton-García, J.; Vehreschild, J.J.; Christner, M.; Gräfe, S.K.; Falces-Romero, I.; et al. 1598. Clinical implications of azole-resistant vs. azole-susceptible invasive aspergillosis in hematological malignancy (CLARITY)—A multicenter study. Open Forum Infect. Dis. 2020, 7 (Suppl. 1), S795–S796. [Google Scholar] [CrossRef]
- Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.F.A.D.; Schalekamp, S.; van der Velden, W.J.F.M.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2019, 68, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Carvalhaes, C.G.; Rhomberg, P.R.; Desphande, L.M.; Castanheira, M. Trends in the activity of mold-active azole agents against Aspergillus fumigatus clinical isolates with and without cyp51 alterations from Europe and North America (2017–2021). J. Clin. Microbiol. 2024, 62, e0114123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Y.; Buil, J.B.; Rhodes, J.; Zoll, J.; Tehupeiory-Kooreman, M.; Ergün, M.; Zhang, J.; Li, R.; Bosch, T.; Melchers, W.J.G.; et al. Triazole-resistant Aspergillus fumigatus in the Netherlands between 1994 and 2022: A genomic and phenotypic study. Lancet Microbe 2025, 6, 101114. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, R.A.; Morio, F.; Danner-Boucher, I.; Horeau-Langlard, D.; David, V.; Hagen, F.; Meis, J.F.; Le Pape, P. One-year prospective survey of azole resistance in Aspergillus fumigatus at a French cystic fibrosis reference center: Prevalence and mechanisms of resistance. J. Antimicrob. Chemother. 2019, 74, 1884–1889. [Google Scholar] [CrossRef] [PubMed]
- Verhasselt, H.L.; Thissen, L.; Scharmann, U.; Dittmer, S.; Rath, P.M.; Steinmann, J.; Kirchhoff, L. Trends of Azole-Resistant Aspergillus fumigatus Susceptibility over 12 Years from a German ECMM Excellence Center. Mycopathologia 2025, 190, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Risum, M.; Hare, R.K.; Gertsen, J.B.; Kristensen, L.; Rosenvinge, F.S.; Sulim, S.; Abou-Chakra, N.; Bangsborg, J.; Røder, B.L.; Marmolin, E.S.; et al. Azole resistance in Aspergillus fumigatus. The first 2-year’s Data from the Danish National Surveillance Study, 2018–2020. Mycoses 2022, 65, 419–428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Escribano, P.; Rodríguez-Sánchez, B.; Díaz-García, J.; Martín-Gómez, M.T.; Ibáñez-Martínez, E.; Rodríguez-Mayo, M.; Peláez, T.; García-Gómez de la Pedrosa, E.; Tejero-García, R.; Marimón, J.M.; et al. Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clin. Microbiol. Infect. 2021, 27, 1170.e1–1170.e7. [Google Scholar] [CrossRef] [PubMed]
- Lucio, J.; Alcazar-Fuoli, L.; Gil, H.; Cano-Pascual, S.; Hernandez-Egido, S.; Cuetara, M.S.; Mellado, E. Distribution of Aspergillus species and prevalence of azole resistance in clinical and environmental samples from a Spanish hospital during a three-year study period. Mycoses 2024, 67, e13719. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pham, C.D.; Reiss, E.; Hagen, F.; Meis, J.F.; Lockhart, S.R. Passive surveillance for azole-resistant Aspergillus fumigatus, United States, 2011–2013. Emerg. Infect. Dis. 2014, 20, 1498–1503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkow, E.L.; Nunnally, N.S.; Bandea, A.; Kuykendall, R.; Beer, K.; Lockhart, S.R. Detection of TR34/L98H CYP51A Mutation through Passive Surveillance for Azole-Resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob. Agents Chemother. 2018, 62, e02240-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Etienne, K.A.; Berkow, E.L.; Gade, L.; Nunnally, N.; Lockhart, S.R.; Beer, K.; Jordan, I.K.; Rishishwar, L.; Litvintseva, A.P. Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States. mBio 2021, 12, e0180321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celia-Sanchez, B.N.; Mangum, B.; Gómez Londoño, L.F.; Wang, C.; Shuman, B.; Brewer, M.T.; Momany, M. Pan-azole- and multi-fungicide-resistant Aspergillus fumigatus is widespread in the United States. Appl. Environ. Microbiol. 2024, 90, e0178223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Miller, N.; Vines, D.; Severns, P.M.; Momany, M.; Brewer, M.T. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl. Environ. Microbiol. 2024, 90, e0205623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, T.A.; Lockhart, S.R.; Beekmann, S.E.; Polgreen, P.M.; Santibanez, S.; Mody, R.K.; Beer, K.D.; Chiller, T.M.; Jackson, B.R. Recognition of Azole-Resistant Aspergillosis by Physicians Specializing in Infectious Diseases, United States. Emerg. Infect. Dis. 2018, 24, 111–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216 (Suppl. 3), S436–S444. [Google Scholar] [CrossRef] [PubMed]
- Dabas, Y.; Xess, I.; Bakshi, S.; Mahapatra, M.; Seth, R. Emergence of Azole-Resistant Aspergillus fumigatus from Immunocompromised Hosts in India. Antimicrob. Agents Chemother. 2018, 62, e02264-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chowdhary, A.; Sharma, C.; Kathuria, S.; Hagen, F.; Meis, J.F. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front. Microbiol. 2015, 6, 428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chowdhary, A.; Kathuria, S.; Randhawa, H.S.; Gaur, S.N.; Klaassen, C.H.; Meis, J.F. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J. Antimicrob. Chemother. 2012, 67, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ma, W.; Li, Q.; Wang, P.; Jia, W. Epidemiology, antifungal susceptibility and biological characteristics of clinical Aspergillus fumigatus in a tertiary hospital. Sci. Rep. 2025, 15, 16906. [Google Scholar] [CrossRef]
- Zhou, D.; Korfanty, G.A.; Mo, M.; Wang, R.; Li, X.; Li, H.; Li, S.; Wu, J.Y.; Zhang, K.Q.; Zhang, Y.; et al. Extensive Genetic Diversity and Widespread Azole Resistance in Greenhouse Populations of Aspergillus fumigatus in Yunnan, China. mSphere 2021, 6, e00066-21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Lu, Z.; Zhao, J.; Zou, Z.; Gong, Y.; Qu, F.; Bao, Z.; Qiu, G.; Song, M.; Zhang, Q.; et al. Epidemiology and Molecular Characterizations of Azole Resistance in Clinical and Environmental Aspergillus fumigatus Isolates from China. Antimicrob. Agents Chemother. 2016, 60, 5878–5884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, J.; Huang, J.; Liu, Y.; Zhang, Y.; Gao, Y. Unveiling environmental transmission risks: Comparative analysis of azole resistance in Aspergillus fumigatus clinical and environmental isolates from Yunnan, China. Microbiol. Spectr. 2024, 12, e01594-24. [Google Scholar] [CrossRef]
