HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemaire, B.; Normand, A.C.; Forel, J.M.; Cassir, N.; Piarroux, R.; Ranque, S. Hospitalized Patient as Source of Aspergillus fumigatus. Emerg. Infect. Dis. 2018, 24, 1524–1527. [Google Scholar] [CrossRef]
- Houbraken, J.; Kocsubé, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 27, 5–169. [Google Scholar] [CrossRef]
- Visagie, C.M.; Yilmaz, N.; Kocsubé, S.; Frisvad, J.C.; Hubka, V.; Samson, R.A.; Houbraken, J. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud. Mycol. 2024, 107, 1–66. [Google Scholar] [CrossRef]
- Klich, M.A. Identification of clinically relevant aspergilli. Med. Mycol. 2006, 1, S127–S131. [Google Scholar] [CrossRef]
- Gautier, M.; Normand, A.C.; Ranque, S. Previously unknown species of Aspergillus. Clin. Microbiol. Infect. 2016, 22, 662–669. [Google Scholar] [CrossRef]
- Siqueira, J.P.Z.; Wiederhold, N.; Gené, J.; García, D.; Almeida, M.T.G.; Guarro, J. Cryptic Aspergillus from clinical samples in the USA and description of a new species in section Flavipedes. Mycoses 2018, 61, 814–825. [Google Scholar] [CrossRef]
- Nasri, T.; Hedayati, M.T.; Abastabar, M.; Pasqualotto, A.C.; Armaki, M.T.; Hoseinnejad, A.; Nabili, M. PCR-RFLP on β-tubulin gene for rapid identification of the most clinically important species of Aspergillus. J. Microbiol. Methods 2015, 117, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 2017, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Carvalho, A.; Houbraken, J.; Lombardi, L.; Garcia-Rubio, R.; Jenks, J.D.; Rivero-Menendez, O.; Aljohani, R.; Jacobsen, I.D.; Berman, J. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol. 2021, 100, 100115. [Google Scholar] [CrossRef]
- Latgé, J.P.; Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 13, e00140-18. [Google Scholar] [CrossRef] [PubMed]
- Zoran, T.; Sartori, B.; Sappl, L.; Aigner, M.; Sánchez-Reus, F.; Rezusta, A.; Chowdary, A.; Taj-Aldeen, S.J.; Arendrup, M.C.; Oliveri, S. Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon? Front. Microbiol. 2018, 9, 516. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef] [PubMed]
- Bart-Delabesse, E.; Sarfati, J.; Debeaupuis, J.P.; Van Leeuwen, W.; Van Belkum, A.; Bretagne, S.; Latge, J.-.P. Comparison of restriction fragment length polymorphism, microsatellite length polymorphism, and random amplification of polymorphic DNA analyses for fingerprinting Aspergillus fumigatus isolates. J. Clin. Microbiol. 2001, 39, 2683–2686. [Google Scholar] [CrossRef]
- Bertout, S.; Renaud, F.; Barton, R.; Symoens, F.; Burnod, J.; Piens, M.A.; Lebeau, B.; Viviani, M.A.; Chapuis, F.; Bastide, J.M. Genetic polymorphism of Aspergillus fumigatus in clinical samples from patients with invasive aspergillosis: Investigation using multiple typing methods. J. Clin. Microbiol. 2001, 39, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- de Valk, H.A.; Klaassen, C.H.; Meis, J.F. Molecular typing of Aspergillus species. Mycoses 2008, 51, 463–4676. [Google Scholar] [CrossRef]
- Meslier, V.; Quinquis, B.; Da Silva, K.; Oñate, F.P.; Pons, N.; Roume, H.; Podar, M.; Almeida, M. Benchmarking second and third-generation sequencing platforms for microbial metagenomics Sci. Data 2022, 9, 694. [Google Scholar] [CrossRef]
- Akaçin, I.; Ersoy, Ş.; Doluca, O.; Güngörmüşler, M. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol. Res. 2022, 264, 127154. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life 2022, 12, 30. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Chander, Y.; Koelbl, J.; Puckett, J.; Moser, M.J.; Klingele, A.J.; Liles, M.R.; Carrias, A.; Mead, D.A.; Schoenfeld, T.W. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol. 2014, 5, 395. [Google Scholar] [CrossRef]
- Park, J.W. Principles and applications of loop-mediated isothermal amplification to point-of-care tests. Biosensors 2022, 12, 857. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Iguchi, Y.; Shibata, N.; Teramura, I.; Kitagawa, T.; Yamanaka, H. Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: An application on two Japanese Medaka species. Sci. Rep. 2018, 8, 9138. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Murakami, H.; Masuda, R.; Sakata, M.K.; Yamamoto, S.; Minamoto, T. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol. Ecol. Resour. 2017, 17, e25–e33. [Google Scholar] [CrossRef]
- Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and potential. BioTechniques 1999, 26, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Goshia, T.; Aralar, A.; Wiederhold, N.; Jenks, J.D.; Mehta, S.R.; Sinha, M.; Karmakar, A.; Sharma, A.; Shrivastava, R.; Sun, H. Universal Digital High Resolution Melt for the detection of pulmonary mold infections. bioRxiv 2023. bioRxiv:11.09.566457. [Google Scholar] [CrossRef]
- Poh, T.Y.; Ali, N.A.B.M.; Chan, L.L.Y.; Tiew, P.Y.; Chotirmall, S.H. Evaluation of Droplet Digital Polymerase Chain Reaction (ddPCR) for the Absolute Quantification of Aspergillus species in the Human Airway. Int. J. Mol. Sci. 2020, 21, 3043. [Google Scholar] [CrossRef]
- Imelfort, M.; Edwards, D. De novo sequencing of plant genomes using second-generation technologies. Brief. Bioinform. 2009, 10, 609–618. [Google Scholar] [CrossRef]
- Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 2018, 122, 59. [Google Scholar] [CrossRef]
- XGoodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fanning, S.; Proos, S.; Jordan, K.; Srikumar, S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 2017, 8, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.; Ilie, L. Correcting Illumina data. Brief Bioinform 2015, 16, 588–599. [Google Scholar] [CrossRef]
- Mardis, E.R. Next-Generation Sequencing Platforms. Annu. Rev. Anal. Chem. 2013, 6, 287–303. [Google Scholar] [CrossRef]
- Nelsen, D.J.; Sinha, R.; Tyler, A.J.; Westergaard, J.; Nutt, J.; Wissel, M.; Kleiboeker, S.; Altrich, M. 268 Fungal NGS: Identification of etiological agents of invasive fungal infection by high-throughput sequencing. Open Forum Infect. Dis. 2019, 6, S148. [Google Scholar] [CrossRef]
