Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds
Abstract
:1. Introduction
2. Medicinal Properties of Freshwater Fungi
2.1. Amanita vaginata (Bull.) Lam.
2.2. Armillaria mellea (Vahl) P. Kumm.
2.3. Armillaria tabescens (Scop.) Emel.
2.4. Astraeus hygrometricus (Pers.) Morgan
2.5. Auricularia auricula-judae (Bull.) Quél.
2.6. Bjerkandera adusta (Willd.) P. Karst.
2.7. Bovista nigrescens Pers.
2.8. Calocybe gambosa (Fr.) Donk
2.9. Candolleomyces candolleanus (Fr.) D. Wächt and A. Melzer
2.10. Gymnopus dryophylus (Bull.) Murril
2.11. Coprinus comatus (O.F. Müll.) Pers.
2.12. Cyclocybe cylindracea (DC.) Vizzini and Angelini
2.13. Hypsizygus ulmarius (Bull.) Redhead
2.14. Inonotus hispidus (Bull.) P. Karst.
2.15. Lactarius controversus Pers.
2.16. Lentinus tigrinus (Bull.) Fr.
2.17. Pleurotus cornucopiae (Paulet) Quél.
2.18. Pleurotus ostreatus (Jacq.) P. Kumm.
2.19. Schizophyllum commune Fr.
2.20. Penicillium aculeatum Raper and Fennell
2.21. Penicillium chrysogenum Thom
2.22. Fusarium incarnatum (Desm.) Sacc.
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Gargano, M.L.; van Griensven, L.J.L.D.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G.I. Medicinal mushrooms: Valuable biological resources of high exploitation potential (Review). Plant Biosyst. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Luyten, W. Medicinal mushrooms: Clinical perspective and challenges. Drug Discov. Today 2022, 27, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2022, 21, 339–383. [Google Scholar] [CrossRef]
- Herman, K.C.; Bleichrodt, R. Go with the flow: Mechanisms driving water transport during vegetative growth and fruiting. Fungal Biol. Rev. 2022, 41, 10–23. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Hyde, K.D.; Pang, K.L. Freshwater Fungi and Fungal Like Organisms, 1st ed.; Dd Grutyer GmbH: Berlin, Germany, 2014; p. 510. [Google Scholar]
- Gulis, V.; Su, R.; Kuehn, K.A. Fungal decomposers in freshwater environments. In The Structure and Function of Aquatic Microbial Communities; Hurts, C., Ed.; Advances in Environmental Microbiology; Springer: Cham, Switzerland, 2019; Volume 7, pp. 121–155. [Google Scholar]
- Mirabile, G.; Ferraro, V.; Mancuso, F.P.; Pecoraro, L.; Cirlincione, F. Biodiversity of fungi in freshwater ecosystems of Italy. J. Fungi 2023, 9, 993. [Google Scholar] [CrossRef]
- Angelini, P.; Rubini, A.; Gigante, D.; Reale, L.; Pagiotti, R.; Venanzoni, R. The endophytic fungal communities associated with the leaves and roots of the common red (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol. 2012, 5, 683–693. [Google Scholar] [CrossRef]
- Giri, S.; Biswas, G.; Pradhan, P.; Mandal, S.C.; Acharya, K. Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. Int. J. Pharmtech Res. 2012, 4, 1554–1560. [Google Scholar]
- Paloi, S.; Acharya, K. Antioxidant activities and bioactive compounds of polyphenol rich extract from Amanita vaginata (Bull.) Lam. Int. J. Pharmtech Res. 2013, 5, 1645–1654. [Google Scholar]
- Paloi, S.; Acharya, K. Evaluation of antioxidative activity and chemical composition of ethanolic extract from Amanita vaginata (bull.) Lam.: An in vitro study. Asian J. Pharm. Clin. Res. 2014, 7, 88–92. [Google Scholar]
- Muszyńska, B.; Sułkowska-Ziaja, K.; Wołkowska, M.; Ekiert, H. Chemical, pharmacological and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm. (Agaricomycetidae): A review. Int. J. Med. Mushrooms 2011, 13, 167–175. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Ren, L.; Dai, X.; Zhao, J.; Gao, C.; Zhang, S.; Dong, J.; Zhao, Z.; Li, Y.; et al. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Armillaria mellea (Vahl) P. Kumm.: A review. Int. J. Biol. Macromol. 2024, 259, 129175. [Google Scholar] [CrossRef]
- Lung, M.-Y.; Chang, Y.-C. Antioxidant properties of the edible Basidiomycete Armillaria mellea in submerged cultures. Int. J. Mol. Sci. 2011, 12, 6367–6384. [Google Scholar] [CrossRef]
- Erbiai, E.H.; da Silva, L.P.; Saidi, R.; Lamrani, Z.; Esteves da Silva, J.C.G.; Maouni, A. Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal). Biomolecules 2021, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Lu, W.; Zhang, Y.; Yuan, Q.; Wang, D. Pharmacological basis for use of Armillaria mellea polysaccharides in Alzheimer’s disease: Antiapoptosis and antioxidation. Oxid. Med. Cell. Longev. 2017, 2017, 4184562. [Google Scholar] [CrossRef]
- Kostić, M.; Smiljković, M.; Petrović, J.; Glamočlija, J.; Barros, L.; Ferreira, I.C.F.R.; Ćirić, A.; Soković, M. Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food Funct. 2017, 8, 3239. [Google Scholar] [CrossRef]