- Duong, T.N.; Le, T.V.; Tran, K.H.; Nguyen, P.T.; Nguyen, B.T.; Nguyen, T.A.; Nguyen, H.P.; Nguyen, B.T.; Fisher, M.C.; Rhodes, J.; et al. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ. Microbiol. 2021, 23, 7632–7642. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, D.; Neofytos, D. Invasive Aspergillosis and the Impact of Azole-resistance. Curr. Fungal Infect. Rep. 2023, 17, 77–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macedo, D.; Leonardelli, F.; Gamarra, S.; Garcia-Effron, G. Emergence of Triazole Resistance in Aspergillus spp. in Latin America. Curr. Fungal Infect. Rep. 2021, 15, 93–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Resendiz-Sharpe, A.; Dewaele, K.; Merckx, R.; Bustamante, B.; Vega-Gomez, M.C.; Rolon, M.; Jacobs, J.; Verweij, P.E.; Maertens, J.; Lagrou, K. Triazole-Resistance in Environmental Aspergillus fumigatus in Latin American and African Countries. J. Fungi 2021, 7, 292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amona, F.M.; Oladele, R.O.; Resendiz-Sharpe, A.; Denning, D.W.; Kosmidis, C.; Lagrou, K.; Zhong, H.; Han, L. Triazole resistance in Aspergillus fumigatus isolates in Africa: A systematic review. Med. Mycol. 2022, 60, myac059. [Google Scholar] [CrossRef] [PubMed]
- Negri, C.E.; Gonçalves, S.S.; Sousa, A.C.P.; Bergamasco, M.D.; Martino, M.D.V.; Queiroz-Telles, F.; Aquino, V.R.; Castro, P.T.O.; Hagen, F.; Meis, J.F.; et al. Triazole Resistance Is Still Not Emerging in Aspergillus fumigatus Isolates Causing Invasive Aspergillosis in Brazilian Patients. Antimicrob. Agents Chemother. 2017, 61, e00608-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bustamante, B.; Illescas, L.R.; Posadas, A.; Campos, P.E. Azole resistance among clinical isolates of Aspergillus fumigatus in Lima-Peru. Med. Mycol. 2020, 58, 54–60. [Google Scholar] [CrossRef]
- Talbot, J.J.; Subedi, S.; Halliday, C.L.; Hibbs, D.E.; Lai, F.; Lopez-Ruiz, F.J.; Harper, L.; Park, R.F.; Cuddy, W.S.; Biswas, C.; et al. Surveillance for azole resistance in clinical and environmental isolates of Aspergillus fumigatus in Australia and cyp51A homology modelling of azole-resistant isolates. J. Antimicrob. Chemother. 2018, 73, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Tio, S.Y.; Chen, S.C.; Hamilton, K.; Heath, C.H.; Pradhan, A.; Morris, A.J.; Korman, T.M.; Morrissey, O.; Halliday, C.L.; Kidd, S.; et al. Invasive aspergillosis in adult patients in Australia and New Zealand: 2017–2020. Lancet Reg. Health West Pac. 2023, 40, 100888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhodes, J.; Abdolrasouli, A.; Dunne, K.; Sewell, T.R.; Zhang, Y.; Ballard, E.; Brackin, A.P.; van Rhijn, N.; Chown, H.; Tsitsopoulou, A.; et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 2022, 7, 663–674, Erratum in Nat. Microbiol. 2022, 7, 1944. https://doi.org/10.1038/s41564-022-01160-6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monk, B.C.; Sagatova, A.A.; Hosseini, P.; Ruma, Y.N.; Wilson, R.K.; Keniya, M.V. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140206. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2020, 55, 105807. [Google Scholar] [CrossRef]
- Handelman, M.; Meir, Z.; Scott, J.; Shadkchan, Y.; Liu, W.; Ben-Ami, R.; Amich, J.; Osherov, N. Point Mutation or Overexpression of Aspergillus fumigatus cyp51B, Encoding Lanosterol 14α-Sterol Demethylase, Leads to Triazole Resistance. Antimicrob. Agents Chemother. 2021, 65, e0125221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rybak, J.M.; Fortwendel, J.R.; Rogers, P.D. Emerging threat of triazole-resistant Aspergillus fumigatus. J. Antimicrob. Chemother. 2019, 74, 835–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roundtree, M.T.; Juvvadi, P.R.; Shwab, E.K.; Cole, D.C.; Steinbach, W.J. Aspergillus fumigatus Cyp51A and Cyp51B Proteins Are Compensatory in Function and Localize Differentially in Response to Antifungals and Cell Wall Inhibitors. Antimicrob. Agents Chemother. 2020, 64, e00735-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nywening, A.V.; Rybak, J.M.; Rogers, P.D.; Fortwendel, J.R. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ. Microbiol. 2020, 22, 4934–4952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Debergh, H.; Castelain, P.; Goens, K.; Lefevere, P.; Claessens, J.; De Vits, E.; Vissers, M.; Blindeman, L.; Bataille, C.; Saegerman, C.; et al. Detection of pan-azole resistant Aspergillus fumigatus in horticulture and a composting facility in Belgium. Med. Mycol. 2024, 62, myae055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mellado, E.; Garcia-Effron, G.; Alcázar-Fuoli, L.; Melchers, W.J.; Verweij, P.E.; Cuenca-Estrella, M.; Rodríguez-Tudela, J.L. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 2007, 51, 1897–1904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Snelders, E.; Karawajczyk, A.; Verhoeven, R.J.; Venselaar, H.; Schaftenaar, G.; Verweij, P.E.; Melchers, W.J. The structure-function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: The mechanism of L98H azole resistance. Fungal Genet. Biol. 2011, 48, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Buil, J.B.; Brüggemann, R.J.M.; Wasmann, R.E.; Zoll, J.; Meis, J.F.; Melchers, W.J.G.; Mouton, J.W.; Verweij, P.E. Isavuconazole susceptibility of clinical Aspergillus fumigatus isolates and feasibility of isavuconazole dose escalation to treat isolates with elevated MICs. J Antimicrob Chemother. 2018, 73, 134–142, Erratum in J. Antimicrob. Chemother. 2018, 73, 263. https://doi.org/10.1093/jac/dkx425. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; Camps, S.M.; Karawajczyk, A.; Rijs, A.J.; Zoll, J.; Verweij, P.E.; Melchers, W.J. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet. Biol. 2015, 82, 129–135. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, J.W.; Camps, S.M.; Kampinga, G.A.; Arends, J.P.; Debets-Ossenkopp, Y.J.; Haas, P.J.; Rijnders, B.J.; Kuijper, E.J.; van Tiel, F.H.; Varga, J.; et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 2013, 57, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.; van Dijk, K.; Hagen, F.; van der Beek, M.T.; Kampinga, G.A.; Zoll, J.; et al. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. mBio 2017, 8, e00791-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buil, J.B.; Zoll, J.; Verweij, P.E.; Melchers, W.J.G. Molecular Detection of Azole-Resistant Aspergillus fumigatus in Clinical Samples. Front. Microbiol. 2018, 9, 515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hodiamont, C.J.; Dolman, K.M.; Ten Berge, I.J.; Melchers, W.J.; Verweij, P.E.; Pajkrt, D. Multiple-azole-resistant Aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous disease successfully treated with long-term oral posaconazole and surgery. Med. Mycol. 2009, 47, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; Camps, S.M.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.; van der Lee, H.A.; Klaassen, C.H.; Melchers, W.J.; Verweij, P.E. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 2012, 7, e31801. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meis, J.F.; Chowdhary, A.; Rhodes, J.L.; Fisher, M.C.; Verweij, P.E. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos. Trans. R Soc. Lond. B Biol. Sci. 2016, 371, 20150460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, S.E.; Sumabat, L.G.; Melie, T.; Mangum, B.; Momany, M.; Brewer, M.T. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 2022, 12, jkab427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hare, R.K.; Gertsen, J.B.; Astvad, K.M.T.; Degn, K.B.; Løkke, A.; Stegger, M.; Andersen, P.S.; Kristensen, L.; Arendrup, M.C. In Vivo Selection of a Unique Tandem Repeat Mediated Azole Resistance Mechanism (TR120) in Aspergillus fumigatus cyp51A, Denmark. Emerg. Infect. Dis. 2019, 25, 577–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pontes, L.; Arai, T.; Gualtieri Beraquet, C.A.; Giordano, A.L.P.L.; Reichert-Lima, F.; da Luz, E.A.; Fernanda de Sá, C.; Ortolan Levy, L.; Tararam, C.A.; Watanabe, A.; et al. Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening. J. Fungi 2024, 10, 122. [Google Scholar] [CrossRef]
- Schoustra, S.E.; Debets, A.J.M.; Rijs, A.J.M.M.; Zhang, J.; Snelders, E.; Leendertse, P.C.; Melchers, W.J.G.; Rietveld, A.G.; Zwaan, B.J.; Verweij, P.E. Environmental Hotspots for Azole Resistance Selection of Aspergillus fumigatus, the Netherlands. Emerg. Infect. Dis. 2019, 25, 1347–1353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howard, S.J.; Cerar, D.; Anderson, M.J.; Albarrag, A.; Fisher, M.C.; Pasqualotto, A.C.; Laverdiere, M.; Arendrup, M.C.; Perlin, D.S.; Denning, D.W. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 2009, 15, 1068–1076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pelaez, T.; Gijón, P.; Bunsow, E.; Bouza, E.; Sánchez-Yebra, W.; Valerio, M.; Gama, B.; Cuenca-Estrella, M.; Mellado, E. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J. Clin. Microbiol. 2012, 50, 2531–2534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonzalez-Jimenez, I.; Lucio, J.; Menéndez-Fraga, M.D.; Mellado, E.; Peláez, T. Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. J. Fungi 2021, 7, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buied, A.; Moore, C.B.; Denning, D.W.; Bowyer, P. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J. Antimicrob. Chemother. 2013, 68, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Jimenez, I.; Lucio, J.; Amich, J.; Cuesta, I.; Sanchez Arroyo, R.; Alcazar-Fuoli, L.; Mellado, E. A Cyp51B Mutation Contributes to Azole Resistance in Aspergillus fumigatus. J. Fungi 2020, 6, 315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bueid, A.; Howard, S.J.; Moore, C.B.; Richardson, M.D.; Harrison, E.; Bowyer, P.; Denning, D.W. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 2010, 65, 2116–2118. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S.; Shor, E.; Zhao, Y. Update on Antifungal Drug Resistance. Curr. Clin. Microbiol. Rep. 2015, 2, 84–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.; Liu, J.; Zeng, M.; Sang, H. Exploring the molecular mechanism of azole resistance in Aspergillus fumigatus. J. Mycol. Med. 2020, 30, 100915. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef] [PubMed]
- Gsaller, F.; Hortschansky, P.; Furukawa, T.; Carr, P.D.; Rash, B.; Capilla, J.; Müller, C.; Bracher, F.; Bowyer, P.; Haas, H.; et al. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex. PLoS Pathog. 2016, 12, e1005775, Erratum in PLoS Pathog. 2016, 12, e1006106. https://doi.org/10.1371/journal.ppat.1006106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camps, S.M.; Dutilh, B.E.; Arendrup, M.C.; Rijs, A.J.; Snelders, E.; Huynen, M.A.; Verweij, P.E.; Melchers, W.J. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS ONE 2012, 7, e50034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paul, S.; Stamnes, M.; Thomas, G.H.; Liu, H.; Hagiwara, D.; Gomi, K.; Filler, S.G.; Moye-Rowley, W.S. AtrR Is an Essential Determinant of Azole Resistance in Aspergillus fumigatus. mBio 2019, 10, e02563-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagiwara, D.; Miura, D.; Shimizu, K.; Paul, S.; Ohba, A.; Gonoi, T.; Watanabe, A.; Kamei, K.; Shintani, T.; Moye-Rowley, W.S.; et al. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions. PLoS Pathog. 2017, 13, e1006096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furukawa, T.; van Rhijn, N.; Fraczek, M.; Gsaller, F.; Davies, E.; Carr, P.; Gago, S.; Fortune-Grant, R.; Rahman, S.; Gilsenan, J.M.; et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat. Commun. 2020, 11, 427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meneau, I.; Coste, A.T.; Sanglard, D. Identification of Aspergillus fumigatus multidrug transporter genes and their potential involvement in antifungal resistance. Med. Mycol. 2016, 54, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.G.; Bromley, M.; Buied, A.; Moore, C.B.; Rajendran, R.; Rautemaa, R.; Ramage, G.; Denning, D.W.; Bowyer, P. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J. Antimicrob. Chemother. 2013, 68, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Diekema, D.; Moye-Rowley, W.S. Contributions of both ATP-Binding Cassette Transporter and Cyp51A Proteins Are Essential for Azole Resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2017, 61, e02748-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sturm, L.; Geißel, B.; Martin, R.; Wagener, J. Differentially Regulated Transcription Factors and ABC Transporters in a Mitochondrial Dynamics Mutant Can Alter Azole Susceptibility of Aspergillus fumigatus. Front. Microbiol. 