Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry
Abstract
1. Introduction
2. Fungal Materials
2.1. Rigid Fungal Materials
- Mycotectural Alpha (2009): Utilized G. lucidum-bound sawdust for its construction.
- Hy-Fi (2014): A cluster of circular towers made from mycelium-based bricks.
- MycoTree (2017): Featured mycelium-bound composite blocks in its installation.
- MycoTree 2.0 (2019): An expanded version that continued the use of mycelium-bound composite blocks.
- Growing Pavilion (2020): Incorporated Ganoderma lingzhi mycelium composite panels mounted on wooden frames.
- My-Co Space (2021): Showcased elements of hemp-grown F. fomentarius on a supporting structure.
2.2. Flexible Fungal Materials
3. Synthetic Biology Toolbox for Genetic Engineering of Fungal Materials
3.1. Regulation Reprogramming Tools
3.2. Genome Editing Tools
3.3. Optimization Methods for Heterologous Gene Expression
4. Fabrication of Fungal Materials
Production Method | Description | Advantages | Disadvantages |
---|---|---|---|
Solid-State Fermentation (SSF) [9,11,95,96,98,99] | Fungal growth occurs on a solid substrate with minimal moisture (30–80%), utilizing pre-colonized lignocellulosic substrates, such as sawdust, in molds. |
|
|
Liquid-State Fermentation (LSF) [9,11,49,101] | (1) Submerged (bioreactor): Involves growth of fungi in a liquid medium, resulting in a microbial suspension. |
|
|
(2) Liquid State Surface Fermentation (LSSF): Static systems using shallow trays; Involves the growth of fungi in a liquid medium with high moisture content, resulting in an amicrobial suspension. |
|
| |
Additive Manufacturing [37] (AM), 3D printing | (1) Substrate Core Deposition: mostly lignocellulosic paste-like material is deposited layer-by-layer. |
|
|
(2) Filament-Based Scaffolds: Utilize filaments containing nutrients for mycelium bonding, printed first and inoculated afterward. |
|
| |
(3) Bio-Inks: Integrates organic substrates (carrier) and living fungal cells into an extrudable paste. |
|
| |
Solid-Substrate Surface Fermentation (SSSF) [102,103] | Filamentous fungi grow on the surface of a liquid medium, utilizing nutrients from a submerged solid substrate, and form high-density mats. |
|
|
Living Fungal Slurry [49,102] | Blending a pre-colonized solid medium with an aqueous solution creates a gel-like slurry, resulting in a homogeneous distribution of hyphae when poured into trays. |
|
|
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Lange, L.; Agger, J.W.; Meyer, A.S. Fungal Biotechnology: Unlocking the Full Potential of Fungi for a More Sustainable World. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–32. ISBN 978-3-030-29540-0. [Google Scholar]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Mehta, P.; Chelike, D.K. Utilizing fungal biodegradation for valorisation of lignocellulosic waste biomass and its diverse applications. Appl. Res. 2024, 3, e202300119. [Google Scholar] [CrossRef]
- Corbu, V.M.; Gheorghe-Barbu, I.; Dumbravă, A.Ș.; Vrâncianu, C.O.; Șesan, T.E. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023, 11, 1384. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef]
- Binod, P.; Sindhu, R.; Pandey, A. Production of antibiotics by filamentous fungi. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 477–496. ISBN 9780323918725. [Google Scholar]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. SOJ Mater. Sci. Eng. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- van den Brandhof, J.G.; Appels, F.V.W.; Jones, M.P. Flexible Fungal Materials: Shaping the Future. Trends Biotechnol. 2021, 39, 1321–1331. [Google Scholar] [CrossRef]
- Jones, M.; Gandia, A.; John, S.; Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 2020, 4, 9–16. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; van Wylick, A.; de Laet, L.; Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef]
- Sharma, M.; Verma, S.; Chauhan, G.; Arya, M.; Kumari, A. Mycelium-based biocomposites: Synthesis and applications. Environ. Sustain. 2024, 7, 265–278. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; van Wylick, A.; Ruytinx, J.; de Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef] [PubMed]
- Fricker, M.D.; Heaton, L.L.M.; Jones, N.S.; Boddy, L. The Mycelium as a Network. In The Fungal Kingdom; Heitman, H., Crous, S., James, G., Eds.; American Society of Microbiology: Washington, DC, USA, 2017; pp. 335–367. ISBN 9781683670827. [Google Scholar]
- He, M.-Q.; Zhao, R.-L.; Liu, D.-M.; Denchev, T.T.; Begerow, D.; Yurkov, A.; Kemler, M.; Millanes, A.M.; Wedin, M.; McTaggart, A.R.; et al. Species diversity of Basidiomycota. Fungal Divers. 2022, 114, 281–325. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, 867. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L.; Hiscox, J. Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. Microbiol. Spectr. 2016, 4, 293–308. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Redman, R.S. Fungal Life-Styles and Ecosystem Dynamics: Biological Aspects of Plant Pathogens, Plant Endophytes and Saprophytes. In Advances in Botanical Research; Andrews, J.H., Tommerup, I.C., Callow, J.A., Eds.; Academic Press: Cambridge, MA, USA, 1997; ISBN 0065-2296. [Google Scholar]
- Papp, N.; Rudolf, K.; Bencsik, T.; Czégényi, D. Ethnomycological use of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Transylvania, Romania. Genet. Resour. Crop Evol. 2017, 64, 101–111. [Google Scholar] [CrossRef]
- ZVNDER. Available online: https://zvnder.com/ (accessed on 17 December 2024).