- Ren, S.; Gao, Y.; Li, H.; Ma, H.; Han, X.; Yang, Z.; Chen, W. Research status and application prospects of the medicinal mushroom Armillaria mellea. Appl. Biochem. Biotechnol. 2023, 195, 3491–3507. [Google Scholar] [CrossRef]
- Chang, W.H.; Huang, H.L.; Huang, W.P.; Chen, C.C.; Chen, Y.J. Armillaridin induces autophagy-associated cell death in human chronic myelogenous leukemia K562 cells. Tumor Biol. 2016, 37, 14291–14300. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, C.C.; Huang, H.L. Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma. Onco Targets Ther. 2016, 9, 4773. [Google Scholar]
- Li, Z.; Wang, Y.; Jiang, B.; Li, W.; Zheng, L.; Yang, X.; Bao, Y.; Sun, L.; Yan, X.; Huang, Y.; et al. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. J. Ethnopharmacol. 2016, 184, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, G.; Ash, J.; Bryson, P. Identification and characterization of Armillaria tabescens from the southeastern United States. Br. Mycol. Soc. 2005, 109, 1208–1222. [Google Scholar] [CrossRef]
- Herath, H.M.T.B.; Jacob, M.; Wilson, A.D.; Abbas, H.K.; Nanayakkara, N.P.D. New compounds and secondary metabolites from bioactive extracts of the fungus Armillaria tabescens. Nat. Prod. Res. 2013, 27, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Tel, G.; Deveci, E.; Küçükaydın, S.; Özler, M.A.; Duru, M.E.; Harmandar, M. Evaluation of antioxidant activity of Armillaria tabescens, Leucopaxillus gentianeus and Suillus granulatus: The mushroom species from Anatolia. Eurasian J. Anal. Chem. 2013, 8, 136–147. [Google Scholar]
- Shajahan, M.D.; Samaipati, N. Ectomycorrhizal fungi of Shorea robusta G.f. from West Bengal. J. Mycopathol Res. 1995, 33, 105–117. [Google Scholar]
- Phosri, C.; Watling, R.; Martin, M.P.; Whalley, A.J.S. The genus Astraeus in Thailand. Mycotaxon 2004, 89, 453–463. [Google Scholar]
- Pavithra, M.; Sridhar, K.R.; Greeshma, A.A.; Tomita-Yokotani, K. Bioactive potential of the wild mushroom Astraeus hygrometricus in South-west India. Mycology 2016, 7, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Varshney, V.K. Nutritional attributes and nonvolatile taste components of medicinally important wild false earthstar murhsroom, Astraeus hygrometricus (Agaricomycetes), from India. Int. J. Med. Mushrooms 2020, 22, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, Y.; Murakami, Y.; Ohashi, T.; Nakano, K.; Murakami, K.; Tomimatsu, T. Three triterpenes from Astraeus hygrometricus. Phytochemistry 1987, 26, 2341–2344. [Google Scholar] [CrossRef]
- Pramanik, A.; Islam, S.S. Structural studies of a polysaccharide isolated from an edible mushroom, Astraeus hygrometricus. Indian J. Chem. 2000, 39, 525–529. [Google Scholar]
- Yagi, F.; Sakai, T.; Shiraishi, N.; Yotsumot, M.; Mukoyoshi, R. Hemagglutinins (lectins) in fruit bodies of Japanese higher fungi. Mycoscience 2000, 41, 323–330. [Google Scholar] [CrossRef]
- Maiti, D.; Chandra, K.; Mondal, S.; Ojha, A.K.; Das, D.; Roy, S.K.; Gosh, K.; Chakraborty, I.; Islam, S.S. Isolation and characterization of a heteroglycan from the fruits of Astraeus hygrometricus. Carbohydr. Res. 2008, 343, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.K.; Biswas, G.; Chatterjee, S.; Dutta, A.; Pal, C.; Banerji, J.; Bhuvanesh, N.; Reibenspies, J.H.; Acharya, K. Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chem. Biodivers. 2012, 9, 1517–1524. [Google Scholar] [CrossRef]
- Biswas, G.; Chatterjee, S.; Sarkar, S.; Acharya, K. Evaluation of antioxidant and nitric oxide synthase activation properties of Astraeus hygrometricus (Pers.) Morg. Int. J. Biom. Pharm. Sci. 2010, 4, 21–26. [Google Scholar]
- Biswas, G.; Nandi, S.; Kuila, D.; Acharya, K. A comprehensive review on food and medicinal prospects of Astraeus hygrometricus. Pharm. J. 2017, 9, 799–806. [Google Scholar] [CrossRef]
- Mallick, S.; Dutta, A.; Dey, S.; Ghosh, J.; Mukherjee, D.; Sultana, S.S.; Mandal, S.; Paloi, S.; Khatua, S.; Acharya, K.; et al. Selective inhibition of Leishmania donovani by active extracts of wild mushrooms used by the tribal population of India: An in vitro exploration for new leads against parasitic protozoans. Exp. Parasitol. 2014, 138, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Dey, S.; Mandal, S.; Dutta, A.; Mukherjee, D.; Biswas, G.; Chatterjee, S.; Mallick, S.K.; Lai, T.K.; Acharya, K.; et al. A novel triterpene from Astraeus hygrometricus induces reactive oxygen species leading to death in Leishmania donovani. Future Microbiol. 2015, 10, 763–789. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Dutta, A.; Chaudhuri, A.; Mukherjee, D.; Dey, S.; Halder, S.; Gosh, J.; Mukherjee, D.; Sultana, S.S.; Biswas, G.; et al. Successful therapy of murine visceral leishmaniasis with astrakurkurone, a triterpene isolated from the mushroom Astraeus hygrometricus, involves the induction of protective cell-mediated immunity and TLR9. Antimicrob. Agents Chemother. 2016, 60, 2696–2708. [Google Scholar] [CrossRef]