2020, 11, 1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rybak, J.M.; Ge, W.; Wiederhold, N.P.; Parker, J.E.; Kelly, S.L.; Rogers, P.D.; Fortwendel, J.R. Mutations in hmg1, Challenging the Paradigm of Clinical Triazole Resistance in Aspergillus fumigatus. mBio 2019, 10, e00437-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagiwara, D.; Arai, T.; Takahashi, H.; Kusuya, Y.; Watanabe, A.; Kamei, K. Non-cyp51A Azole-Resistant Aspergillus fumigatus Isolates with Mutation in HMG-CoA Reductase. Emerg. Infect. Dis. 2018, 24, 1889–1897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, X.; Chen, P.; Gao, R.; Li, Y.; Zhang, A.; Liu, F.; Lu, L. Screening and Characterization of a Non-cyp51A Mutation in an Aspergillus fumigatus cox10 Strain Conferring Azole Resistance. Antimicrob. Agents Chemother. 2016, 61, e02101-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Zhang, Y.; Lu, L. Calcium signaling pathway is involved in non-CYP51 azole resistance in Aspergillus fumigatus. Med. Mycol. 2019, 57 (Suppl. S2), S233–S238. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Pu, L.; Zheng, Q.Q.; Zhang, Y.W.; Gao, R.S.; Xu, X.S.; Zhang, S.Z.; Lu, L. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli. Fungal Genet. Biol. 2015, 81, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Ruhil, S.; Kumar, V.; Balhara, M.; Malik, M.; Dhankhar, S.; Kumar, M.; Kumar Chhillar, A. In vitro evaluation of combination of polyenes with EDTA against Aspergillus spp. by different methods (FICI and CI Model). J. Appl. Microbiol. 2014, 117, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Le Mauff, F.; Sheppard, D.C.; Zhang, S. Filamentous fungal biofilms: Conserved and unique aspects of extracellular matrix composition, mechanisms of drug resistance and regulatory networks in Aspergillus fumigatus. NPJ Biofilms Microbiomes 2022, 8, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barker, B.M.; Kroll, K.; Vödisch, M.; Mazurie, A.; Kniemeyer, O.; Cramer, R.A. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genom. 2012, 13, 62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lucio, J.; Gonzalez-Jimenez, I.; Roldan, A.; Amich, J.; Alcazar-Fuoli, L.; Mellado, E. Importance of the Aspergillus fumigatus Mismatch Repair Protein Msh6 in Antifungal Resistance Development. J. Fungi 2024, 10, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bottery, M.J.; van Rhijn, N.; Chown, H.; Rhodes, J.L.; Celia-Sanchez, B.N.; Brewer, M.T.; Momany, M.; Fisher, M.C.; Knight, C.G.; Bromley, M.J. Elevated mutation rates in multi-azole resistant Aspergillus fumigatus drive rapid evolution of antifungal resistance. Nat. Commun. 2024, 15, 10654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bowyer, P.; Weaver, D.; Qi, T.; Chown, H.; Fraczek, M.; Lebedinec, R.; Dineen, L.; Valero, C.; van Rhijn, N.; Furukawa, T.; et al. Genome-wide discovery and phenotyping of non-coding transcripts in A. fumigatus reveals lncRNAs with a role in antifungal drug sensitivity. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [PubMed]
- Mello, E.; Posteraro, B.; Vella, A.; De Carolis, E.; Torelli, R.; D’Inzeo, T.; Verweij, P.E.; Sanguinetti, M. Susceptibility Testing of Common and Uncommon Aspergillus Species against Posaconazole and Other Mold-Active Antifungal Azoles Using the Sensititre Method. Antimicrob. Agents Chemother. 2017, 61, e00168-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 11.0. 2024. Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 27 September 2025).
- Wiederhold, N.P.; Andes, D.; Borman, A.M.; Dufresne, P.J.; Lockhart, S.R.; Procop, G.W. Voriconazole Breakpoints for Aspergillus fumigatus, 1st ed.; CLSI rationale document FR01; CLSI: Wayne, PA, USA, 2024; p. 3. [Google Scholar]
- Wiederhold, N.P.; Andes, D.; Borman, A.M.; Dufresne, P.J.; Lockhart, S.; Procop, G. Isavuconazole Breakpoints for Aspergillus fumigatus, 1st ed.; CLSI rationale document FR02; CLSI: Wayne, PA, USA, 2025; p. 3. [Google Scholar]
- Subhagan, H.; Savio, J.; Padaki, P.; Srivastava, S.; Thomas, P.; Veerappan, R.; Ramachandran, P.; Michael Raj Ashok, J. A simple high-volume culture technique-Good substitute for polymerase chain reaction for the detection of Aspergillus species in bronchoalveolar lavage samples. Mycoses 2022, 65, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Vergidis, P.; Moore, C.B.; Novak-Frazer, L.; Rautemaa-Richardson, R.; Walker, A.; Denning, D.W.; Richardson, M.D. High-volume culture and quantitative real-time PCR for the detection of Aspergillus in sputum. Clin. Microbiol. Infect. 2020, 26, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Hannaford, A.; Hernandez-Acosta, R.A.; Little, J.S.; Campbell, J.I.; Weiss, Z.F.; Sherman, A.C. Molecular Diagnostics for Invasive Molds: From Lab to Bedside. Clin. Lab. Med. 2025, 45, 27–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Garnaud, C.; Brenier-Pinchart, M.P.; Thiébaut-Bertrand, A.; Saint-Raymond, C.; Camara, B.; Hamidfar, R.; Cognet, O.; Maubon, D.; Cornet, M.; et al. Direct Molecular Diagnosis of Aspergillosis and CYP51A Profiling from Respiratory Samples of French Patients. Front. Microbiol. 2016, 7, 1164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Kontoyiannis, D.P.; Li, R.; Chen, W.; Bu, D.; Liu, W. A Novel Broad Allele-Specific TaqMan Real-Time PCR Method To Detect Triazole-Resistant Strains of Aspergillus fumigatus, Even with a Very Low Percentage of Triazole-Resistant Cells Mixed with Triazole-Susceptible Cells. J. Clin. Microbiol. 2019, 57, e00604-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jenks, J.D.; Spiess, B.; Buchheidt, D.; Hoenigl, M. (New) Methods for Detection of Aspergillus fumigatus Resistance in Clinical Samples. Curr. Fungal Infect. Rep. 2019, 13, 129–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morton, C.O.; White, P.L.; Barnes, R.A.; Klingspor, L.; Cuenca-Estrella, M.; Lagrou, K.; Bretagne, S.; Melchers, W.; Mengoli, C.; Caliendo, A.M.; et al. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus? Med. Mycol. 2017, 55, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.M.; Steinmann, J. Overview of Commercially Available PCR Assays for the Detection of Aspergillus spp. DNA in Patient Samples. Front. Microbiol. 2018, 9, 740. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chong, G.M.; van der Beek, M.T.; von dem Borne, P.A.; Boelens, J.; Steel, E.; Kampinga, G.A.; Span, L.F.; Lagrou, K.; Maertens, J.A.; Dingemans, G.J.; et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: A multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 2016, 71, 3528–3535. [Google Scholar] [CrossRef] [PubMed]
