Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Yeasts
2.3. Sample Preparation for ATR-FTIR Spectroscopy
2.4. ATR-FTIR Spectral Acquisition
2.5. Data Processing
3. Results
Identification of Clinical Yeasts by ATR-FTIR Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seagle, E.E.; Williams, S.L.; Chiller, T.M. Recent Trends in the Epidemiology of Fungal Infections. Infect. Dis. Clin. North Am. 2021, 35, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, G.; Alangaden, G.J. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infect. Dis. Clin. North Am. 2021, 35, 1027–1053. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Fungal Diseases in the 21st Century: The Near and Far Horizons. Pathog. Immun. 2018, 3, 183–196. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive Candidiasis. Nat. Rev. Dis. Primers 2018, 4, 1–20. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef]
- Mete, B.; Zerdali, E.Y.; Aygun, G.; Saltoglu, N.; Balkan, I.I.; Karaali, R.; Kaya, S.Y.; Karaismailoglu, B.; Kaya, A.; Urkmez, S.; et al. Change in Species Distribution and Antifungal Susceptibility of Candidemias in an Intensive Care Unit of a University Hospital (10-Year Experience). Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 325–333. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect Dis 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed]
- Toda, M. Population-Based Active Surveillance for Culture-Confirmed Candidemia—Four Sites, United States, 2012–2016. MMWR Surveill Summ 2019, 68. [Google Scholar] [CrossRef]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the Epidemiological Landscape of Invasive Candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global Trends in the Distribution of Candida Species Causing Candidemia. Clin. Microbiol. Infect. 2014, 20 (Suppl. 6), 5–10. [Google Scholar] [CrossRef] [PubMed]
- Vallabhaneni, S.; Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Schaffner, W.; Beldavs, Z.G.; Derado, G.; Pham, C.D.; Lockhart, S.R.; Smith, R.M. Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data from a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect. Dis. 2015, 2, ofv163. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Iqbal, N.; Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Bolden, C.B.; Baughman, W.; Stein, B.; Hollick, R.; Park, B.J.; et al. Species Identification and Antifungal Susceptibility Testing of Candida Bloodstream Isolates from Population-Based Surveillance Studies in Two U.S. Cities from 2008 to 2011. J. Clin. Microbiol. 2012, 50, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Mesini, A.; Mikulska, M.; Giacobbe, D.R.; Del Puente, F.; Gandolfo, N.; Codda, G.; Orsi, A.; Tassinari, F.; Beltramini, S.; Marchese, A.; et al. Changing Epidemiology of Candidaemia: Increase in Fluconazole-Resistant Candida parapsilosis. Mycoses 2020, 63, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Siopi, M.; Tarpatzi, A.; Kalogeropoulou, E.; Damianidou, S.; Vasilakopoulou, A.; Vourli, S.; Pournaras, S.; Meletiadis, J. Epidemiological Trends of Fungemia in Greece with a Focus on Candidemia during the Recent Financial Crisis: A 10-Year Survey in a Tertiary Care Academic Hospital and Review of Literature. Antimicrob. Agents Chemother. 2020, 64, e01516-19. [Google Scholar] [CrossRef]
- Franconi, I.; Rizzato, C.; Tavanti, A.; Falcone, M.; Lupetti, A. Paradigm Shift: Candida parapsilosis Sensu Stricto as the Most Prevalent Candida Species Isolated from Bloodstream Infections with Increasing Azole-Non-Susceptibility Rates: Trends from 2015-2022 Survey. J. Fungi 2023, 9, 1012. [Google Scholar] [CrossRef]
- Govender, N.P.; Patel, J.; Magobo, R.E.; Naicker, S.; Wadula, J.; Whitelaw, A.; Coovadia, Y.; Kularatne, R.; Govind, C.; Lockhart, S.R.; et al. Emergence of Azole-Resistant Candida parapsilosis Causing Bloodstream Infection: Results from Laboratory-Based Sentinel Surveillance in South Africa. J. Antimicrob. Chemother. 2016, 71, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The Global Problem of Antifungal Resistance: Prevalence, Mechanisms, and Management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Franconi, I.; Rizzato, C.; Poma, N.; Tavanti, A.; Lupetti, A. Candida parapsilosis Sensu Stricto Antifungal Resistance Mechanisms and Associated Epidemiology. J. Fungi 2023, 9, 798. [Google Scholar] [CrossRef]
- Franconi, I.; Lupetti, A. In Vitro Susceptibility Tests in the Context of Antifungal Resistance: Beyond Minimum Inhibitory Concentration in Candida Spp. J. Fungi 2023, 9, 1188. [Google Scholar] [CrossRef] [PubMed]
- Daneshnia, F.; de Almeida Júnior, J.N.; Ilkit, M.; Lombardi, L.; Perry, A.M.; Gao, M.; Nobile, C.J.; Egger, M.; Perlin, D.S.; Zhai, B.; et al. Worldwide Emergence of Fluconazole-Resistant Candida parapsilosis: Current Framework and Future Research Roadmap. Lancet Microbe 2023, 4, e470–e480. [Google Scholar] [CrossRef]
- Leena Sankari, S.; Mahalakshmi, K.; Naveen Kumar, V. Chromogenic Medium versus PCR-RFLP in the Speciation of Candida: A Comparative Study. BMC Res. Notes 2019, 12, 681. [Google Scholar] [CrossRef]