- Biswas, G.; Rana, S.; Sarkar, S.; Acharya, K. Cardioprotective activity of ethanolic extract of Astraeus hygrometricus (pers) morg. Pharmacologyonline 2011, 2, 808–817. [Google Scholar]
- Biswas, G.; Sarkar, S.; Acharya, K. Hepatoprotective activity of the ethanolic extract of Astraeus hygrometricus (pers) morg. Dig. J. Nanomater. Biostruct. 2011, 6, 637–641. [Google Scholar]
- Biswas, G.; Acharya, K. Hypoglycemic activity of ethanolic extract of Astraeus hygrometricus (pers) morg. in alloxan-induced diabetic mice. Int. J. Pharm. Sci. 2013, 5, 391–394. [Google Scholar]
- Chakraborty, I.; Mondal, S.; Pramanik, M.; Rout, D.; Islam, S.S. Structural investigation of a water-soluble glucan from an edible mushroom, Astraeus hygrometricus. Carbohydr. Res. 2004, 339, 2249–2254. [Google Scholar] [CrossRef]
- Chakraborty, I.; Mondal, S.; Rout, D.; Chandra, K.; Islam, S.S. Structural investigation of a heteroglycan isolated from the fruit bodies of an ectomycorrhizal fungus Astraeus hygrometricus. Carbohydr. Res. 2007, 342, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.K.; Bhutia, S.K.; Maiti, T.K. Macrophage stimulation by polysaccharides isolated from barometer earthstar mushroom, Astraeus hygrometricus (Pers) Morgan (Gasteromycetideae). Int. J. Med. Mushrooms 2009, 11, 237–248. [Google Scholar] [CrossRef]
- Krout, J.; Wu, F. Revealing the cryptic diversity of wood-inhabiting Auricularia (Auriculariales, Basidiomycota) in Europe. Forest 2022, 13, 532. [Google Scholar]
- Cai, M.; Lin, Y.; Luo, Y.L.; Liang, H.H.; Sun, P. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, Y.; Men, Y.; Zhang, J.; Liu, H.; Sun, Y. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. Int. J. Biol. Macromol. 2018, 115, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Ji, Y.; Zhang, F.; Liu, B.; Meng, X. Review on Auricularia auricula-judae as a functional food: Growth, chemical composition, and biological activities. J. Agric. Food Chem. 2021, 69, 1739–1750. [Google Scholar] [CrossRef] [PubMed]
- Oli, A.N.; Edeh, P.A.; Al-Mosawi, R.M.; Mbachu, N.A.; Al-Dahmoshi, H.O.M.; Al-Khafaji, N.S.K.; Ekuma, U.O.; Saki, M. Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur. J. Integr. Med. 2020, 38, 101176. [Google Scholar] [CrossRef]
- Yoon, S.J.; Yu, M.A.; Pyun, Y.R.; Hwang, J.K.; Chu, D.C.; Juneja, L.R.; Mourão, P.A.S. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 2003, 112, 151–158. [Google Scholar] [CrossRef]
- Islam, T.; Ganesan, K.; Xu, B.J. New insight into mycochemical profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food. Sci. 2019, 72, S159–S166. [Google Scholar]
- Mapoung, S.; Umsumarng, S.; Semmarath, W.; Arjsri, P.; Thippraphan, P.; Yodkeeree, S.; Limtrakul, P. Skin wound-healing potential of polysaccharides from medicinal mushroom Auricularia auricula-judae (Bull.). J. Fungi 2021, 7, 247. [Google Scholar] [CrossRef] [PubMed]
- Heinfling, A.; Martínez, M.J.; Martínez, A.T.; Bergbauer, M.; Szewzyk, U. Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol. Lett. 1998, 165, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Eichlerová, I.; Homolka, L.; Nerud, F. Decolorization of high concentration of synthetic dyes by the white rot fungus Bjerkandera adusta strain CCBAS 232. Dyes Pigments 2007, 75, 38–44. [Google Scholar] [CrossRef]
- Olennikov, D.; Agafonova, S.; Penzina, T.; Borovskii, G. Fatty acid composition of fourteen wood-decaying basidiomycete species growing in permafrost conditions. Rec. Nat. Prod. 2014, 8, 184–188. [Google Scholar]
- Soliman, E.R.S.; El-Sayed, H. Molecular identification and antimicrobial activities of some wild Egyptian mushrooms: Bjerkandera adusta as a promising source of bioactive antimicrobial phenolic compounds. J. Gen. Eng. Biotechnol. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.F.; Rech, K.S.; Moura, P.F.; Oliveira, C.S.P.; Hirota, B.C.K.; Betim, F.C.M.; Balbi, M.E.; Zanin, S.M.W.; Dias, J.F.G.; Miguel, O.G.; et al. Evaluation of the nutritional composition and antioxidant activity of Bjerkandera adusta. Braz. J. Pharm. Sci. 2022, 58, e20312. [Google Scholar] [CrossRef]
- Altuner, E.M.; Akata, I.; Canli, K. In vitro antimicrobial activity screening of Bovista nigrescens Pers. Kastamonu Univ. J. Forest. Fac. 2012, 12, 90–96. [Google Scholar]