- Rodríguez-Santiago, B.; Armengol, L. Tecnologías de secuenciación de nueva generación en diagnóstico genético pre- y postnatal. Diagnóstico Prenat. 2012, 23, 56–66. [Google Scholar] [CrossRef]
- Santillán, S.; Álvarez, D.; Buades, C.; Romera-López, A.; Pérez-Cabornero, L.; Valero-Hervás, D.; Cantalapiedra, D.; Felipe-Ponce, V.; Hernández-Poveda, G.; Roca, M.J. Diagnóstico molecular de enfermedades genéticas: Del diagnóstico genético al diagnóstico genómico con la secuenciación masiva. Rev. Médica Clínica Condes 2015, 26, 458–469. [Google Scholar]
- Valderrama Martín, J.M.; Ortigosa, F.; Cañas, R. Métodos de secuenciación: Tercera generación. Encuentros En La Biol. 2020, 13, 15–21. [Google Scholar]
- Lang, D.; Zhang, S.; Ren, P.; Liang, F.; Sun, Z.; Meng, G.; Tan, Y.; Li, X.; Lai, Q.; Han, L. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Gigascience 2020, 9, giaa123. [Google Scholar] [CrossRef]
- Weirather, J.L.; de Cesare, M.; Wang, Y.; Piazza, P.; Sebastiano, V.; Wang, X.J.; Buck, D.; Au, K.F. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 2017, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, C.; Nicolas, J. Sequencing DNA with nanopores: Troubles and biases. PLoS ONE 2021, 16, e0257521. [Google Scholar] [CrossRef]
- Lin, B.; Hui, J.; Mao, H. Nanopore Technology and Its Applications in Gene Sequencing. Biosensors 2021, 11, 214. [Google Scholar] [CrossRef]
- Schadt, E.E.; Turner, S.; Kasarskis, A. A window into third-generation sequencing. Hum. Mol. Genet. 2010, 19, R227–R240. [Google Scholar] [CrossRef]
- Wilson, M.R.; O’Donovan, B.D.; Gelfand, J.M.; Sample, H.A.; Chow, F.C.; Betjemann, J.P.; Shah, M.P.; Richie, M.B.; Gorman, M.P.; Hajj-Ali, R.A. Chronic Meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol. 2018, 75, 947–955. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, J.; Zhang, J.; Shi, L.; Jin, Z.; Liu, D.; Wu, B.; Chen, J. Diagnosis of complication in lung transplantation by TBLB + ROSE + mNGS. Open Med. 2020, 15, 968–980. [Google Scholar] [CrossRef]
- Chang, B.; Wei, X.; Wang, X.; Tang, Y.; Zhu, J.; Zheng, X.; Zhang, C.; Li, S. Metagenomic next-generation sequencing of viruses, bacteria, and fungi in the epineurium of the facial nerve with Bell’s palsy patients. J. NeuroVirology 2020, 26, 727–733. [Google Scholar] [CrossRef]
- Yan, H.; Li, Z.; Xia, H.; Li, Q.; Bai, H. A case report on mixed pulmonary infection of Nocardia nova, Mycobacterium tuberculosis, and Aspergillus fumigatus based on metagenomic next-generation sequencing. Front. Public Health 2022, 10, 927338. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; He, X.J.; Nie, J.M.; Guan, S.S.; Chen, Y.K.; Liu, M. Central nervous system aspergillosis misdiagnosed as Toxoplasma gondii encephalitis in a patient with AIDS: A case report. AIDS Res. Ther. 2022, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Peng, J.M.; Qin, H.Y.; Du, B. Metagenomic next-generation sequencing: A promising tool for diagnosis and treatment of suspected pneumonia in rheumatic patients with acute respiratory failure: Retrospective cohort study. Front. Cell. Infect. Microbiol. 2022, 12, 941930. [Google Scholar] [CrossRef]
- Bao, S.; Song, H.; Chen, Y.; Zhong, C.; Tang, H. Metagenomic next-generation sequencing for the diagnosis of pulmonary aspergillosis in non-neutropenic patients: A retrospective study. Front. Cell. Infect. Microbiol. 2022, 12, 925982. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, S.; Xing, H.; Li, H.; Chen, J.; Li, H.; Chen, J.; Li, H.; Jiao, M.; Shi, Q. Invasive pulmonary aspergillosis diagnosis via peripheral blood metagenomic next-generation sequencing. Front. Med. 2022, 24, 751617. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qu, M.; Song, C.; Yin, L.; Zhang, M.J. Cerebral vasculitis caused by Talaromyces marneffei and Aspergillus niger in a HIV-positive patient: A case report and literature review. J. NeuroVirology 2022, 28, 274–280. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, J.-M.; Hu, X.-Y.; Yang, Q.-W.; Wang, Y. Metagenomic next-generation sequencing for detecting Aspergillosis pneumonia in immunocompromised patients: A retrospective study. Front. Cell. Infect. Microbiol. 2023, 13, 1209724. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, R.; Zhu, Y.; Zhu, W.; Jiang, H. The application of metagenomic next generation sequencing in diagnosing fungal malignant external otitis: A report of two cases. Front Cell Infect. Microbiol. 2023, 13, 1236414. [Google Scholar] [CrossRef]
- Liu, H.; Xu, H.; Liu, H.; Zhao, Z.; Zhang, X. Metagenomic next-generation sequencing in the diagnose of pulmonary infection with airway complications in a lung transplant recipient. Heliyon 2023, 9, e19611. [Google Scholar] [CrossRef]
- Jia, H.; Liu, H.; Tu, M.; Wang, Y.; Wang, X.; Li, J.; Zhang, G. Diagnostic efficacy of metagenomic next generation sequencing in bronchoalveolar lavage fluid for proven invasive pulmonary aspergillosis. Front. Cell. Infect. Microbiol. 2023, 13, 1223576. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, Y.; Li, J.; Wang, L.; Shi, R.; Chen, Y.; Zhu, Y.; Zhuang, S. Metagenomic next-generation sequencing for diagnosis and efficacy evaluation of a critical case of SFTS complicated by invasive pulmonary aspergillosis. ID Cases 2023, 33, e01884. [Google Scholar] [CrossRef]
- Deng, W.; Jiang, Y.; Qin, J.; Chen, G.; Lv, Y.; Lei, Y.; Luo, J.; Hong, K.; Huang, B.; Qin, L. Metagenomic next-generation sequencing assists in the diagnosis of mediastinal Aspergillus fumigatus abscess in an immunocompetent patient: A case report and literature review. Infect. Drug Resist. 2023, 16, 1865–1874. [Google Scholar] [CrossRef]
- Ao, Z.; Xu, H.; Li, M.; Liu, H.; Deng, M.; Liu, Y. Clinical characteristics, diagnosis, outcomes and lung microbiome analysis of invasive pulmonary aspergillosis in the community-acquired pneumonia patients. BMJ Open Respir. Res. 2023, 10, e001358. [Google Scholar] [CrossRef]
- Hoenigl, M.; Egger, M.; Price, J.; Krause, R.; Prattes, J.; White, P.L. Metagenomic next-generation sequencing of plasma for diagnosis of COVID-19-associated pulmonary aspergillosis. J. Clin. Microbiol. 2023, 61, e0185922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, G.; He, L.; Zhu, Y.; Tu, H.; Zhuang, S. Life-threatening pulmonary coinfection with Mycobacterium tuberculosis and Aspergillus lentulus in a diabetic patient diagnosed by metagenome next-generation sequencing. BMC Infect. Dis. 2023, 23, 88. [Google Scholar] [CrossRef]