- Schauwvlieghe, A.F.A.D.; Vonk, A.G.; Buddingh, E.P.; Hoek, R.A.S.; Dalm, V.A.; Klaassen, C.H.W.; Rijnders, B.J.A. Detection of azole-susceptible and azole-resistant Aspergillus coinfection by cyp51A PCR amplicon melting curve analysis. J. Antimicrob. Chemother. 2017, 72, 3047–3050. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Posso, R.B.; Barnes, R.A. Analytical and Clinical Evaluation of the PathoNostics AsperGenius Assay for Detection of Invasive Aspergillosis and Resistance to Azole Antifungal Drugs Directly from Plasma Samples. J. Clin. Microbiol. 2017, 55, 2356–2366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scharmann, U.; Kirchhoff, L.; Hain, A.; Buer, J.; Koldehoff, M.; Steinmann, J.; Rath, P.M. Evaluation of Three Commercial PCR Assays for the Detection of Azole-Resistant Aspergillus fumigatus from Respiratory Samples of Immunocompromised Patients. J. Fungi 2021, 7, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huygens, S.; Dunbar, A.; Buil, J.B.; Klaassen, C.H.W.; Verweij, P.E.; van Dijk, K.; de Jonge, N.; Janssen, J.J.W.M.; van der Velden, W.J.F.M.; Biemond, B.J.; et al. Clinical Impact of Polymerase Chain Reaction-Based Aspergillus and Azole Resistance Detection in Invasive Aspergillosis: A Prospective Multicenter Study. Clin. Infect. Dis. 2023, 77, 38–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montesinos, I.; Argudín, M.A.; Hites, M.; Ahajjam, F.; Dodémont, M.; Dagyaran, C.; Bakkali, M.; Etienne, I.; Jacobs, F.; Knoop, C.; et al. Culture-Based Methods and Molecular Tools for Azole-Resistant Aspergillus fumigatus Detection in a Belgian University Hospital. J. Clin. Microbiol. 2017, 55, 2391–2399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Postina, P.; Skladny, J.; Boch, T.; Cornely, O.A.; Hamprecht, A.; Rath, P.M.; Steinmann, J.; Bader, O.; Miethke, T.; Dietz, A.; et al. Comparison of Two Molecular Assays for Detection and Characterization of Aspergillus fumigatus Triazole Resistance and Cyp51A Mutations in Clinical Isolates and Primary Clinical Samples of Immunocompromised Patients. Front. Microbiol. 2018, 9, 555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dannaoui, E.; Gabriel, F.; Gaboyard, M.; Lagardere, G.; Audebert, L.; Quesne, G.; Godichaud, S.; Verweij, P.E.; Accoceberry, I.; Bougnoux, M.E. Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit. J. Clin. Microbiol. 2017, 55, 3210–3218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mikulska, M.; Furfaro, E.; De Carolis, E.; Drago, E.; Pulzato, I.; Borghesi, M.L.; Zappulo, E.; Raiola, A.M.; Grazia, C.D.; Del Bono, V.; et al. Use of Aspergillus fumigatus real-time PCR in bronchoalveolar lavage samples (BAL) for diagnosis of invasive aspergillosis, including azole-resistant cases, in high risk haematology patients: The need for a combined use with galactomannan. Med. Mycol. 2019, 57, 987–996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Torre, M.H.; Novak-Frazer, L.; Rautemaa-Richardson, R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J. Fungi 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zvezdanova, M.E.; Arroyo, M.J.; Méndez, G.; Candela, A.; Mancera, L.; Rodríguez, J.G.; Serra, J.L.; Jiménez, R.; Lozano, I.; Castro, C.; et al. Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2022, 28, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Araújo, E.; Gusmão, N.; Silva, T.; Pape, P.L.; Lima-Neto, R.G. MALDI-TOF MS-based evaluation for azole-susceptibility testing of Aspergillus fumigatus over reference broth microdilution method. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Yamashita, K.; Yaguchi, T.; Miwa, E.; Kiyuna, T.; Shima, K.; Ito, J.; Arai, T.; Watanabe, A.; Ban, S. A MALDI-TOF MS-based discriminant model to distinguish azole-resistant Aspergillus fumigatus strains. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Puértolas-Balint, F.; Rossen, J.W.A.; Oliveira Dos Santos, C.; Chlebowicz, M.M.A.; Raangs, E.C.; van Putten, M.L.; Sola-Campoy, P.J.; Han, L.; Schmidt, M.; García-Cobos, S. Revealing the Virulence Potential of Clinical and Environmental Aspergillus fumigatus Isolates Using Whole-Genome Sequencing. Front. Microbiol. 2019, 10, 1970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brackin, A.P.; Leitao, R.; Rhodes, J.; Chaudhry, Z.; Connell, D.; Hemmings, S.; Shelton, J.M.G.; Fisher, M.C.; Armstrong-James, D.; Shah, A. Genomic epidemiology links azole-resistant Aspergillus fumigatus hospital bioaerosols to chronic respiratory aspergillosis. medRxiv 2025. [Google Scholar] [CrossRef]
- Tashiro, M.; Nakano, Y.; Shirahige, T.; Kakiuchi, S.; Fujita, A.; Tanaka, T.; Takazono, T.; Izumikawa, K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. J. Fungi 2025, 11, 96. [Google Scholar] [CrossRef]
- Caldera, J.R.; Dayo, A.; Wiederhold, N.; Yang, S. Development and validation of next-generation sequencing-based clinical test for triazole resistance prediction in Aspergillus fumigatus. J. Clin. Microbiol. 2025, 63, e0029125. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Ananda-Rajah, M.; Andes, D.; Arendrup, M.C.; Brüggemann, R.J.; Chowdhary, A.; Cornely, O.A.; Denning, D.W.; Groll, A.H.; Izumikawa, K.; et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist. Updates 2015, 21–22, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.P.; Smibert, O.C.; Bajel, A.; Halliday, C.L.; Lavee, O.; McMullan, B.; Yong, M.K.; van Hal, S.J.; Chen, S.C.; Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern. Med. J. 2021, 51 (Suppl. 7), 143–176. [Google Scholar] [CrossRef] [PubMed]
- Kullber, B.J.; Blijlevens, N.M.A.; Jannsen, J.J.W.M.; Meis, J.F.G.; Verweij, P.E.; Oude Lashof, A.M.L.; van de Veerdonk, F.L.; Rijnders, B.J.; Brüggemann, R.J.M.; vd Werf, T.S.; et al. SWAB Guidelines for the Management of Invasive Fungal Infections. Revised Version. Released 14 Dec 2017. Available online: https://swab.nl/nl/exec/file/download/86 (accessed on 27 September 2025).