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 28513415. [Google Scholar] [CrossRef]
- Ehren, H.L.; Appels, F.V.W.; Houben, K.; Renault, M.A.M.; Wösten, H.A.B.; Baldus, M. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surf. 2020, 6, 100046. [Google Scholar] [CrossRef]
- Shin, H.-J.; Ro, H.-S.; Kawauchi, M.; Honda, Y. Review on mushroom mycelium-based products and their production process: From upstream to downstream. Bioresour. Bioprocess. 2025, 12, 3. [Google Scholar] [CrossRef]
- Madusanka, C.; Udayanga, D.; Nilmini, R.; Rajapaksha, S.; Hewawasam, C.; Manamgoda, D.; Vasco-Correa, J. A review of recent advances in fungal mycelium based composites. Discov. Mater. 2024, 4, 13. [Google Scholar] [CrossRef]
- Chen, H.; Klemm, S.; Scoppola, E.; Schmidt, B.; Wu, Y.; Fleck, C.; Gurlo, A.; Meyer, V.; Freidank-Pohl, C.; Simon, U. Structural, Mechanical, and Genetic Insights into Heat-Pressed Fomes fomentarius Mycelium from Solid-State and Liquid Cultivations. Adv. Sustain. Syst. 2025, e00484. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Antinori, M.E.; Contardi, M.; Suarato, G.; Armirotti, A.; Bertorelli, R.; Mancini, G.; Debellis, D.; Athanassiou, A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci. Rep. 2021, 11, 12630. [Google Scholar] [CrossRef] [PubMed]
- Derme, T.; Schwarze, F.W.M.R.; Dillenburger, B. Understanding the Role of Controlled Environments for Producing Mycelium-bound Composites: Advancing Circular Practices for Integrating Biotechnology into the Construction Industry. Glob. Chall. 2024, 8, 2300197. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Seo, G.S.; Kim, H.G. Comparison of Characteristics of Ganoderma lucidum According to Geographical Origins: Consideration of Morphological Characteristics (II). Mycobiology 2001, 29, 80–84. [Google Scholar] [CrossRef]
- Liu, D.; Garrigues, S.; de Vries, R.P. Heterologous protein production in filamentous fungi. Appl. Microbiol. Biotechnol. 2023, 107, 5019–5033. [Google Scholar] [CrossRef]
- Fan, J.; Wei, P.-L.; Li, Y.; Zhang, S.; Ren, Z.; Li, W.; Yin, W.-B. Developing filamentous fungal chassis for natural product production. Bioresour. Technol. 2025, 415, 131703. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Luangharn, T.; Jinanukul, P.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Lumyong, S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics 2024, 9, 337. [Google Scholar] [CrossRef]
- Porter, D.L.; Hotz, E.C.; Uehling, J.K.; Naleway, S.E. A review of the material and mechanical properties of select Ganoderma fungi structures as a source for bioinspiration. J. Mater. Sci. 2023, 58, 3401–3420. [Google Scholar] [CrossRef]
- Almpani-Lekka, D.; Pfeiffer, S.; Schmidts, C.; Seo, S.-I. A review on architecture with fungal biomaterials: The desired and the feasible. Fungal Biol. Biotechnol. 2021, 8, 17. [Google Scholar] [CrossRef]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Bitting, S.; Derme, T.; Lee, J.; van Mele, T.; Dillenburger, B.; Block, P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics 2022, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Modanloo, B.; Ghazvinian, A.; Matini, M.; Andaroodi, E. Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites. Biomimetics 2021, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.; Bridgens, B.; Elsacker, E.; Scott, J. BioKnit: Development of mycelium paste for use with permanent textile formwork. Front. Bioeng. Biotechnol. 2023, 11, 1229693. [Google Scholar] [CrossRef] [PubMed]
- Gründemann, C.; Reinhardt, J.K.; Lindequist, U. European medicinal mushrooms: Do they have potential for modern medicine?—An update. Phytomedicine 2020, 66, 153131. [Google Scholar] [CrossRef]