- Zhuang, H.; Xiang, K.; Gong, S.; Zhou, Y.; Chen, J. Cerebral aspergillosis after heart-lung transplantation in a child: Case report with 3-year follow-up and literature review. Front. Cardiovasc. Med. 2023, 9, 1042631. [Google Scholar] [CrossRef]
- Zhan, W.; Liu, Q.; Yang, C.; Zhao, Z.; Yang, L.; Wang, Y.; Feng, J. Evaluation of metagenomic next-generation sequencing diagnosis for invasive pulmonary aspergillosis in immunocompromised and immunocompetent patients. Mycoses 2023, 66, 331–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.; Xia, H.; Wang, J.; Yang, H.; Xu, L.; Huang, K.; Fang, J. Metagenomic next-generation sequencing for detection of pathogens in children with hematological diseases complicated with infection. Mol. Cell. Probes 2023, 67, 101889. [Google Scholar] [CrossRef]
- Cai, X.; Sun, C.; Zhong, H.; Cai, Y.; Cao, M.; Wang, L.; Sun, W.; Tao, Y.; Ma, G.; Huang, B. The value of metagenomic next-generation sequencing with different nucleic acid extracting methods of cell-free DNA or whole-cell DNA in the diagnosis of non-neutropenic pulmonary aspergillosis. Front. Cell. Infect. Microbiol. 2024, 14, 1398190. [Google Scholar] [CrossRef]
- Niu, S.; Liu, D.; Yang, Y.; Zhao, L. Clinical utility of metagenomics next-generation sequencing in the diagnosis of invasive pulmonary aspergillosis in acute exacerbation of chronic obstructive pulmonary disease patients in the intensive care unit. Front. Cell. Infect. Microbiol. 2024, 14, 1397733. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Xi, X.; Ding, R.; Yang, L. Coinfection of Cedecea lapagei and Aspergillus sydowii detected in bronchoalveolar lavage fluid of a patient with pulmonary infection using metagenomic next-generation sequencing: A case report. Heliyon 2024, 10, e33130. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.Y.; Wang, M.; Xu, Y.D.; Wang, L.N. Application of metagenomic next-generation sequencing in the diagnosis of infectious keratitis. J. Ophthalmol. 2024, 2024, 9911979. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gai, W.; Zhang, X.; Zheng, Y.; Jin, X.; Han, Z.; Ao, G.; He, J.; Shu, D.; Liu, X. Clinical performance of metagenomic next-generation sequencing for diagnosis of pulmonary Aspergillus infection and colonization. Front. Cell. Infect. Microbiol. 2024, 14, 1345706. [Google Scholar] [CrossRef]
- Shen, D.; Lv, X.; Zhang, H.; Fei, C.; Feng, J.; Zhou, J.; Cao, L.; Ying, Y.; Ma, X. Association between clinical characteristics and microbiota in bronchiectasis patients based on metagenomic next-generation sequencing technology. Pol. J. Microbiol. 2024, 73, 59–68. [Google Scholar] [CrossRef]
- Wang, J.Z.; Yuan, D.; Yang, X.H.; Sun, C.H.; Hou, L.L.; Zhang, Y.; Gao, Y.-X. Etiology of lower respiratory tract in pneumonia based on metagenomic next-generation sequencing: A retrospective study. Front. Cell. Infect. Microbiol. 2024, 13, 1291980. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Han, D. Rapid diagnosis of Aspergillus fumigatus endocarditis using mNGS assay: A case report and review of the literature. Diagn. Microbiol. Infect. Dis. 2024, 108, 116171. [Google Scholar] [CrossRef]
- Huang, C.; Chang, S.; Ma, R.; Shang, Y.; Li, Y.; Wang, Y.; Feng, M.; Guo, W. COVID-19 in pulmonary critically ill patients: Metagenomic identification of fungi and characterization of pathogenic microorganisms. Front. Cell. Infect. Microbiol. 2024, 13, 1220012. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, X.; Hu, Y.P. Aspergillosis infection over 20 years: A case report of probable vascular invasion in central nervous system. BMC Neurol. 2020, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, Y.; Lu, X.; Xia, L. Case report: Nanopore targeted sequencing in the diagnosis of invasive pulmonary Aspergillus infection in a patient with acute promyelocytic leukemia. Hematology 2023, 28, 2225345. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Shin, J.H.; Suh, S.P.; Ryang, D.W.; Park, C.S.; Kim, C.; Kook, H.; Kim, J. Aspergillus nidulans infection in a patient with chronic granulomatous disease. J. Korean Med. Sci. 1997, 12, 244–248. [Google Scholar] [CrossRef]
- Perez-Jaffe, L.A.; Lanza, D.C.; Loevner, L.A.; Kennedy, D.W.; Montone, K.T. In situ hybridization for Aspergillus and Penicillium in allergic fungal sinusitis: A rapid means of speciating fungal pathogens in tissues. Laryngoscope 1997, 107, 33–40. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sonobe, H.; Ikezoe, T.; Hakoda, E.; Ohtsuki, Y.; Taguchi, H. In situ detection of Aspergillus 18S ribosomal RNA in invasive pulmonary aspergillosis. Intern. Med. 1999, 38, 563–569. [Google Scholar] [CrossRef]
- Myoken, Y.; Sugata, T.; Mikami, Y.; Yamagata Murayama, S.; Fujita, Y. Identification of Aspergillus species in oral tissue samples of patients with hematologic malignancies by in situ hybridization: A preliminary report. J. Oral Maxillofac. Surg. 2008, 66, 1905–1912. [Google Scholar] [CrossRef]
- Myoken, Y.; Sugata, T.; Katayama, Y.; Yamagata Murayama, S. Prompt and definitive diagnosis of acute invasive Aspergillus rhinosinusitis in a patient with acute myeloid leukaemia using in situ hybridization: A case report. Mycoses 2011, 55, e23–e26. [Google Scholar] [CrossRef]
- Kiriyama, T.; Murayama, S.Y.; Myoken, Y. Confirmatory diagnosis of invasive maxillary sinus aspergillosis by in situ hybridization: Report of two cases in immunocompetent subjects. J. Oral Maxillofac. Surg. Med. Pathol. 2012, 24, 124–127. [Google Scholar] [CrossRef]
- Rickerts, V.; McCormick Smith, I.; Mousset, S.; Kommedal, O.; Fredricks, D.N. Deciphering the aetiology of a mixed fungal infection by broadrange PCR with sequencing and fluorescence in situ hybridisation. Mycoses 2013, 56, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, L.; Moura, S.; Almeida, C.; Vieira, M.J.; Azevedo, N.F. Establishment of a New PNA-FISH Method for Aspergillus fumigatus identification: First insights for future use in pulmonary samples. Microorganisms 2020, 8, 1950. [Google Scholar] [CrossRef]