- Tissot, F.; Agrawal, S.; Pagano, L.; Petrikkos, G.; Groll, A.H.; Skiada, A.; Lass-Flörl, C.; Calandra, T.; Viscoli, C.; Herbrecht, R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 2017, 102, 433–444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seyedmousavi, S.; Mouton, J.W.; Melchers, W.J.; Brüggemann, R.J.; Verweij, P.E. The role of azoles in the management of azole-resistant aspergillosis: From the bench to the bedside. Drug Resist. Updates 2014, 17, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Brüggemann, R.J.; Melchers, W.J.; Rijs, A.J.; Verweij, P.E.; Mouton, J.W. Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis. J. Antimicrob. Chemother. 2013, 68, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Krishnan-Natesan, S.; Wu, W.; Chandrasekar, P.H. In vitro efficacy of the combination of voriconazole and anidulafungin against voriconazole-resistant cyp51A mutants of Aspergillus fumigatus. Diagn. Microbiol. Infect. Dis. 2012, 73, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Jeans, A.R.; Howard, S.J.; Al-Nakeeb, Z.; Goodwin, J.; Gregson, L.; Warn, P.A.; Hope, W.W. Combination of voriconazole and anidulafungin for treatment of triazole-resistant Aspergillus fumigatus in an in vitro model of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 2012, 56, 5180–5185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siopi, M.; Siafakas, N.; Vourli, S.; Mouton, J.W.; Zerva, L.; Meletiadis, J. Dose optimization of voriconazole/anidulafungin combination against Aspergillus fumigatus using an in vitro pharmacokinetic/pharmacodynamic model and response surface analysis: Clinical implications for azole-resistant aspergillosis. J. Antimicrob. Chemother. 2016, 71, 3135–3147. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S., 2nd; Wiederhold, N.P.; Hakki, M.; Thompson, G.R., 3rd. New Perspectives on Antimicrobial Agents: Isavuconazole. Antimicrob. Agents Chemother. 2022, 66, e0017722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buil, J.B.; Brüggemann, R.J.M.; Bedin Denardi, L.; Melchers, W.J.G.; Verweij, P.E. In vitro interaction of isavuconazole and anidulafungin against azole-susceptible and azole-resistant Aspergillus fumigatus isolates. J. Antimicrob. Chemother. 2020, 75, 2582–2586. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schauwvlieghe, A.F.A.D.; Buil, J.B.; Verweij, P.E.; Hoek, R.A.S.; Cornelissen, J.J.; Blijlevens, N.M.A.; Henriet, S.S.V.; Rijnders, B.J.A.; Brüggemann, R.J.M. High-dose posaconazole for azole-resistant aspergillosis and other difficult-to-treat mould infections. Mycoses 2020, 63, 122–130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vanhoffelen, E.; Van Win, T.; Van Braeckel, E.; Reséndiz-Sharpe, A.; Cammue, B.P.A.; Lagrou, K.; Thevissen, K.; Vande Velde, G. Combinations of posaconazole and tacrolimus are effective against infections with azole-resistant Aspergillus fumigatus. Front. Cell. Infect. Microbiol. 2025, 15, 1550457. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Ingen, J.; van der Lee, H.A.; Rijs, T.A.; Zoll, J.; Leenstra, T.; Melchers, W.J.; Verweij, P.E. Azole, polyene and echinocandin MIC distributions for wild-type, TR34/L98H and TR46/Y121F/T289A Aspergillus fumigatus isolates in the Netherlands. J. Antimicrob. Chemother. 2015, 70, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Vehreschild, J.J.; Vehreschild, M.J.; Würthwein, G.; Arenz, D.; Schwartz, S.; Heussel, C.P.; Silling, G.; Mahne, M.; Franklin, J.; et al. Phase II dose escalation study of caspofungin for invasive Aspergillosis. Antimicrob. Agents Chemother. 2011, 55, 5798–5803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siopi, M.; Perlin, D.S.; Arendrup, M.C.; Pournaras, S.; Meletiadis, J. Comparative Pharmacodynamics of Echinocandins against Aspergillus fumigatus Using an In Vitro Pharmacokinetic/Pharmacodynamic Model That Correlates with Clinical Response to Caspofungin Therapy: Is There a Place for Dose Optimization? Antimicrob. Agents Chemother. 2021, 65, e01618-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Egger, M.; Bellmann, R.; Krause, R.; Boyer, J.; Jakšić, D.; Hoenigl, M. Salvage Treatment for Invasive Aspergillosis and Mucormycosis: Challenges, Recommendations and Future Considerations. Infect. Drug Resist. 2023, 16, 2167–2178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R., 3rd; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rivero-Menendez, O.; Soto-Debran, J.C.; Cuenca-Estrella, M.; Alastruey-Izquierdo, A. In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies. J. Fungi 2021, 7, 232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petraitis, V.; Petraitiene, R.; Katragkou, A.; Maung, B.B.W.; Naing, E.; Kavaliauskas, P.; Barat, S.; Borroto-Esoda, K.; Azie, N.; Angulo, D.; et al. Combination Therapy with Ibrexafungerp (Formerly SCY-078), a First-in-Class Triterpenoid Inhibitor of (1→3)-β-d-Glucan Synthesis, and Isavuconazole for Treatment of Experimental Invasive Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2020, 64, e02429-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, M.R.; Donnelley, M.A.; Thompson, G.R. Ibrexafungerp: A novel oral glucan synthase inhibitor. Med. Mycol. 2020, 58, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.; Long, L.; Larkin, E.L.; Isham, N.; Sherif, R.; Borroto-Esoda, K.; Barat, S.; Angulo, D. Evaluation of the Antifungal Activity of the Novel Oral Glucan Synthase Inhibitor SCY-078, Singly and in Combination, for the Treatment of Invasive Aspergillosis. Antimicrob. Agents Chemother. 2018, 62, e00244-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clinical Drug Experience Knowledgebase: Trial NCT03059992. Available online: https://cdek.pharmacy.purdue.edu/trial/NCT03059992/ (accessed on 29 July 2025).