- King, A.; Watling, R. Paper made from bracket fungi. Mycologist 1997, 11, 52–54. [Google Scholar] [CrossRef]
- William, J.; Dschida, A. Fungal Cell Wall Production and Utilization as a Raw Resource for Textiles. Patent US5854056A 1997. (US5854056A). [Google Scholar]
- Nawawi, W.M.F.B.W.; Jones, M.; Murphy, R.J.; Lee, K.-Y.; Kontturi, E.; Bismarck, A. Nanomaterials Derived from Fungal Sources-Is It the New Hype? Biomacromolecules 2020, 21, 30–55. [Google Scholar] [CrossRef]
- Nawawi, W.M.; Jones, M.P.; Kontturi, E.; Mautner, A.; Bismarck, A. Plastic to elastic: Fungi-derived composite nanopapers with tunable tensile properties. Compos. Sci. Technol. 2020, 198, 108327. [Google Scholar] [CrossRef]
- Janesch, J.; Jones, M.; Bacher, M.; Kontturi, E.; Bismarck, A.; Mautner, A. Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. React. Funct. Polym. 2020, 146, 104428. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, S.; Zhang, X.; Zhang, Y.; Li, B.; Jin, K.; Feng, X.; Hong, J.; Huang, X.; Cao, H.; et al. Sustainable Microplastic Remediation with Record Capacity Unleashed via Surface Engineering of Natural Fungal Mycelium Framework. Adv. Funct. Mater. 2023, 33, 2212570. [Google Scholar] [CrossRef]
- Graham, A.E.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Shankar, M.P.; Hamza, A.; Khalad, A.; Shanthi, G.; Kuppireddy, S.; Kumar, D.S. Engineering mushroom mycelium for a greener built environment: Advancements in mycelium-based biocomposites and bioleather. Food Biosci. 2024, 62, 105577. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Peeters, E. Recent technological innovations in mycelium materials as leather substitutes: A patent review. Front. Bioeng. Biotechnol. 2023, 11, 1204861. [Google Scholar] [CrossRef] [PubMed]
- Kniep, J.; Graupner, N.; Reimer, J.J.; Müssig, J. Mycelium-based biomimetic composite structures as a sustainable leather alternative. Mater. Today Commun. 2024, 39, 109100. [Google Scholar] [CrossRef]
- Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef]
- Naseri, G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat. Commun. 2023, 14, 1916. [Google Scholar] [CrossRef]
- Long, L.; Zhao, H.; Ding, D.; Xu, M.; Ding, S. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess. Biosyst. Eng. 2018, 41, 593–601. [Google Scholar] [CrossRef]
- Brachmann, A.; Weinzierl, G.; Kämper, J.; Kahmann, R. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 2001, 42, 1047–1063. [Google Scholar] [CrossRef]
- Larrondo, L.F.; Colot, H.V.; Baker, C.L.; Loros, J.J.; Dunlap, J.C. Fungal functional genomics: Tunable knockout-knock-in expression and tagging strategies. Eukaryot. Cell 2009, 8, 800–804. [Google Scholar] [CrossRef]
- Rahman, Z.; Shida, Y.; Furukawa, T.; Suzuki, Y.; Okada, H.; Ogasawara, W.; Morikawa, Y. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Appl. Microbiol. Biotechnol. 2009, 82, 899–908. [Google Scholar] [CrossRef]
- Punt, P.J.; van Biezen, N.; Conesa, A.; Albers, A.; Mangnus, J.; van den Hondel, C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002, 20, 200–206. [Google Scholar] [CrossRef]
- Wang, J.; Mai, G.; Liu, G.; Yu, S. Molecular cloning and heterologous expression of an acid-stable endoxylanase gene from Penicillium oxalicum in Trichoderma reesei. J. Microbiol. Biotechnol. 2013, 23, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, D.; Liu, G.; Wang, S.; Yu, S. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei. J. Ind. Microbiol. Biotechnol. 2014, 41, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Shoji, J.-Y.; Maruyama, J.; Arioka, M.; Kitamoto, K. Development of Aspergillus oryzae thiA promoter as a tool for molecular biological studies. FEMS Microbiol. Lett. 2005, 244, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zadra, I.; Abt, B.; Parson, W.; Haas, H. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl. Environ. Microbiol. 2000, 66, 4810–4816. [Google Scholar] [CrossRef]