- Leinberger, D.M.; Schumacher, U.; Autenrieth, I.B.; Bachmann, T.T. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J. Clin. Microbiol. 2005, 43, 4943–4953. [Google Scholar] [CrossRef]
- Spiess, B.; Seifarth, W.; Hummel, M.; Frank, O.; Fabarius, A.; Zheng, C.; Morz, H.; Hehlmann, R.; Buchheidt, D. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J. Clin. Microbiol. 2007, 45, 3743–3753. [Google Scholar] [CrossRef]
- Romantowski, J.; Górska, A.; Moszkowska, G.; Kulczycka, J.; Minkowska, K.; Rolewicz, A.; Nittner-Marszalska, M.; Niedoszytko, M. Atopy and multisensitizations in specific IgE microarrays and their impact on severe asthma. Life 2022, 12, 1520. [Google Scholar] [CrossRef]
- Dendis, M.; Horváth, R.; Michálek, J.; Růžička, F.; Grijalva, M.; Bartoš, M.; Benedíl, J. PCR-RFLP detection and species identification of fungal pathogens in patients with febrile neutropenia. Clin. Microbiol. Infect. 2003, 9, 11911202. [Google Scholar] [CrossRef]
- Tang, Q.; Tian, S.; Yu, N.; Zhang, X.; Jia, X.; Zhai, H.; Sun, Q.; Han, L. Development and Evaluation of a Loop-Mediated Isothermal Amplification method for rapid detection of Aspergillus fumigatus. J. Clin. Microbiol. 2016, 54, 950–955. [Google Scholar] [CrossRef]
- Yu, L.S.; Rodriguez-Manzano, J.; Moser, N.; Moniri, A.; Malpartida-Cardenas, K.; Miscourides, N.; Sewell, T.; Kochina, T.; Brackin, A.; Rhodes, J. Rapid detection of azole-resistant Aspergillus fumigatus in clinical and environmental isolates by use of a Lab-on-a-Chip Diagnostic System. J. Clin. Microbiol. 2020, 58, e00843-20. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tsuyuguchi, K.; Shimatani, Y.; Matsuda, Y.; Kagawa, T.; Takimoto, T.; Takeuchi, N.; Arai, T.; Inoue, Y. Utility of a Loop-Mediated Isothermal Amplification detection kit to diagnose chronic pulmonary aspergillosis. J. Infect. Chemother. 2024, 30, 7–11. [Google Scholar] [CrossRef]
- Jiang, L.; Gu, R.; Li, X.; Mu, D. Simple and rapid detection Aspergillus fumigatus by Loop-Mediated Isothermal Amplification coupled with lateral flow biosensor assay. J. Appl. Microbiol. 2021, 131, 2351–2360. [Google Scholar] [CrossRef]
- Danylo, A.; Courtemanche, C.; Pelletier, R.; Boudreault, A.A. Performance of MycAssay Aspergillus DNA real-time PCR assay compared with the galactomannan detection assay for the diagnosis of invasive aspergillosis from serum samples. Med. Mycol. 2014, 52, 577–583. [Google Scholar] [CrossRef]
- White, P.L.; Hibbitts, S.J.; Perry, M.D.; Green, J.; Stirling, E.; Woodford, L.; McNay, G.; Stevenson, R.; Barnes, R.A. Evaluation of a commercially developed semiautomated PCR-surface-enhanced raman scattering assay for diagnosis of invasive fungal disease. J. Clin. Microbiol. 2014, 52, 3536–3543. [Google Scholar] [CrossRef]
- Paholcsek, M.; Fidler, G.; Konya, J.; Rejto, L.; Mehes, G.; Bukta, E.; Loeffler, J.; Biro, S. Combining standard clinical methods with PCR showed improved diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies and prolonged neutropenia. BMC Infect. Dis. 2015, 1, 251. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Barnes, R.A.; Springer, J.; Klingspor, L.; Cuenca-Estrella, M.; Morton, C.O.; Lagrou, K.; Bretagne, S.; Melchers, W.J.G.; Mengoli, C. Clinical performance of Aspergillus PCR for testing serum and plasma: A study by the European Aspergillus PCR Initiative. J. Clin. Microbiol. 2015, 53, 2832–2837. [Google Scholar] [CrossRef]
- Sönmez, A.; Eksi, F.; Pehlivan, M.; Haydaroglu Sahin, H. Investigating the presence of fungal agents in febrile neutropenic patients using different microbiological, serological, and molecular methods. Bosn. J. Basic Med. Sci. 2015, 15, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bölük, G.; Kazak, E.; Özkalemkaş, F.; Ener, B.; Akalin, H.; Ağca, H.; Okuturlar, Y.; Keskin, K.; Burgazlioglu, B.; Ali, R. Comparison of galactomannan, beta-D-glucan, and Aspergillus DNA in sera of high-risk adult patients with hematological malignancies for the diagnosis of invasive aspergillosis. Turk. J. Med. Sci. 2016, 46, 335–3342. [Google Scholar] [CrossRef]
- Loeffler, J.; Hafner, J.; Mengoli, C.; Wirth, C.; Heussel, C.P.; Löffler, C.; Lewis White, P.; Ullmann, A.J.; Michel, D.; Wiegering, V. Prospective biomarker screening for diagnosis of invasive sspergillosis in high-risk pediatric patients. J. Clin. Microbiol. 2016, 55, 101–109. [Google Scholar] [CrossRef]
- Springer, J.; White, P.L.; Hamilton, S.; Michel, D.; Barnes, R.A.; Einsele, H.; Loeffler, J. Comparison of performance characteristics of Aspergillus PCR in testing a range of blood-based samples in accordance with international methodological recommendations. J. Clin. Microbiol. 2016, 54, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Dannaoui, E.; Gabriel, F.; Gaboyard, M.; Lagardere, G.; Audebert, L.; Quesne, G.; Godichaud, S.; Verweij, P.E.; Accoceberry, I.; Bougnoux, M.-E. Molecular diagnosis of invasive sspergillosis and detection of azole resistance by a newly commercialized PCR kit. J. Clin. Microbiol. 2017, 55, 3210–3218. [Google Scholar] [CrossRef]
- Grancini, A.; Orlandi, A.; Lunghi, G.; Consonni, D.; Pozzi, C.; Rossetti, V.; Palleschi, A.; Fracchiolla, N.; Melada, E.; Savioli, M. Evaluation of Real Time PCR Aspergillus spp. in bronchoalveolar lavage samples. New Microbiol. 2018, 41, 67–70. [Google Scholar]
- Morio, F.; Dannaoui, E.; Chouaki, T.; Cateau, E.; Malard, O.; Bonfils, P.; Page, C.; Dufour, X.; Cottrel, C.; Erwan, T. PCR-based detection of Aspergillus fumigatus and absence of azole resistance due to TR34/L98H in a French multicenter cohort of 137 patients with fungal rhinosinusitis. Mycoses 2018, 61, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Vrioni, G.; Theodoridou, K.; Tsiamis, C.; Mavrouli, M.; Kapsimali, V.; Rigopoulos, D.; Tsakris, A. Use of galactomannan antigen and Aspergillus DNA real-time polymerase chain reaction as routine methods for invasive aspergillosis in immunosuppressed children in Greece. Clin. Ther. 2018, 40, 918–924.e2. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.; White, P.L.; Kessel, J.; Wieters, I.; Teschner, D.; Korczynski, D.; Liebregts, T.; Cornely, O.A.; Schwartz, S.; Elgeti, T. A comparison of Aspergillus and Mucorales PCR testing of different bronchoalveolar lavage fluid fractions from patients with suspected invasive pulmonary fungal disease. J. Clin. Microbiol. 2018, 56, e01655-17. [Google Scholar] [CrossRef] [PubMed]