- Escribano, P.; Gómez, A.; Reigadas, E.; Muñoz, P.; Guinea, J.; ASPEIN Study Group. In vitro activity of olorofim against Aspergillus fumigatus sensu lato clinical isolates: Activity is retained against isolates showing resistance to azoles and/or amphotericin B. Clin. Microbiol. Infect. 2022, 28, 1291.e7–1291.e10. [Google Scholar] [CrossRef] [PubMed]
- Feuss, A.; Bougnoux, M.E.; Dannaoui, E. The Role of Olorofim in the Treatment of Filamentous Fungal Infections: A Review of In Vitro and In Vivo Studies. J. Fungi 2024, 10, 345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vanbiervliet, Y.; Van Nieuwenhuyse, T.; Aerts, R.; Lagrou, K.; Spriet, I.; Maertens, J. Review of the novel antifungal drug olorofim (F901318). BMC Infect. Dis. 2024, 24, 1256, Erratum in BMC Infect. Dis. 2024, 24, 1395. https://doi.org/10.1186/s12879-024-10295-2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- du Pré, S.; Birch, M.; Law, D.; Beckmann, N.; Sibley, G.E.M.; Bromley, M.J.; Read, N.D.; Oliver, J.D. The Dynamic Influence of Olorofim (F901318) on the Cell Morphology and Organization of Living Cells of Aspergillus fumigatus. J. Fungi 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- du Pré, S.; Beckmann, N.; Almeida, M.C.; Sibley, G.E.M.; Law, D.; Brand, A.C.; Birch, M.; Read, N.D.; Oliver, J.D. Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2018, 62, e00231-18. [Google Scholar] [CrossRef]
- Maertens, J.A.; Thompson, G.R., 3rd; Spec, A.; Donovan, F.M.; Hammond, S.P.; Bruns, A.H.W.; Rahav, G.; Shoham, S.; Johnson, R.; Rijnders, B.; et al. Olorofim for the treatment of invasive fungal diseases in patients with few or no therapeutic options: A single-arm, open-label, phase 2b study. Lancet Infect. Dis. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- van Rhijn, N.; Storer, I.S.R.; Birch, M.; Oliver, J.D.; Bottery, M.J.; Bromley, M.J. Aspergillus fumigatus strains that evolve resistance to the agrochemical fungicide ipflufenoquin in vitro are also resistant to olorofim. Nat. Microbiol. 2024, 9, 29–34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Rhijn, N.; Hemmings, S.; Storer, I.S.R.; Valero, C.; Bin Shuraym, H.; Goldman, G.H.; Gsaller, F.; Amich, J.; Bromley, M.J. Antagonism of the Azoles to Olorofim and Cross-Resistance Are Governed by Linked Transcriptional Networks in Aspergillus fumigatus. mBio 2022, 13, e0221522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kirchhoff, L.; Dittmer, S.; Furnica, D.T.; Buer, J.; Steinmann, E.; Rath, P.M.; Steinmann, J. Inhibition of azole-resistant Aspergillus fumigatus biofilm at various formation stages by antifungal drugs, including olorofim. J. Antimicrob. Chemother. 2022, 77, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.; Feys, S.; Zsifkovits, I.; Hoenigl, M.; Egger, M. Treatment of Invasive Aspergillosis: How It’s Going, Where It’s Heading. Mycopathologia 2023, 188, 667–681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kriegl, L.; Egger, M.; Boyer, J.; Hoenigl, M.; Krause, R. New treatment options for critically important WHO fungal priority pathogens. Clin. Microbiol. Infect. 2025, 31, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.R.; Tawadrous, M.; Cornely, O.A.; Thompson, G.R., 3rd; Slavin, M.A.; Maertens, J.A.; Dadwal, S.S.; Rahav, G.; Hazel, S.; Almas, M.; et al. Fosmanogepix for the Treatment of Invasive Mold Diseases Caused by Aspergillus Species and Rare Molds: A Phase 2, Open-Label Study (AEGIS). Clin. Infect. Dis. 2025, ciaf185. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.R.; Ople, E.; Wedel, P.; Shaw, K.J.; Jakate, A.; Kramer, W.G.; Marle, S.V.; van Hoogdalem, E.J.; Tawadrous, M. Safety and Pharmacokinetics of Intravenous and Oral Fosmanogepix, a First-in-Class Antifungal Agent, in Healthy Volunteers. Antimicrob. Agents Chemother. 2023, 67, e0162322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gebremariam, T.; Gu, Y.; Alkhazraji, S.; Youssef, E.; Shaw, K.J.; Ibrahim, A.S. The Combination Treatment of Fosmanogepix and Liposomal Amphotericin B Is Superior to Monotherapy in Treating Experimental Invasive Mold Infections. Antimicrob. Agents Chemother. 2022, 66, e0038022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandison, T.; Ong, V.; Lee, J.; Thye, D. Safety and Pharmacokinetics of CD101 IV, a Novel Echinocandin, in Healthy Adults. Antimicrob. Agents Chemother. 2017, 61, e01627-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flanagan, S.; Walker, H.; Ong, V.; Sandison, T. Absence of Clinically Meaningful Drug-Drug Interactions with Rezafungin: Outcome of Investigations. Microbiol. Spectr. 2023, 11, e0133923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiederhold, N.P.; Locke, J.B.; Daruwala, P.; Bartizal, K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J. Antimicrob. Chemother. 2018, 73, 3063–3067. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Wickes, B.L.; Catano, G.; Patterson, T.F. Extended-Interval Dosing of Rezafungin against Azole-Resistant Aspergillus fumigatus. Antimicrob. Agents Chemother. 2019, 63, e01165-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, A.; Cass, L.; Ito, K.; Pagani, N.; Armstrong-James, D.; Dalal, P.; Reed, A.; Strong, P. PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections. J. Fungi 2020, 6, 373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colley, T.; Sehra, G.; Daly, L.; Kimura, G.; Nakaoki, T.; Nishimoto, Y.; Kizawa, Y.; Strong, P.; Rapeport, G.; Ito, K. Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci. Rep. 2019, 9, 9482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colley, T.; Alanio, A.; Kelly, S.L.; Sehra, G.; Kizawa, Y.; Warrilow, A.G.S.; Parker, J.E.; Kelly, D.E.; Kimura, G.; Anderson-Dring, L.; et al. In Vitro and In Vivo Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrob. Agents Chemother. 