- Pachlinger, R.; Mitterbauer, R.; Adam, G.; Strauss, J. Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl. Environ. Microbiol. 2005, 71, 672–678. [Google Scholar] [CrossRef]
- Vogt, K.; Bhabhra, R.; Rhodes, J.C.; Askew, D.S. Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol. 2005, 5, 1. [Google Scholar] [CrossRef]
- Meyer, V.; Wanka, F.; van Gent, J.; Arentshorst, M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J. Fungal gene expression on demand: An inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl. Environ. Microbiol. 2011, 77, 2975–2983. [Google Scholar] [CrossRef]
- Urlinger, S.; Baron, U.; Thellmann, M.; Hasan, M.T.; Bujard, H.; Hillen, W. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 2000, 97, 7963–7968. [Google Scholar] [CrossRef]
- Rantasalo, A.; Landowski, C.P.; Kuivanen, J.; Korppoo, A.; Reuter, L.; Koivistoinen, O.; Valkonen, M.; Penttilä, M.; Jäntti, J.; Mojzita, D. A universal gene expression system for fungi. Nucleic Acids Res. 2018, 46, e111. [Google Scholar] [CrossRef]
- Maini Rekdal, V.; van der Luijt, C.R.B.; Chen, Y.; Kakumanu, R.; Baidoo, E.E.K.; Petzold, C.J.; Cruz-Morales, P.; Keasling, J.D. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit. Nat. Commun. 2024, 15, 2099. [Google Scholar] [CrossRef]
- Naseri, G.; Balazadeh, S.; Machens, F.; Kamranfar, I.; Messerschmidt, K.; Mueller-Roeber, B. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae. ACS Synth. Biol. 2017, 6, 1742–1756. [Google Scholar] [CrossRef]
- Kück, U.; Hoff, B. New tools for the genetic manipulation of filamentous fungi. Appl. Microbiol. Biotechnol. 2010, 86, 51–62. [Google Scholar] [CrossRef]
- Nayak, T.; Szewczyk, E.; Oakley, C.E.; Osmani, A.; Ukil, L.; Murray, S.L.; Hynes, M.J.; Osmani, S.A.; Oakley, B.R. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 2006, 172, 1557–1566. [Google Scholar] [CrossRef]
- Mózsik, L.; Pohl, C.; Meyer, V.; Bovenberg, R.A.L.; Nygård, Y.; Driessen, A.J.M. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synth. Biol. 2021, 10, 2850–2861. [Google Scholar] [CrossRef]
- Snoek, I.S.I.; van der Krogt, Z.A.; Touw, H.; Kerkman, R.; Pronk, J.T.; Bovenberg, R.A.L.; van den Berg, M.A.; Daran, J.M. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet. Biol. 2009, 46, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Aleksenko, A.; Clutterbuck, A.J. Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet. Biol. 1997, 21, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-Y.; Zhao, Q.; He, Q.-L. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality. ACS Synth. Biol. 2023, 12, 1908–1923. [Google Scholar] [CrossRef] [PubMed]
- Woodcraft, C.; Chooi, Y.-H.; Roux, I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat. Prod. Rep. 2023, 40, 158–173. [Google Scholar] [CrossRef]
- Fang, Y.; Meng, X.; Liu, L.; Li, Z.; Jia, K.; Liu, W. Simultaneous In Vivo Assembly and Targeted Genome Integration of Gene Clusters in Trichoderma reesei. ACS Synth. Biol. 2025, 14, 575–584. [Google Scholar] [CrossRef]
- Jain, D.; Kalia, A.; Sharma, S.; Manchanda, P. Genome editing tools based improved applications in macrofungi. Mol. Biol. Rep. 2024, 51, 873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Yang, L.; Zhang, Q. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Front. Microbiol. 2023, 14, 1169884. [Google Scholar] [CrossRef]