- Borman, A.M.; Palmer, M.D.; Fraser, M.; Patterson, Z.; Mann, C.; Oliver, D.; Linton, C.J.; Gough, M.; Brown, P.; Dzietczyk, A. COVID-19-associated invasive aspergillosis: Data from the UK National Mycology Reference Laboratory. J. Clin. Microbiol. 2020, 59, e02136-20. [Google Scholar] [CrossRef]
- Siopi, M.; Karakatsanis, S.; Roumpakis, C.; Korantanis, K.; Sambatakou, H.; Sipsas, N.V.; Tsirigotis, P.; Pagoni, M.; Meletiadis, J. A prospective multicenter cohort surveillance study of invasive aspergillosis in patients with hematologic malignancies in Greece: Impact of the revised EORTC/MSGERC 2020 criteria. J. Fungi 2021, 7, 27. [Google Scholar] [CrossRef]
- Ye, F.; Zeng, P.; Li, Z.; Tang, C.; Liu, W.; Su, D.; Zhan, Y.; Li, S. Detection of Aspergillus DNA in BALF by Real-time PCR and galactomannan antigen for the early diagnosis of chronic pulmonary aspergillosis. Ann. Clin. Lab. Sci. 2021, 51, 698–704. [Google Scholar]
- Siopi, M.; Karakatsanis, S.; Roumpakis, C.; Korantanis, K.; Eldeik, E.; Sambatakou, H.; Sipsas, N.V.; Tsirigotis, P.; Pagoni, M.; Meletiadis, J. Performance, Correlation and kinetic profile of circulating serum fungal biomarkers of invasive aspergillosis in high-risk patients with hematologic malignancies. J. Fungi 2021, 7, 211. [Google Scholar] [CrossRef]
- Badiee, P.; Amanati, A.; Ghasemi, F.; Jafarian, H. Significance of biomarkers in stewardship program in pediatric patients infected with Aspergillus species. Ital. J. Pediatr. 2022, 48, 109. [Google Scholar] [CrossRef]
- Hu, W.; Li, X.; Guo, W.; Shangguan, Y.; Xia, J.; Feng, X.; Sheng, C.; Ji, Z.; Ding, C.; Xu, K. The Utility of Real-Time PCR, Metagenomic next-generation sequencing, and culture in bronchoalveolar lavage fluid for diagnosis of pulmonary aspergillosis. J. Mol. Diagn. 2024, 26, 832–842. [Google Scholar] [CrossRef]
- Pandey, M.; Xess, I.; Sachdev, J.; Sharad, N.; Gupta, S.; Singh, G.; Yadav, R.K.; Rana, B.; Raj, S.; Ahmad, M.N. Utility of an in-house real-time PCR in whole blood samples as a minimally invasive method for early and accurate diagnosis of invasive mould infections. J. Infect. 2024, 88, 106147. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.L.; Sarker, S.J.; Nannini, F.; Ferrini, A.; Taylor, E.; Lass-Flörl, C.; Mutschlechner, W.; Bustin, S.A.; Agrawal, S.G. Aspergillus-specific lateral-flow device and real-time PCR testing of bronchoalveolar lavage fluid: A combination biomarker approach for clinical diagnosis of invasive pulmonary aspergillosis. J. Clin. Microbiol. 2015, 53, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, S.; Wan, Z.; Que, C.; Li, R.; Yu, J. Quantitative real-time PCR and Platelia Galactomannan Assay for the diagnosis of invasive pulmonary aspergillosis: Bronchoalveolar lavage fluid performs better than serum in non-neutropaenic patients. Mycopathologia 2016, 181, 625–629. [Google Scholar] [CrossRef]
- Mikulska, M.; Furfaro, E.; De Carolis, E.; Drago, E.; Pulzato, I.; Borghesi, M.L.; Zappulo, E.; Raiola, A.M.; Grazia, C.D.; Del Bono, V. Use of Aspergillus fumigatus real-time PCR in bronchoalveolar lavage samples (BAL) for diagnosis of invasive aspergillosis, including azole-resistant cases, in high risk haematology patients: The need for a combined use with galactomannan. Med. Mycol. 2019, 57, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Xess, I.; Sachdev, J.; Yadav, U.; Singh, G.; Pradhan, D.; Xess, A.B.; Rana, B.; Dar, L.; Bakhshi, S. Development of a sensitive and specific novel qPCR assay for simultaneous detection and differentiation of mucormycosis and aspergillosis by melting curve analysis. Front. Fungal Biol. 2022, 2, 800898. [Google Scholar] [CrossRef]
- Bellanger, A.P.; Millon, L.; Berceanu, A.; Grenouillet, F.; Grenouillet, F.E.; Larosa, F.; Deconinck, E. Combining Aspergillus mitochondrial and ribosomal QPCR, in addition to galactomannan assay, for early diagnosis of invasive aspergillosis in hematology patients. Med. Mycol. 2015, 53, 760–764. [Google Scholar] [CrossRef]
- Prattes, J.; Hoenigl, M.; Zinke, S.E.; Heldt, S.; Eigl, S.; Johnson, G.L.; Bustin, S.; Stelzl, E.; Kessler, H.H. Evaluation of the new AspID polymerase chain reaction assay for detection of Aspergillus species: A pilot study. Mycoses 2018, 61, 355–359. [Google Scholar] [CrossRef]
- Hamam, J.; Navellou, J.C.; Bellanger, A.P.; Bretagne, S.; Winiszewski, H.; Scherer, E.; Piton, G.; Millon, L.; Collaborative RESSIF group. New clinical algorithm including fungal biomarkers to better diagnose probable invasive pulmonary aspergillosis in ICU. Ann. Intensive Care 2021, 11, 41. [Google Scholar] [CrossRef]
- Dellière, S.; Dudoignon, E.; Voicu, S.; Collet, M.; Fodil, S.; Plaud, B.; Chousterman, B.; Bretagne, S.; Azoulay, E.; Mebazaa. Combination of mycological criteria: A better surrogate to identify COVID-19-associated pulmonary aspergillosis patients and evaluate prognosis? J. Clin. Microbiol. 2022, 60, e0216921. [Google Scholar] [CrossRef]
- White, P.L.; Posso, R.B.; Barnes, R.A. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive aspergillosis and resistance to azole antifungal drugs during testing of serum samples. J. Clin. Microbiol. 2015, 53, 2115–2121. [Google Scholar] [CrossRef]
- Chong, G.M.; van der Beek, M.T.; von dem Borne, P.A.; Boelens, J.; Steel, E.; Kampinga, G.A.; Span, L.F.R.; Lagrou, K.; Maertens, J.A.; Dingemans, G.J.H. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: A multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 2016, 71, 3528–3535. [Google Scholar] [CrossRef]
- White, P.L.; Posso, R.B.; Barnes, R.A. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for Detection of invasive aspergillosis and resistance to azole antifungal drugs directly from plasma samples. J. Clin. Microbiol. 2017, 55, 2356–2366. [Google Scholar] [CrossRef]