2017, 61, e02280-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Townsend, L.; Martin-Loeches, I. Invasive Aspergillosis in the Intensive Care Unit. Diagnostics 2022, 12, 2712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halliday, C.L.; Tay, E.; Green, W.; Law, D.; Lopez, R.; Faris, S.; Meehan, L.; Harvey, E.; Birch, M.; Chen, S.C.A. In vitro activity of olorofim against 507 filamentous fungi including antifungal drug-resistant strains at a tertiary laboratory in Australia: 2020–2023. J. Antimicrob. Chemother. 2024, 79, 2611–2621. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P. Pharmacodynamics, Mechanisms of Action and Resistance, and Spectrum of Activity of New Antifungal Agents. J. Fungi 2022, 8, 857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henig, O.; Ben-Ami, R. Antifungal Agents and Their Role in the Management of Pulmonary Aspergillosis. In Pulmonary Aspergillosis: A Comprehensive Guide to the Disease Spectrum and Advances in Diagnosis and Management; Springer Nature: Berlin/Heidelberg, Germany, 2025; pp. 101–119. [Google Scholar] [CrossRef]
Rate of Azole-Resistance | Azole-Resistance < 5% | Azole-Resistance 5–10% | Azole-Resistance > 10% |
---|---|---|---|
Suggested initial choice of antifungal therapy | Treatment choices guided by the national or international therapy guidelines (IDSA, ESCMID-ECMM-ERS, etc.) [129]: Isavuconazole [23,99], Voriconazole [23,99,129], Liposomal Amphotericin B [23,99] Other options depending on specific populations: Voriconazole +Anidulafungin or Caspofungin [99], Caspofungin [99], Itraconazole [99], Amphotericin B Lipid Complex [99], Micafungin [99] | Voriconazole monotherapy [129], Voriconazole+ Echinocandin [129], Liposomal Amphotericin B [129] | Voriconazole+ Echinocandin [129], Liposomal Amphotericin B [129] |
Drug | Class | Mechanism of Action | Future Clinical Applications | Comments on Potential Role in Azole-Resistant Aspergillosis |
---|---|---|---|---|
Ibrexafungerp | Triterpenoid | Inhibits Beta-D-glucan synthesis and impairs fungal cell wall integrity | Invasive candidiasis including C.auris and C.glabrata, invasive aspergillosis including resistant or with limited treatment options, invasive fungal infections refractory or intolerant to standard of care Treatment of vulvovaginal candidiasis (VVC). Reduction in incidence of recurrent VVC (RVVC). | In vitro activity against azole-resistant species [147,149] FURI (NCT03059992) trial: evaluation of safety and efficacy in cases refractory or intolerant to standard therapy: recently completed, however data on efficacy in azole-resistant A. fumigatus in this study are not yet available [151]. Consideration as a part of combination therapy in azole-resistant aspergillosis (i.e., with azoles or Liposomal Amphotericin B) [145]. |
Olorofim | Dihydroorotate dehydrogenase inhibitor | Reversibly inhibits fungal dihydroorotate dehydrogenase, resulting in disruption in pyrimidine synthesis | Treatment of invasive mold infections, including refractory or resistant aspergillosis, infections due to Lomentospora prolificans, Scedosporium, and Scopulariopsis species, coccidioidomycosis, invasive fusariosis, endemic mycoses, refractory to standard of care or with limited treatment options, refractory CNS coccidioidomycosis or with limited treatment options. | In vitro and in vivo activity against azole-resistant strains [152,154,160,174,175,176,177] FORMULA-OLS trial(NCT03583164): olorofim as treatment for invasive fungal infection with few or no therapeutic options: recently published [157]. OASIS trial (NCT05101187): olorofim vs. liposomal amphotericin B followed by standard of care in case of limited treatment options: recruitment phase. Possible use as monotherapy or in combination [145]. |
Fosmanogepix | Gwt1 inhibitor | Impaired maturation of cell wall mannoproteins results in loss of cell wall integrity, impaired adhesion, pathogenicity, and evasion of host recognition [164] | Invasive candidiasis (including C.auris, however excluding C.krusei), aspergillosis, scedosporiosis, fusariosis, mucormycosis, cryptococcosis, and coccidioidomycosis, endemic mycoses. | Activity against azole-resistant strains and favorable safety profile (AEGIS trial) [161,162,163,174]. Possible use as monotherapy or in combination, i.e., synergistic activity with Liposomal Amphotericin B [145,165]. |
Opelconazole | Triazole | Inhibitor of lanosterol 14-demethylase | Invasive pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, chronic pulmonary aspergillosis, COVID-19 associated pulmonary aspergillosis. | Activity against azole-resistant A. fumigatus [171,172] Consideration as part of combination therapy in azole-resistant aspergillosis [145] OPERA-T (NCT05238116); systemic antifungal +opelconazole vs. placebo in refractory invasive aspergillosis: ongoing. |
Rezafungin | Echinocandin | Inhibition of the Beta-D-glucan synthase enzyme complex | Candidemia/invasive candidiasis in adults with limited or no alternative treatment options, treatment of infections caused by Aspergillus spp. and Pneumocystis jirovecii. Prophylaxis of invasive fungal diseases in recipients of allo-HSCT. | Demonstrated in vivo and in vitro activity against azole-resistant A. fumigatus [145,168,171,177]. Consideration as a part of combination therapy with another mold-active agent [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubovskaia, A. Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations. J. Fungi 2025, 11, 731. https://doi.org/10.3390/jof11100731
Zubovskaia A. Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations. Journal of Fungi. 2025; 11(10):731. https://doi.org/10.3390/jof11100731
Chicago/Turabian StyleZubovskaia, Anna. 2025. "Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations" Journal of Fungi 11, no. 10: 731. https://doi.org/10.3390/jof11100731
APA StyleZubovskaia, A. (2025). Azole-Resistant Aspergillus fumigatus: Epidemiology, Diagnosis, and Treatment Considerations. Journal of Fungi, 11(10), 731. https://doi.org/10.3390/jof11100731