- Sugano, S.S.; Suzuki, H.; Shimokita, E.; Chiba, H.; Noji, S.; Osakabe, Y.; Osakabe, K. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci. Rep. 2017, 7, 1260. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Schweizer, G.; Reissmann, S.; Kahmann, R. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet. Biol. 2016, 89, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, T.; Kawauchi, M.; Otsuka, Y.; Han, J.; Koshi, D.; Schiphof, K.; Ramírez, L.; Pisabarro, A.G.; Honda, Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl. Microbiol. Biotechnol. 2024, 108, 217. [Google Scholar] [CrossRef]
- Şen, A.; Kargar, K.; Akgün, E.; Pınar, M.Ç. Codon optimization: A mathematical programing approach. Bioinformatics 2020, 36, 4012–4020. [Google Scholar] [CrossRef]
- Rojas-Sánchez, U.; López-Calleja, A.C.; Millán-Chiu, B.E.; Fernández, F.; Loske, A.M.; Gómez-Lim, M.A. Enhancing the yield of human erythropoietin in Aspergillus niger by introns and CRISPR-Cas9. Protein Expr. Purif. 2020, 168, 105570. [Google Scholar] [CrossRef]
- Stock, J.; Sarkari, P.; Kreibich, S.; Brefort, T.; Feldbrügge, M.; Schipper, K. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J. Biotechnol. 2012, 161, 80–91. [Google Scholar] [CrossRef]
- Burggraaf, A.-M.; Punt, P.J.; Ram, A.F.J. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungus Aspergillus niger. FEMS Microbiol. Lett. 2016, 363, fnw152. [Google Scholar] [CrossRef]
- Sun, X.; Su, X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J. Microbiol. Biotechnol. 2019, 35, 54. [Google Scholar] [CrossRef]
- Carvalho, N.D.S.P.; Arentshorst, M.; Kooistra, R.; Stam, H.; Sagt, C.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J. Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger. Appl. Microbiol. Biotechnol. 2011, 89, 357–373. [Google Scholar] [CrossRef]
- Yoon, J.; Kikuma, T.; Maruyama, J.; Kitamoto, K. Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae. PLoS ONE 2013, 8, e62512. [Google Scholar] [CrossRef] [PubMed]
- Hussnaetter, K.P.; Philipp, M.; Müntjes, K.; Feldbrügge, M.; Schipper, K. Controlling Unconventional Secretion for Production of Heterologous Proteins in Ustilago maydis through Transcriptional Regulation and Chemical Inhibition of the Kinase Don3. J. Fungi 2021, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Naseri, G.; Koffas, M.A.G. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun. 2020, 11, 2446. [Google Scholar] [CrossRef] [PubMed]
- Naseri, G.; Behrend, J.; Rieper, L.; Mueller-Roeber, B. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat. Commun. 2019, 10, 2615. [Google Scholar] [CrossRef]
- Zhao, A.; Berglund, L.; Rosenstock Völtz, L.; Swamy, R.; Antonopoulou, I.; Xiong, S.; Mouzon, J.; Bismarck, A.; Oksman, K. Fungal Innovation: Harnessing Mushrooms for Production of Sustainable Functional Materials. Adv. Funct. Mater. 2024, 25, 2412753. [Google Scholar] [CrossRef]
- Tseng, M.C.; Luong, J.H. Mushroom Cultivation—Technology for Commercial Production; Elsevier: Amsterdam, The Netherlands, 1984; pp. 45–79. ISBN 9780120403073. [Google Scholar]
- Wan Mohtar, W.H.M.; Wan-Mohtar, W.A.A.Q.I.; Zahuri, A.A.; Ibrahim, M.F.; Show, P.-L.; Ilham, Z.; Jamaludin, A.A.; Abdul Patah, M.F.; Ahmad Usuldin, S.R.; Rowan, N. Role of ascomycete and basidiomycete fungi in meeting established and emerging sustainability opportunities: A review. Bioengineered 2022, 13, 14903–14935. [Google Scholar] [CrossRef]
- US10144149B2; Stiff Mycelium Bound Part and Method of Producing Stiff Mycelium Bound Parts. Ecovative LLC: New York, NY, USA, 2014.
- US9914906B2; Process for Solid-State Cultivation of Mycelium on a Lignocellulose Substrate. Ecovative LLC: New York, NY, USA, 2016.
- US20170049059A1; Method for Producing Grown Materials and Products Made Thereby. Ecovative LLC: New York, NY, USA, 2016.
- US20210298249A1; Mycelium Growth Bed. Mycoworks Inc.: Emeryville, CA, USA, 2021.