- Postina, P.; Skladny, J.; Boch, T.; Cornely, O.A.; Hamprecht, A.; Rath, P.M.; Steinmann, J.; Bader, O.; Miethke, T.; Dietz, A. Comparison of two molecular assays for detection and characterization of Aspergillus fumigatus triazole resistance and Cyp51A mutations in clinical isolates and primary clinical samples of immunocompromised patients. Front. Microbiol. 2018, 9, 555. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, P.; Turki, A.T.; Steinmann, J.; Fiedler, M.; Steckel, N.K.; Beelen, D.W.; Liebregts, T. Microbiologic diagnostic workup of acute respiratory failure with pulmonary infiltrates after allogeneic hematopoietic stem cell transplantation: Findings in the era of molecular-and biomarker-based assays. Biol. Blood Marrow Transplant. 2018, 24, 1707–1714. [Google Scholar] [CrossRef]
- Erman-Daloglu, A.; Ozhak, B.; Salim, O.; Turhan, O.; Ongut, G.; Gunseren, F.; Colak, D.; Ogunc, D. Evaluation of commercially available real-time polymerase chain reaction assays for the diagnosis of invasive aspergillosis in patients with haematological malignancies. Mycopathologia 2020, 185, 269–277. [Google Scholar] [CrossRef]
- van Grootveld, R.; van Paassen, J.; de Boer, M.G.J.; Claas, E.C.J.; Kuijper, E.J.; van der Beek, M.T.; LUMC-COVID-19 Research Group. Systematic screening for COVID-19 associated invasive aspergillosis in ICU patients by culture and PCR on tracheal aspirate. Mycoses 2021, 64, 641–650. [Google Scholar] [CrossRef]
- Huygens, S.; Dunbar, A.; Buil, J.B.; Klaassen, C.H.W.; Verweij, P.E.; van Dijk, K.; de Jonge, N.; Janssen, J.J.W.M.; van der Velden, W.J.F.M.; Biemond, B.J. Clinical impact of polymerase chain reaction-based Aspergillus and azole resistance detection in invasive aspergillosis: A prospective multicenter study. Clin. Infect. Dis. 2023, 77, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kim, W.B.; Cho, S.Y.; Nho, D.; Park, C.; Yoo, I.Y.; Park, Y.-J.; Lee, D.-G. Clinical implementation of β-tubulin gene-based Aspergillus polymerase chain reaction for enhanced Aspergillus diagnosis in patients with hematologic diseases: A prospective observational study. J. Fungi 2023, 9, 1192. [Google Scholar] [CrossRef] [PubMed]
- van Grootveld, R.; van Paassen, J.; Claas, E.C.J.; Heerdink, L.; Kuijper, E.J.; de Boer, M.G.J.; van der Beek, M.T.; LUMC-COVID-19 Research Group. Prospective and systematic screening for invasive aspergillosis in the ICU during the COVID-19 pandemic, a proof of principle for future pandemics. Med. Mycol. 2024, 62, myae028. [Google Scholar] [CrossRef]
- Arancia, S.; Sandini, S.; De Carolis, E.; Vella, A.; Sanguinetti, M.; Norelli, S.; De Bernardis, F. Use of SCW4 gene primers in PCR methods for the identification of six medically important Aspergillus species. New Microbiol. 2016, 39, 274–286. [Google Scholar]
- Salehi, E.; Hedayati, M.T.; Zoll, J.; Rafati, H.; Ghasemi, M.; Doroudinia, A.; Abastabar, M.; Tolooe, A.; Snelders, E.; van der Lee, H.A. Discrimination of aspergillosis, mucormycosis, fusariosis, and scedosporiosis in formalin-fixed paraffin-embedded tissue specimens by use of multiple real-time quantitative PCR assays. J. Clin. Microbiol. 2016, 54, 2798–2803. [Google Scholar] [CrossRef]
- Hoenigl, M.; Prattes, J.; Spiess, B.; Wagner, J.; Prueller, F.; Raggam, R.B.; Posch, V.; Duettman, W.; Hoenigl, K.; Wolfler, A. Performance of galactomannan, beta-d-glucan, Aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J. Clin. Microbiol. 2014, 52, 2039–2045. [Google Scholar] [CrossRef]
- Boch, T.; Spiess, B.; Cornely, O.A.; Vehreschild, J.J.; Rath, P.M.; Steinmann, J.; Heinz, W.J.; Hahn, J.; Krause, S.W.; Kiehl, M.G. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: Results of a prospective multicentre study. Clin. Microbiol. Infect. 2016, 22, 862–868. [Google Scholar] [CrossRef]
- Eigl, S.; Hoenigl, M.; Spiess, B.; Heldt, S.; Prattes, J.; Neumeister, P.; Wolfler, A.; Rabensteinar, J.; Prueller, F.; Krause, R. Galactomannan testing and Aspergillus PCR in same-day bronchoalveolar lavage and blood samples for diagnosis of invasive aspergillosis. Med. Mycol. 2017, 55, 528–534. [Google Scholar] [CrossRef]
- Urabe, N.; Sakamoto, S.; Sano, G.; Suzuki, J.; Hebisawa, A.; Nakamura, Y.; Koyama, K.; Ishii, Y.; Tateda, K.; Homma, S. Usefulness of two Aspergillus PCR assays and Aspergillus galactomannan and β-d-Glucan testing of bronchoalveolar lavage fluid for diagnosis of chronic pulmonary aspergillosis. J. Clin. Microbiol. 2017, 55, 1738–1746. [Google Scholar] [CrossRef]
- Heldt, S.; Prattes, J.; Eigl, S.; Spiess, B.; Flick, H.; Rabensteiner, J.; Johnson, G.; Pruller, F.; Wolfler, A.; Niedrist, T. Diagnosis of invasive aspergillosis in hematological malignancy patients: Performance of cytokines, Asp LFD, and Aspergillus PCR in same day blood and bronchoalveolar lavage samples. J. Infect. 2018, 77, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Boch, T.; Reinwald, M.; Spiess, B.; Liebregts, T.; Schellongowski, P.; Meybohm, P.; Rath, P.-M.; Steinmann, J.; Trinkmann, F.; Britsch, S. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J. Crit. Care 2018, 47, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Małek, M.; Bogusz, B.; Mrowiec, P.; Szuta, M.; Opach, M.; Skiba-Kurek, I.; Nowak, P.; Klesiewicz, K.; Budak, A.; Karczewska, E. Nested PCR for the detection of Aspergillus species in maxillary sinus samples of patients with chronic sinusitis. Rev. Iberoam. Micol. 2018, 35, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Boch, T.; Spiess, B.; Heinz, W.; Cornely, O.A.; Schwerdtfeger, R.; Hahn, J.; Krause, S.W.; Duerken, M.; Bertz, H.; Reuter, S. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses 2019, 62, 1035–1042. [Google Scholar] [CrossRef]
- Hardak, E.; Fuchs, E.; Leskes, H.; Geffen, Y.; Zuckerman, T.; Oren, I. Diagnostic role of polymerase chain reaction in bronchoalveolar lavage fluid for invasive pulmonary aspergillosis in immunocompromised patients—A retrospective cohort study. Int. J. Infect. Dis. 2019, 83, 20–25. [Google Scholar] [CrossRef]