- Bal, C.; Eraslan, E.C.; Sevindik, M. Antioxidant, antimicrobial activities, total phenolic and element contents of wild edible mushroom Bovista nigrescens. Prospect Pharm. Sci. 2023, 21, 37–41. [Google Scholar] [CrossRef]
- Vishwakarma, P.; Singh, P.; Tripathi, N.N. Nutritional and antioxidant properties of wild edible macrofungi from North-Eastern Uttar Pradesh, India. IJTK 2016, 15, 143–148. [Google Scholar]
- Radović, J.; Leković, A.; Damjanović, A.; Kopanja, Đ.; Dodevska, M.; Stanojković, T.; Marinković, T.; Jelić, Č.; Kundaković-Vasović, T. St. George’s mushroom, Calocybe gambosa (Fr.) Donk: A promising source of nutrients and biologically active compounds. Acta Aliment. 2022, 51, 134–144. [Google Scholar] [CrossRef]
- Petrovic, N.; Kosanic, M.; Tosti, T.; Srbljak, I.; Đurić, A. Chemical characterization and bioactive properties of edible and medicinal honey mushroom Armillaria mellea (Agaricomycetes) from Serbia. Int. J. Med. Mushrooms 2022, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Al-Habib, M.N.; Holliday, J.; Ţura, D. The pale brittle stem mushroom, Psathyrella candolleana (higher basidiomycetes): An indigenous medicinal mushroom new to Iraq. Int. J. Med. Mushrooms 2014, 16, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Dai, Q.; Wang, W.X.; He, J.; Li, Z.H.; Feng, T.; Liu, J.K. Psathyrins: Antibacterial diterpenoids from Psathyrella candolleana. J. Nat. Prod. 2020, 83, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Arooj, N.; Muneer, I.; Bashir, F.; Hanif, M.; Ali, S. Suistainable synthesis of ZnO nanoparticles from Psathyrella candolleana mushroom extract: Characterization, antibacterial activity, and photocatalytic potential. Inorg. Chem. Commun. 2023, 158, 111588. [Google Scholar] [CrossRef]
- Zhao, T.D.; Yang, X.Q.; Zhou, J.; Yang, Y.B.; Ding, Z.T. Antibiotic guacastane diterpenoids with two new skeletons from Psathyrella candolleana uncovered by semisolid and liquid media. J. Agric. Food Chem. 2023, 71, 2006–2013. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Sánchez, M.; Boutin, Y.; Angers, P.; Gosselin, A.; Tweddel, R.J. Inhibitory effect of CDP, a polysaccharide extracted from the mushroom Collybia dryophila, on nitric oxide synthase expression and nitric oxide production in macrophages. Eur. J. Pharmacol. 2007, 555, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.M.; Zhang, J.S.; Tang, Q.J.; Liu, Y.; Zhang, A.Q.; Pan, Y.J. Structural elucidation of a neutral fucogalactan from the mycelium of Coprinus comatus. Carbohydr. Res. 2006, 341, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Dotan, N.; Wasser, S.P.; Mahajna, J. The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integr. Cancer Ther. 2011, 10, 148–159. [Google Scholar] [CrossRef]
- Zhang, P.; Li, K.; Yang, G.; Xia, C.; Polston, J.E.; Li, G.; Li, S.; Lin, Z.; Yang, L.J.; Bruner, S.D.; et al. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Proc. Natl. Acad. Sci. USA 2017, 114, 8980–8985. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Yang, Y.; Tang, Q.; Zhou, S.; Wu, D.; Zhang, J. Structural characteristics and hypoglycemic activity of polysaccharides from Coprinus comatus. Bioact. Carbohydr. Diet. Fibre 2013, 2, 164–169. [Google Scholar] [CrossRef]
- Gao, Z.; Kong, D.; Cai, W.; Zhang, J.; Jia, L. Characterization and anti-diabetic nephropathic ability of mycelium polysaccharides from Coprinus comatus. Carbohydr. Polym. 2021, 251, 117081. [Google Scholar] [CrossRef] [PubMed]
- Ratnaningtyas, N.; Hernayanti, H.; Ekowati, N.; Husen, F. Ethanol extract of the mushroom Coprinus comatus exhibits antidiabetic and antioxidant activities in streptozotocin-induced diabetic rats. Pharm. Biol. 2022, 60, 1126–1136. [Google Scholar] [CrossRef]
- Stilinović, N.; Čapo, I.; Vukmirović, S.; Rašković, A.; Tomas, A.; Popović, M.; Sabo, A. Chemical composition, nutritional profile andinvivoantioxidant properties of the cultivated mushroom Coprinus comatus. R. Soc. Open Sci. 2020, 7, 200900. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, M.; Akgül, H.; Bal, C.; Selamoglu, Z. Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J. Pharm. Educ. Res. 2018, 52, 437–441. [Google Scholar] [CrossRef]
- Krüzselyi, D.; Vetter, J.; Ott, P.G.; Darcsi, A.; Béni, S.; Gömöry, Á.; Drahos, L.; Zsila, F.; Móricz, Á.M. Isolation and structural elucidation of a novel brunnein-type antioxidant β-carboline alkaloid from Cyclocybe cylindracea. Fitoterapia 2019, 137, 104180. [Google Scholar] [CrossRef]