- US11678617B2; Mycelium Growth Bed with Perforation Layer and Related Method for Creating a Uniform Sheet of Mycelium from a Solid-State Medium. Mycoworks Inc.: Emeryville, CA, USA, 2019.
- DE102020133595A1; Method of Cultivating Fungal Material and Arrangement of Growing Medium. Fraunhofer Society: Munich, Germany, 2020.
- VTT. An Alternative for Leather and Synthetic Leather: VTT Succeeded in Demonstrating Continuous Production of Mycelium Leather. Available online: https://www.vttresearch.com/en/news-and-ideas/alternative-leather-and-synthetic-leather-vtt-succeeded-demonstrating-continuous (accessed on 19 December 2024).
- Mogu, S.R.L. Method of Producing Fungal Mats and Materials Made Therefrom; WO2020115690A1; WIPO: Geneva, Switzerland, 2019. [Google Scholar]
- Richard, M.; Yuval, A. Filamentous Fungal Biomats, Methods of Their Production and Methods of Their Use; WO2017151684A1; Mark Kozubal: Bozeman, MT, USA, 2017. [Google Scholar]
- Hinneburg, H.; Vogel, S. Apparatus for Cultivating Mushrooms and/or Plants and Method for Producing Mycelium Mats (WO 2025/131307 A1); WIPO: Geneva, Switzerland, 2025. [Google Scholar]
- Onorato, C.; Madeu, F.; Tsakalova, M.; Deligkiozi, I.; Zoikis Karathanasis, A. Navigating the mycelium patent maze: A holistic approach to patent mapping in production technologies. World Pat. Inf. 2024, 76, 102265. [Google Scholar] [CrossRef]
- Meyer, V.; Mengel, S. Patent landscape analysis for materials based on fungal mycelium: A guidance report on how to interpret the current patent situation. Fungal Biol. Biotechnol. 2024, 11, 11. [Google Scholar] [CrossRef]
- Jo, C.; Zhang, J.; Tam, J.M.; Church, G.M.; Khalil, A.S.; Segrè, D.; Tang, T.-C. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater. Today Bio 2023, 19, 100560. [Google Scholar] [CrossRef]
- Dixon, T.A.; Freemont, P.S.; Johnson, R.A.; Pretorius, I.S. A global forum on synthetic biology: The need for international engagement. Nat. Commun. 2022, 13, 3516. [Google Scholar] [CrossRef]
- Hérisson, J.; Duigou, T.; Du Lac, M.; Bazi-Kabbaj, K.; Sabeti Azad, M.; Buldum, G.; Telle, O.; El Moubayed, Y.; Carbonell, P.; Swainston, N.; et al. The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering. Nat. Commun. 2022, 13, 5082. [Google Scholar] [CrossRef]
- Carbonell, P.; Le Feuvre, R.; Takano, E.; Scrutton, N.S. In silico design and automated learning to boost next-generation smart biomanufacturing. Synth. Biol. 2020, 5, ysaa020. [Google Scholar] [CrossRef]
- Moon, T.S. EBRC: Enhancing bioeconomy through research and communication. N. Biotechnol. 2023, 78, 150–152. [Google Scholar] [CrossRef]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C.; et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef]
Property | Range |
---|---|
Compressive Strength | 0.17 to 1.1 MPa |
Tensile Strength | 0.03 to 0.18 MPa |
Density | 59 to 552 kg/m3 |
Flexural Strength | 0.05 to 0.29 MPa |
Acoustic Absorbance | 70% to 75% at 1000 Hz |
Moisture Uptake | 40 to 580 wt% |
Thermal Conductivity | 0.04 to 0.18 W/mK |
Fire Resistance | Varies by composition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinneburg, H.; Gu, S.; Naseri, G. Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry. J. Fungi 2025, 11, 721. https://doi.org/10.3390/jof11100721
Hinneburg H, Gu S, Naseri G. Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry. Journal of Fungi. 2025; 11(10):721. https://doi.org/10.3390/jof11100721
Chicago/Turabian StyleHinneburg, Hannes, Shanna Gu, and Gita Naseri. 2025. "Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry" Journal of Fungi 11, no. 10: 721. https://doi.org/10.3390/jof11100721
APA StyleHinneburg, H., Gu, S., & Naseri, G. (2025). Fungal Innovations—Advancing Sustainable Materials, Genetics, and Applications for Industry. Journal of Fungi, 11(10), 721. https://doi.org/10.3390/jof11100721