- Unterman, A.; Izhakian, S.; Geffen, Y.; Rosengarten, D.; Shtraichman, O.; Pertzov, B.; Vainshelboim, B.; Alon, H.; Raviv, Y.; Kramer, M.R. Routine comprehensive Aspergillus screening of bronchoalveolar lavage samples in lung transplant recipients. Clin. Transplant. 2020, 34, e13811. [Google Scholar] [CrossRef]
- Heng, S.C.; Chen, S.C.; Morrissey, C.O.; Thursky, K.; Manser, R.L.; De Silva, H.D.; Halliday, C.L.; Seymour, J.F.; Nation, R.L.; Kong, D.C.M.; et al. Clinical utility of Aspergillus galactomannan and PCR in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in patients with haematological malignancies. Diagn. Microbiol. Infect. Dis. 2014, 79, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Xia, Y.; He, Y.; Pu, Q.; Hua, R.; Wu, W. Development and evaluation of enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for diagnosis of invasive aspergillosis. AMB Express 2016, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J.; Sandoval-Denis, M.; Escribano, P.; Peláez, T.; Guarro, J.; Bouza, E. Aspergillus citrinoterreus, a new species of section Terrei isolated from samples of patients with nonhematological predisposing conditions. J. Clin. Microbiol. 2015, 53, 611–617. [Google Scholar] [CrossRef]
- Tsai, M.H.; Lin, L.C.; Hsu, J.F.; Lai, M.Y.; Huang, H.R.; Chiang, M.C.; Lu, J.-J. Rapid identification of invasive fungal species using sensitive universal primers-based PCR and restriction endonuclease digestions coupled with high-resolution melting analysis. J. Microbiol. Immunol. Infect. 2019, 52, 728–735. [Google Scholar] [CrossRef]
- Rath, P.M.; Steinmann, J. Overview of commercially available PCR assays for the detection of Aspergillus spp. DNA in patient samples. Front. Microbiol. 2018, 9, 740. [Google Scholar] [CrossRef]
- Saunders, N.A. Real-Time PCR BT-Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews; Woodford, N., Johnson, A.P., Eds.; Humana Press: Totowa, NJ, USA, 2004; pp. 191–211. ISBN 978-1-59259-763-5. [Google Scholar]
- Kralik, P.; Ricchi, M.A. Basic guide to Real-Time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef]
- Costa, J. Reacción en cadena de la polimerasa (PCR) a tiempo real. Enferm. Infecc. Microbiol. Clin. 2004, 22, 299–305. [Google Scholar] [CrossRef]
- Shinozaki, M.; Okubo, Y.; Nakayama, H.; Mitsuda, A.; Ide, T.; Yamagata Murayama, S.; Shibuya, K. Application of in situ hybridization to tissue sections for identification of molds causing invasive fungal infection. Nippon Ishinkin Gakkai Zasshi 2009, 50, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, Q.; Tang, S.; Huang, H.; Kou, L.; Zhou, Y.; Ruan, H.; Yuan, Y.; He, C.; Ying, B. Clinical evaluation of droplet digital PCR in suspected invasive pulmonary aspergillosis. Clin. Chim. Acta 2025, 569, 120153. [Google Scholar] [CrossRef]
- Jacob, H.J. Next-generation sequencing for clinical diagnostics. N. Engl. J. Med. 2013, 369, 1557–1558. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, H.; Kang, Y.; Chen, W.; Fang, W.; Wang, K.; Zhang, Q.; Fu, A.; Zhou, S.; Cheng, C.; et al. Identification of pathogens in culture-negative infective endocarditis cases by metagenomic analysis. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 43. [Google Scholar] [CrossRef]
- Guo, L.Y.; Feng, W.Y.; Guo, X.; Liu, B.; Liu, G.; Dong, J. The advantages of next-generation sequencing technology in the detection of different sources of abscess. J. Infect. 2019, 78, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Hu, Q.; Xie, Z.; Li, C. Case Report: Infective Endocarditis Caused by Aspergillus flavus in a Hemodialysis Patient. Front. Med. 2021, 8, 655640. [Google Scholar] [CrossRef]
- Xing, X.-W.; Yu, S.-F.; Zhang, J.-T.; Tan, R.-S.; Ma, Y.-B.; Tian, X.; Wang, R.-F.; Yao, G.-E.; Cui, F.; Gui, Q.-P.; et al. Metagenomic Next-Generation Sequencing of Cerebrospinal Fluid for the Diagnosis of Cerebral Aspergillosis. Front. Microbiol. 2021, 12, 787863. [Google Scholar] [CrossRef]
- Hummel, M.; Spiess, B.; Kentouche, K.; Niggemann, S.; Böhm, C.; Reuter, S.; Kiehl, M.; Morz, H.; Hehlmann, R.; Buchheidt, D. Detection of Aspergillus DNA in cerebrospinal fluid from patients with cerebral aspergillosis by a nested PCR assay. J. Clin. Microbiol. 2006, 44, 3989–3993. [Google Scholar] [CrossRef]
- Ray, S.; Balaini, N.; Chakravarty, K.; Pattanayak, S.; Goel, A.; Takkar, A.; Lal, V. Special scenarios in the management of central nervous system aspergillosis: A case series and review of literature. Postgrad. Med. J. 2019, 95, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Tudesq, J.J.; Cartron, G.; Riviere, S.; Morquin, D.; Lordache, L.; Mahr, A.; Pourcher, V.; Klouche, K.; Cerutti, D.; Le Quellec, A.; et al. Clinical and microbiological characteristics of the infections in patients treated with rituximab for autoimmune and/or malignant hematological disorders. Autoimmun. Rev. 2018, 17, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Horiba, K.; Kawada, J.-I.; Okuno, Y.; Tetsuka, N.; Suzuki, T.; Ando, S.; Kamiya, Y.; Torii, Y.; Yagi, T.; Takahashi, Y. Comprehensive detection of pathogens in immunocompromised children with bloodstream infections by next-generation sequencing. Sci. Rep. 2018, 8, 3784. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Feng, J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis. BMC Pulm. Med. 2019, 19, 252. [Google Scholar] [CrossRef]
- Yang, L.; Song, J.; Wang, Y.; Feng, J. Metagenomic Next-Generation sequencing for pulmonary fungal infection diagnosis: Lung biopsy versus bronchoalveolar lavage fluid. Infect. Drug Resist. 2021, 14, 4333–4359. [Google Scholar] [CrossRef]
- Miao, Q.; Ma, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Jin, W.; Yao, Y.; Su, Y.; Huang, Y.; Wang, M.; et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin. Infect. Dis. 2018, 67, S231–S240. [Google Scholar] [CrossRef]
- Yang, A.; Wang, C.; Chen, P.; Zheng, G.; Zhao, Z.; Liu, J.; Zhang, J.; Wang, J.; Sun, Y.; Yang, J.; et al. Diagnosis by metagenomic next-generation sequencing of invasive pulmonary aspergillosis in an infant with chronic granulomatous disease. Respir. Med. Case Rep. 2022, 12, 101792. [Google Scholar] [CrossRef]