- Landingin, H.R.R.; Francisco, B.E.; Dulay, R.M.R.; Kalaw, S.P.; Reyes, R.G. Mycochemical screening, proximate nutritive composition and radical scavenging activity of Cyclocybe cylindracea and Pleurotus cornucopiae. Curr. Res. Environ. Appl. Mycol. 2021, 11, 37–50. [Google Scholar] [CrossRef]
- Sumi, I.; Geetha, D. Physiological and cultural studies on blue oyster mushroom Hypsizygus ulmarius (Bull.:Fr.). Inter. J. Appli. Puresci. Agricult. 2016, 2, 33–38. [Google Scholar]
- Al-Faqeeh, L.A.S.; Kagne, S.R.; Naser, M.R. Medical properties of Hypsizygus ulmarius (Bull.). World J. Pharm. Res. 2018, 7, 1077–1085. [Google Scholar]
- Greeshma, P.; Ravikumar, K.S.; Neethu, M.N.; Pandey, M.; Zuhara, K.F.; Janardhanan, K.K. Antioxidant, anti-Inflammatory, and antitumor activities of cultured mycelia and fruiting bodies of the Elm Oyster Mushroom, Hypsizygus ulmarius (Agaricomycetes). Int. J. Med. Mushrooms 2016, 18, 235–244. [Google Scholar] [CrossRef]
- Govindan, S.; Jayabal, A.; Shanmugam, J.; Romani, P. Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats. Food Sci. Hum. Wellness 2021, 10, 523–535. [Google Scholar] [CrossRef]
- Thimmaraju, A.; Govindan, S. Novel studies of characterization, antioxidant, anticoagulant and anticancer activity of purified polysaccharide from Hypsizygus ulmarius mushroom. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100308. [Google Scholar] [CrossRef]
- Thimmaraju, A.; Govindan, S.; Rajendran, A.; Ramani, P.; Pateiro, M.; Lorenzo, J.M. Enhancement of physicochemical properties, antioxidant, antitumor, and anticoagulant activities via acetylation of Hypsizygus ulmarius polysaccharide. Int. J. Food Sci. Tech. 2023, 58, 3478–3487. [Google Scholar] [CrossRef]
- Thimmaraju, A.; Seedevi, P. Purification, chemical, structural characterization and biological activity of polysaccharide from blue oyster mushroom Hypsizygus ulmarius. Biomass Convers. Biorefinery 2023, 14, 19889–19899. [Google Scholar] [CrossRef]
- Wu, S.H.; Dai, Y.C.; Hattori, T.; Yu, T.W.; Wang, D.M.; Parmasto, É.K.; Chang, H.Y.; Shis, S.Y. Species clarification for the medicinally valuable “sanghuang” mushroom. Bot. Stud. 2012, 53, 135–149. [Google Scholar]
- Yang, S.; Bao, H.; Wang, H. Chemical components and anti-tumour compounds from Inonotus hispidus. Mycosistema 2019, 38, 127–133. [Google Scholar]
- Yang, S.; Bao, H.; Wang, H.; Li, Q. Anti-tumour effect and pharmacokinetics of an active ingredient isolated from Inonotus hispidus. Biol. Pharm. Bull. 2019, 42, 10–17. [Google Scholar] [CrossRef]
- Tang, S.J.; Shen, D.A.; Shao, C.X.; Jun, X.U.; Yang, Y.; Jin, L.; Wu, S.L. Classification and identification of a wild Inonotus hispidus and the antitumor activity of the fermentation supernatant. J. South. Agric. 2019, 50, 1671–1679. [Google Scholar]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef]
- Novaković, A.; Karaman, M.A.; Milovanović, I.L.; Belović, M.; Rašeta, M.; Radusin, T.I.; Ilić, N.M. Edible mycorrhizal species Lactarius controversus Pers. 1800 as a source of antioxidant and cytotoxic agents. Hem. Ind. 2015, 70, 113–122. [Google Scholar] [CrossRef]
- Ozen, T.; Darcan, C.; Kaygusuz, Ö.; Turkekul, İ. The chemical content, antioxidant and antimicrobial assays of Lactarius controversus and Lactarius musteus: Two edible wild mushrooms from Giresun province of Turkey. Ann. Food Process. Preserv. 2016, 1, 1001. [Google Scholar]
- Dulay, R.M.R.; Cabrera, E.C.; Kalaw, S.P.; Reyes, R.G. Optimal conditions for basidiospore germination and morphogenesis of Philippine wild strain of Lentinus tigrinus (Bull.) Fr. Mycosphere 2012, 3, 926–933. [Google Scholar] [CrossRef]
- Dulay, R.M.; Arenas, M.C.; Kalaw, S.P.; Reyes, R.R.; Cabrera, E.C. Proximate Composition and functionality of the culinary-medicinal Tiger Sawgill mushroom, Lentinus tigrinus (higher basidiomycetes), from the Philippines. Int. J. Med. Mushrooms 2014, 16, 85–94. [Google Scholar] [CrossRef]
- Dulay, R.M.; Miranda, L.A.; Malasaga, J.S.; Kalaw, S.P.; Reyes, R.G.; Hou, C.T. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatal. Agricul. Biotech. 2017, 9, 141–144. [Google Scholar] [CrossRef]
- Sevindik, M. Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv. Pharmacol. Pharm. 2018, 18, 1718025. [Google Scholar] [CrossRef] [PubMed]
- Mohammadnejad, S.; Pourianfar, H.R.; Drakhshan, A.; Jabaleh, I.; Rezayi, M. Potent antiproliferative and pro-apoptotic effects of a soluble protein fraction from culinary-medicinal mushroom Lentinus tigrinus on cancer cells. J. Food Meas. Charact. 2019, 13, 3015–3024. [Google Scholar] [CrossRef]