- Patel, R. A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, A.; Florio, W.; Celandroni, F.; Barnini, S.; Lupetti, A.; Ghelardi, E. A Rapid Procedure for Identification and Antifungal Susceptibility Testing of Yeasts from Positive Blood Cultures. Front. Microbiol. 2018, 9, 2400. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef]
- Quintelas, C.; Ferreira, E.C.; Lopes, J.A.; Sousa, C. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing. Biotechnol. J. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Rakovitsky, N.; Frenk, S.; Kon, H.; Schwartz, D.; Temkin, E.; Solter, E.; Paikin, S.; Cohen, R.; Schwaber, M.J.; Carmeli, Y.; et al. Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: A Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella Pneumoniae Outbreak in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2020, 58, 1–8. [Google Scholar] [CrossRef]
- Wenning, M.; Scherer, S. Identification of Microorganisms by FTIR Spectroscopy: Perspectives and Limitations of the Method. Appl. Microbiol. Biotechnol. 2013, 97, 7111–7120. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.M.T.; Dufresne, P.J.; Longtin, J.; Sedman, J.; Ismail, A.A. Reagent-Free Identification of Clinical Yeasts by Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. J. Clin. Microbiol. 2019, 57, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Amiali, N.M.; Mulvey, M.R.; Berger-Bächi, B.; Sedman, J.; Simor, A.E.; Ismail, A.A. Evaluation of Fourier Transform Infrared Spectroscopy for the Rapid Identification of Glycopeptide-Intermediate Staphylococcus Aureus. J. Antimicrob. Chemother. 2008, 61, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Miñán, A.; Vescina, C.; Degrossi, J.; Gatti, B.; Montanaro, P.; Messina, M.; Franco, M.; Vay, C.; Schmitt, J.; et al. Fourier Transform Infrared Spectroscopy for Rapid Identification of Nonfermenting Gram-Negative Bacteria Isolated from Sputum Samples from Cystic Fibrosis Patients. J. Clin. Microbiol. 2008, 46, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Sandt, C.; Madoulet, C.; Kohler, A.; Allouch, P.; De Champs, C.; Manfait, M.; Sockalingum, G.D. FT-IR Microspectroscopy for Early Identification of Some Clinically Relevant Pathogens. J. Appl. Microbiol. 2006, 101, 785–797. [Google Scholar] [CrossRef]
- De Carolis, E.; Magrì, C.; Camarlinghi, G.; Ivagnes, V.; Spruijtenburg, B.; Meijer, E.F.J.; Scarselli, C.; Parisio, E.M.; Sanguinetti, M. Follow the Path: Unveiling an Azole Resistant Candida parapsilosis Outbreak by FTIR Spectroscopy and STR Analysis. J. Fungi 2024, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.M.T.; Ismail, A.A.; Lévesque, S.; Dufresne, S.F.; Cheng, M.P.; Vallières, É.; Luong, M.-L.; Sedman, J.; Dufresne, P.J. Multicenter Evaluation of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy-Based Method for Rapid Identification of Clinically Relevant Yeasts. J. Clin. Microbiol. 2022, 60, e0139821. [Google Scholar] [CrossRef]
- Baldauf, N.A.; Rodriguez-Romo, L.A.; Männig, A.; Yousef, A.E.; Rodriguez-Saona, L.E. Effect of Selective Growth Media on the Differentiation of Salmonella Enterica Serovars by Fourier-Transform Mid-Infrared Spectroscopy. J. Microbiol. Methods 2007, 68, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Alifax, S. r. l. I-DOne: User’s Manual. 2020. Available online: https://www.alifax.net/prodotti/batteriologica/show/I-done (accessed on 4 December 2024).
Candida Species | Concordant Results * | Non-Concordant Identification at the Species Level | Concordant Identification at the Genus Level | Total Isolates | ||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |
Candida albicans | 132 | 95.0% | 5 a | 3.6% | 2 | 1.4% | 139 | 100.0% |
Candida glabrata | 49 | 98.0% | 1 b | 2.0% | 0.0% | 50 | 100.0% | |
Candida krusei | 9 | 100.0% | 0.0% | 0.0% | 9 | 100.0% | ||
Candida metapsilosis | 10 | 100.0% | 0.0% | 0.0% | 10 | 100.0% | ||
Candida orthopsilosis | 9 | 100.0% | 0.0% | 0.0% | 9 | 100.0% | ||
Candida parapsilosis | 47 | 100.0% | 0.0% | 0.0% | 47 | 100.0% | ||
Candida tropicalis | 16 | 80.0% | 4 c | 20.0% | 0.0% | 20 | 100.0% | |
Overall | 272 | 95.8% | 10 | 3.5% | 2 | 0.7% | 284 | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franconi, I.; Fais, R.; Giordano, C.; Tuvo, B.; Stani, C.; Tavanti, A.; Barnini, S.; Lupetti, A. Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy. J. Fungi 2025, 11, 40. https://doi.org/10.3390/jof11010040
Franconi I, Fais R, Giordano C, Tuvo B, Stani C, Tavanti A, Barnini S, Lupetti A. Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy. Journal of Fungi. 2025; 11(1):40. https://doi.org/10.3390/jof11010040
Chicago/Turabian StyleFranconi, Iacopo, Roberta Fais, Cesira Giordano, Benedetta Tuvo, Chiaramaria Stani, Arianna Tavanti, Simona Barnini, and Antonella Lupetti. 2025. "Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy" Journal of Fungi 11, no. 1: 40. https://doi.org/10.3390/jof11010040
APA StyleFranconi, I., Fais, R., Giordano, C., Tuvo, B., Stani, C., Tavanti, A., Barnini, S., & Lupetti, A. (2025). Rapid Identification of Clinically Relevant Candida spp. by I-dOne Software Using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy. Journal of Fungi, 11(1), 40. https://doi.org/10.3390/jof11010040