- Di Franco, M.; Lucchino, B.; Spaziante, M.; Iannuccelli, C.; Valesini, G.; Iaiani, G. Lung infections in systemic rheumatic disease: Focus on opportunistic infections. Int. J. Mol. Sci. 2017, 18, 293. [Google Scholar] [CrossRef]
- Langelier, C.; Zinter, M.S.; Kalantar, K.; Yanik, G.A.; Christenson, S.; O’Donovan, B.; White, C.; Wilson, M.; Sapru, A.; Dvorak, C.C.; et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am. J. Respir. Crit. Care Med. 2018, 197, 524–528. [Google Scholar] [CrossRef]
- Pan, T.; Tan, R.; Qu, H.; Weng, X.; Liu, Z.; Li, M.; Liu, J. Next-generation sequencing of the BALF in the diagnosis of community-acquired pneumonia in immunocompromised patients. J. Infect. 2019, 79, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, X.; Liu, H.; Li, P.; Lin, Y.; Yin, D.; Yang, L.; Li, J.; Li, S.; Jia, L.; et al. Metagenomic diagnosis of severe psittacosis using multiple sequencing platforms. BMC Genomics. 2021, 22, 406. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. 2019, 24, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, H.; Ding, Y.; Ma, X.; Zhu, H.; Zhang, S.; Du, W.; Summah, H.D.; Shi, G.; Feng, Y. A microbial world: Could metagenomic next-generation sequencing be involved in acute respiratory failure? Front. Cell. Infect. Microbiol. 2021, 11, 738074. [Google Scholar] [CrossRef]
- Fang, X.; Mei, Q.; Fan, X.; Zhu, C.; Yang, T.; Zhang, L.; Geng, S.; Pan, A. Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients. Front. Microbiol. 2020, 11, 599756. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Sunagawa, S.; Mende, D.R.; Zeller, G.; Izquierdo-Carrasco, F.; Berger, S.A.; Kultima, J.R.; Coelho, L.P.; Arumugam, M.; Tap, J.; Nielsen, H.B.; et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 2013, 10, 1196–1199. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Blaalid, R.; Kumar, S.; Nilsson, R.H.; Abarenkov, K.; Kirk, P.M.; Kauserud, H. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef]
- Garnica, S.; Schon, M.E.; Abarenkov, K.; Riess, K.; Liimatainen, K.; Niskanen, T.; Dima, B.; Soop, K.; Froslev, T.G.; Jeppesen, T.S.; et al. Determining threshold values for barcoding fungi: Lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol. Ecol. 2016, 92, fiw045. [Google Scholar] [CrossRef]
- Hoang, M.T.V.; Irinyi, L.; Chen, S.C.A.; Sorrell, T.C.; Meyer, W.; ISHAM Barcoding of Medical Fungi Working Group. Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Front. Microbiol. 2019, 10, 1647. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenetics Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Lucking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Nuovo, G.J.; Silverstein, S.J. Comparison of formalin, buffered formalin, and Bouin’s fixation on the detection of human papillomavirus deoxyribonucleic acid from genital lesions. Lab. Investig. 1988, 59, 720–724. [Google Scholar]
- Hayden, R.T.; Qian, X.; Roberts, G.D.; Lloyd, R.V. In situ hybridization for the identification of yeast-like organisms in tissue section. Diagn. Mol. Pathol. 2001, 10, 15–23. [Google Scholar] [CrossRef]
- Hsieh, K.; Mage, P.L.; Csordas, A.T.; Eisenstein, M.; Soh, H.T. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem. Commun. 2014, 50, 3747–3749. [Google Scholar] [CrossRef]
- Karthik, K.; Rathore, R.; Thomas, P.; Arun, T.R.; Viswas, K.N.; Dhama, K.; Agarwal, R.K. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX 2014, 1, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Bista, B.R.; Ishwad, C.; Wadowsky, R.M.; Manna, P.; Randhawa, P.S.; Gupta, G.; Adhikari, M.; Tyagi, R.; Gasper, G.; Vats, A. Development of a loop-mediated isothermal amplification assay for rapid detection of BK virus. J. Clin. Microbiol. 2007, 45, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Wastling, S.L.; Picozzi, K.; Kakembo, A.S.; Welburn, S.C. LAMP for human African trypanosomiasis: A comparative study of detection formats. PLoS Neglected Trop. Dis. 2010, 4, e865. [Google Scholar] [CrossRef]
- Boch, T.; Reinwald, M.; Postina, P.; Cornely, O.A.; Vehreschild, J.J.; Heußel, C.P.; Heinz, W.J.; Hoenigl, M.; Eigl, S.; Lehrnbecher, T.; et al. Identification of invasive fungal diseases in immunocompromised patients by combining an Aspergillus specific PCR with a multifungal DNA-microarray from primary clinical samples. Mycoses 2015, 58, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Savelkoul, P.H.; Aarts, H.J.; de Haas, J.; Dijkshoorn, L.; Duim, B.; Otsen, M.; Rademaker, J.L.; Schouls, L. Amplified-fragment length polymorphism analysis: The state of an art. J. Clin. Microbiol. 1999, 37, 3083–3091. [Google Scholar] [CrossRef]
- de Valk, H.A.; Meis, J.F.G.M.; de Pauw, B.E.; Donnelly, P.J.; Klaassen, C.H.W. Comparison of two highly discriminatory molecular fingerprinting assays for analysis of multiple Aspergillus fumigatus isolates from patients with invasive aspergillosis. J. Clin. Microbiol. 2007, 45, 1415–1419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Fuentes, C.A.; Duarte-Escalante, E.; Frías-De-León, M.G.; González-Villaseñor, M.d.C.A.; Reyes-Montes, M.d.R. HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods. J. Fungi 2025, 11, 720. https://doi.org/10.3390/jof11100720
Castro-Fuentes CA, Duarte-Escalante E, Frías-De-León MG, González-Villaseñor MdCA, Reyes-Montes MdR. HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods. Journal of Fungi. 2025; 11(10):720. https://doi.org/10.3390/jof11100720
Chicago/Turabian StyleCastro-Fuentes, Carlos Alberto, Esperanza Duarte-Escalante, María Guadalupe Frías-De-León, María del Carmen Auxilio González-Villaseñor, and María del Rocío Reyes-Montes. 2025. "HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods" Journal of Fungi 11, no. 10: 720. https://doi.org/10.3390/jof11100720
APA StyleCastro-Fuentes, C. A., Duarte-Escalante, E., Frías-De-León, M. G., González-Villaseñor, M. d. C. A., & Reyes-Montes, M. d. R. (2025). HTS and PCR Methods Are the Most Used in the Diagnosis of Aspergillosis: Advantages over Other Molecular Methods. Journal of Fungi, 11(10), 720. https://doi.org/10.3390/jof11100720