- Wang, S.; Bao, L.; Zhao, F.; Wang, Q.; Li, S.; Ren, J.; Li, L.; Wen, H.; Guo, L.; Liu, H. Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae. J. Agric. Food Chem. 2013, 61, 5122–5129. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Z.; Zheng, L.; Zhai, G.; Wang, L.; Jia, L.; Jia, L. Purification and antioxidant activities of intracellular zinc polysaccharides from Pleurotus cornucopiae SS-03. Carbohydr. Polym. 2014, 111, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Nishimura, M.; Sato, Y.; Sato, H.; Nishihira, J. Enhancement of the Th1-phenotype immune system by the intake of Oyster mushroom (Tamogitake) extract in a double-blind, placebocontrolled study. J. Tradit. Complement. Med. 2015, 6, 424–430. [Google Scholar] [CrossRef]
- Wu, X.; Huang, C.; Chen, Q.; Wang, H.; Zhang, J. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed. Chromatogr. 2013, 28, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, T.; Thomas, P.A.; Sheu, J.R.; Geraldine, P. In vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res. Int. 2011, 44, 851–861. [Google Scholar] [CrossRef]
- Ianni, F.; Blasi, F.; Angelini, P.; Di Simone, S.C.; Angeles Flores, G.; Cossignani, L.; Venanzoni, R. Extraction optimization by experimental design of bioactives from Pleurotus ostreatus and evaluation of antioxidant and antimicrobial activities. Processes 2021, 9, 743. [Google Scholar] [CrossRef]
- Sahoo, S.; Gayakwad, T.; Shahi, S. Medicinal value of edible mushrooms: A review. Int. J. Health Sci. 2022, 6 (Suppl. S2), 8760–8767. [Google Scholar] [CrossRef]
- Cao, X.Y.; Liu, J.L.; Yang, W.; Hou, X.; Li, Q.J. Antitumor activity of polysaccharide extracted from Pleurotus ostreatus mycelia against gastric cancer in vitro and in vivo. Mol. Med. Rep. 2015, 12, 2383–2389. [Google Scholar] [CrossRef]
- El Domany, E.B.; Essam, T.M.; Ahmed, A.E.; Farghali, A.A. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergic antimicrobial activity using Pleurotus ostreatus fungus. J. Appl. Pharm. Sci. 2018, 8, 119–128. [Google Scholar]
- Mkhize, S.S.; Cedric Simelane, M.B.; Mongalo, I.N.; Pooe, O.J. The effect of supplementing mushroom growing substrates on the bioactive compounds, antimicrobial activity, antioxidant activity of Pleurotus ostreatus. Biochem. Res. Int. 2022, 2022, 9436614. [Google Scholar] [CrossRef] [PubMed]
- Karim, R.; Rahman, F.; Rahman, R.; Tamannaa, Z.; Ghose, D.K.; Islam, N.; Hossain, T.; Islam, R.; Rahman, A. Hypoclycemic and antidyslipidemic potential of Pleurotus ostreatus in streptozotocin-induced diabetic rats. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 49–55. [Google Scholar] [CrossRef]
- Agrawal, D.; Chourasia, A.; Ganeshpurkar, A.; Shrivastava, A.; Dubey, N. In vitro α-amylase and α-glucosidase inhibitory potential of Pleurotus ostreatus cv. Florida extract. Indian J. Biochem. Biophys. 2022, 59, 1016–1019. [Google Scholar]
- Razak, D.L.A.; Ghani, A.A.; Lazim, M.I.M.; Khulidin, K.A.; Shahidi, F.; Ismail, A. Schizophyllum commune (Fries) mushroom: A review on its nutritional components, antioxidative, and anti-inflammatory properties. Curr. Opin. Food Sci. 2024, 56, 101129. [Google Scholar] [CrossRef]
- Berikashvili, V.; Khardziani, T.; Kobakhidze, A.; Kulp, M.; Kuhtinskaja, M.; Lukk, T.; Gargano, M.L.; Venturella, G.; Kachlishvili, E.; Metreveli, E.; et al. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int. J. Med. Mushrooms 2023, 25, 1–21. [Google Scholar] [CrossRef]
- Basso, V.; Schiavenin, C.; Mendoҫa, S.; de Siqueira, F.G.; Salvador, M.; Camassola, M. Chemical features and antioxidant profile by Schizophyllum commune produced on different agroindustrial wastes and byproducts of biodiesel production. Food Chem. 2020, 329, 127089. [Google Scholar] [CrossRef] [PubMed]
- Mišković, J.; Karaman, M.; Rašeta, M.; Krsmanović, N.; Berežni, S.; Jakovljević, D.; Piattoni, F.; Zambonelli, A.; Gargano, M.L.; Venturella, G. Comparison of two Schizophyllum commune strains in production of acetylcholinesterase inhibitors and antioxidants from submerged cultivation. J. Fungi 2021, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Onsrisawat, P.; Rodthong, S.; Yahuafai, J.; Urairong, R. Hepatoprotective and antioxidant properties of Schizophyllum commune fruiting body. J. Curr. Sci. Tech. 2022, 12, 615–628. [Google Scholar]
- Al-Azad, S.; Ping, V.C.A. Antioxidant properties and antimicrobial activity in the extracts of two edible mushroom, Pleurotus sajor caju and Schizophyllum commune. Adv. Biosci. Biotechnol. 2022, 13, 352–361. [Google Scholar] [CrossRef]
- Daengrot, C.; Rukachaisirikul, V.; Tadpetch, K.; Phongpaichit, S.; Bowornwiriyapan, K.; Sakayaroj, J.; Shen, X. Penicillanthone and penicillidic acids A–C from the soil-derived fungus Penicillium aculeatum PSU-RSPG105†. RSC Adv. 2016, 6, 39700. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Murthy, K.N.; Thirumale, S. Characterization of ankaflavin from Penicillium aculeatum and its cytotoxic properties. Nat. Prod. Res. 2018, 34, 1630–1635. [Google Scholar] [CrossRef]
- Hawas, U.W.; Abou El-Kassem, L.T.; Ahmed, E.F.; Alghamdi, R.A. Bioactive sulfonyl metabolites from the Red Sea endophytic fungus Penicillium aculeatum. Nat. Prod. Res. 2021, 36, 2713–2721. [Google Scholar] [CrossRef]
- Martin, J.F. Insight into the genome of diverse Penicillium chrysogenum strains: Specific genes, cluster duplications and DNA fragment translocations. Int. J. Mol. Sci. 2020, 21, 3936. [Google Scholar] [CrossRef]
- Holzknecht, J.; Kühbacher, A.; Papp, C.; Farkas, A.; Marcos, J.F.; Manzanares, P.; Tóth, G.K.; Galgóczy, L.; Marx, F. The Penicillium chrysogenum Q176 antimicrobial protein PAFC effectively inhibits the growth of the opportunistic human pathogen Candida albicans. J. Fungi 2020, 6, 141. [Google Scholar] [CrossRef]
- Orfali, R.; Perveen, S.; AlAjmi, M.F.; Ghaffar, S.; Rehman, M.T.; Alanzi, A.R.; Gamea, S.B.; Essa Khwayri, M. Antimicrobial activity of dihydroisocoumarin isolated from wadi lajab sediment-derived fungus Penicillium chrysogenum: In vitro and in silico study. Molecules 2022, 27, 3630. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Xia, M.; Chen, M.; Liu, X.; Li, Z.; Xie, Y.; Shao, Z.; Zhang, G. Cytotoxic polyketides isolated from the deep-sea-derived fungus Penicillium chrysogenum MCCC 3A00292. Mar. Drugs 2019, 17, 686. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Enan, G.; Al-Mohammadi, A.; Moustafa, H.A.; El-Gazzar, N. Detection, purification and elucidation of chemical structure and antiproliferative activity of taxol produced by Penicillium chrysogenum. Molecules 2020, 25, 4822. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huo, L.N.; Gao, Y.; Zhang, Y.L.; Chen, Y. Two new N-acetyl-D-glucosamine derivatives from the medical algae derived endophytic fungus Penicillium chrysogenum. Nat. Prod. Res. 2022, 36, 3988–3991. [Google Scholar] [CrossRef]
- Al-Saleem, M.S.; Hassan, W.H.; El Sayed, Z.I.; Abdel-Aal, M.M.; AbdelMageed, W.M.; Abdelsalam, E.; Abdelaziz, S. Metabolic profiling and in vitro assessment of the biological activities of the ethyl acetate extract of Penicillium chrysogenum “endozoic of Cliona sp. Marine sponge” from the Red Sea (Egypt). Mar. Drugs 2022, 20, 326. [Google Scholar] [CrossRef]
- Avila, C.F.; Moreira, G.M.; Nicolli, C.P.; Gomes, L.B.; Abreu, L.M.; Pfenning, L.H.; Haidukowski, M.; Moretti, A.; Logrieco, A.; Del Ponte, E.M. Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. Int. J. Food Microbiol. 2019, 306, 108267. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Prakash, H.S.; Nalini, M.S. Antioxidative and antibacterial potentials of fungal endophytes from Justicia wynaadensis heyne: An ethnomedicinal rain forest species of western ghats. Asian J. Pharm. Clin. Res. 2017, 10, 203–209. [Google Scholar] [CrossRef]
- Chua, R.W.; Song, K.P.; Ting, A.S.Y. Characterization and identification of antimicrobial compounds from endophytic Fusarium incarnatum isolated from Cymbidiumorchids. Int. Microbiol. 2024, 27, 977–992. [Google Scholar] [CrossRef] [PubMed]
Taxa | Riparian Habitat | Ecological Categories | Medicinal Properties | References |
---|---|---|---|---|
Amanita vaginata (Bull.) Lam. | Mixed forest of Alnus cordata (Loisel.) Duby, Carpinus betulus L., Fraxinus ornus L. | Ectomycorrhizal | Antioxidant activity; ferrous ion chelating ability; antimicrobial activity; esterolytic activity | [11,12,13] |
Armillaria mellea (Vahl) P. Kumm. | Stumps of Populus alba L., Salix alba L., Tamarix africana Poir., Alnus cordata | Necrotroph parasite | Immune regulation; tumor inhibition; antioxidant activity; anti-aging effects; hypoglycemic effect; antimicrobial activity; anti-inflammatory effect; antidiabetic potential; liver protection; reducing DNA damage; anti-Alzheimer activity | [14,15,16,17,18,19,20,21,22,23] |
Armillaria tabescens (Scop.) Emel. | Stumps of Populus alba, Salix alba | Necrotroph parasite | Antioxidant activity; metal chelating activity | [24,25,26] |
Astraeus hygrometricus (Pers.) Morgan | Mixed forest of Tamarix africana, Salix alba, Populus alba | Terricolous saprotroph | Antioxidant, antimicrobial, antiparasitic, anti-diabetic, immunomodulatory, hepatoprotective, anti-inflammatory, cardioprotective, anticancer, chemopreventive activities | [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] |
Auricularia auricula-judae (Bull.) Quél. | Stumps and trunks of Populus alba, Salix alba | Saprotroph on wood | Skin wound-healing potential; antimicrobial, antioxidant, antidiabetic, anti-inflammatory, anti-obesity, anticancer, anti-radiation, immunomodulatory, hypolipidemic, anticoagulant activities; | [47,48,49,50,51,52,53,54] |
Bjerkandera adusta (Willd.) P. Karst. | Stumps and trunks of Populus alba, Salix alba | Necrotroph parasites | Antimicrobial and antioxidant activities | [55,56,57,58,59] |
Bovista nigrescens Pers. | Mixed forest of Salix alba, Populus alba, Eucalyptus camaldulensis Dehnh. | Saprotroph on litter | Antimicrobial and antioxidant activities | [60,61] |
Calocybe gambosa (Fr.) Donk | Mixed forest of Salix alba, Populus alba | Terricolous saprotroph | Antioxidant activity | [62,63,64] |
Candolleomyces candolleanus (Fr.) D. Wächt. & A. Melzer | Stumps of Populus alba, Salix alba, Tamarix africana, Alnus cordata | Saprotroph on wood | Antioxidant, antimicrobial, antiproliferative activities | [65,66,67,68] |
Collybia dryophila (Bull.) P. Kumm. Gymnopus dryophylus (Bull.) Murr | Mixed forest of Alnus cordata, Pinus nigra J. F. Arnold, Castanea sativa Mill., Salix alba, Populus alba | Saprotroph on litter | Anti-inflammatory activity | [69] |
Coprinus comatus (O.F. Müll.) Pers. | Mixed forest of Salix alba, Populus alba, Alnus cordata, Fraxinus ornus, Castanea sativa | Saprotroph on litter | Antioxidant, anticancer, antiandrogenic, hepatoprotective, acetylcholinesterase inhibitory, antiinflammatory, antidiabetic, antiobesity, antibacterial, antifungal, antinematode, anticancer, and antiviral activities | [70,71,72,73,74,75,76] |
Cyclocybe cylindracea (DC.) Vizzini & Angelini | Stumps of Populus alba, Salix alba | Saprotroph on wood | Antioxidant activities | [77,78,79] |
Hypsizygus ulmarius (Bull.) Redhead | Stumps of Populus alba, Salix alba | Saprotroph on wood | Antioxidant, anti-inflammatory, antibacterial, antitumor activities | [80,81,82,83,84,85,86,87] |
Inonotus hispidus (Bull.) P. Karst. | Trunks of Populus alba, Salix alba | Saprotroph on wood | Antioxidant, anticancer, immunomodulatory, antimicrobial activities | [87,88,89,90,91] |
Lactarius controversus Pers. | Mixed forest of Salix alba, Populus alba, Alnus cordata, Fraxinus ornus, Castanea sativa | Ectomycorrhizal | Antioxidant and antimicrobial activities | [92,93] |
Lentinus tigrinus (Bull.) Fr. | Mixed forest of Salix alba, Populus alba, Alnus cordata, Fraxinus ornus, Castanea sativa | Saprotroph on wood | Antioxidant, antibacterial, hypoglycaemic activities; Anticancer potential; | [94,95,96,97,98] |
Pleurotus cornucopiae (Paulet) Quél. | Stumps of Populus alba | Saprotroph on wood | Antioxidant, anticancer, immunomodulatory activities | [3,5,99,100,101,102] |
P. ostreatus (Jacq.) P. Kumm. | Stumps of Populus alba | Saprotroph on wood | Antioxidant, antimicrobial, antidiabetic, anticancer, anti-infiammatory, immunomodulatory, antihypercholesterolemic, antihypertensive, hepatoprotective, antiaging activities | [3,103,104,105,106,107,108,109,110] |
Schizophyllum commune (Fr.) | Stumps and trunks of Salix alba, Populus alba | Saprotroph on wood | Antioxidant, anti-inflammatory, hepatoprotective, antimicrobial activities | [111,112,113,114,115,116] |
Taxa | Substrate of Isolation | Medicinal Properties | References |
---|---|---|---|
Penicillium aculeatum | Leaves of Phragmites australis | Antimicrobial activity | [117,118,119] |
P. chrysogenum | Roots of P. australis | Antifungal, anticancer, antimicrobial, antioxidant activities | [120,121,122,123,124,125,126] |
Fusarium incarnatum | Leaves and roots of P. australis | Antimicrobial and antioxidant activity | [127,128,129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicero, I.; Mirabile, G.; Venturella, G. Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds. J. Fungi 2025, 11, 54. https://doi.org/10.3390/jof11010054
Cicero I, Mirabile G, Venturella G. Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds. Journal of Fungi. 2025; 11(1):54. https://doi.org/10.3390/jof11010054
Chicago/Turabian StyleCicero, Ilenia, Giulia Mirabile, and Giuseppe Venturella. 2025. "Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds" Journal of Fungi 11, no. 1: 54. https://doi.org/10.3390/jof11010054
APA StyleCicero, I., Mirabile, G., & Venturella, G. (2025). Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds. Journal of Fungi, 11(1), 54. https://doi.org/10.3390/jof11010054