Next Article in Journal
Bioprocess of Gibberellic Acid by Fusarium fujikuroi: The Challenge of Regulation, Raw Materials, and Product Yields
Previous Article in Journal
Natural Prevalence, Molecular Characteristics, and Biological Activity of Metarhizium rileyi (Farlow) Isolated from Spodoptera frugiperda (J. E. Smith) Larvae in Mexico
Previous Article in Special Issue
Age-Related Conservation in Plant–Soil Feedback Accompanied by Ectomycorrhizal Domination in Temperate Forests in Northeast China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety “Chor Khing” Using Trichoderma breve Z2-03

1
School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand
2
Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
3
Faculty of Technology and Community Development, Thaksin University, Papayom 93210, Thailand
4
Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai 90110, Thailand
*
Author to whom correspondence should be addressed.
J. Fungi 2024, 10(6), 417; https://doi.org/10.3390/jof10060417
Submission received: 29 April 2024 / Revised: 9 June 2024 / Accepted: 9 June 2024 / Published: 11 June 2024
(This article belongs to the Special Issue Soil Fungi and Their Role in Plant Growth)

Abstract

Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In southern Thailand, the local rice variety “Chor Khing” is mainly cultivated in the Songkhla province; it is characterized by slow growth and is susceptible to sheath blight caused by Rhizoctonia solani. Therefore, this research aimed to screen Trichoderma species with the ability to promote plant growth in this rice variety and enact biological control against R. solani. A total of 21 Trichoderma isolates were screened for indole compound production using the Salkowski reagent. The Z2-03 isolate reacted positively to the Salkowski reagent, indicating the production of the indole compound. High-performance liquid chromatography (HPCL) confirmed that Z2-03 produced IAA at 35.58 ± 7.60 μg/mL. The cell-free culture filtrate of the potato dextrose broth (CF) of Z2-03 induced rice germination in rice seeds, yielding root and shoot lengths in cell-free CF-treated rice that were significantly higher than those of the control (distilled water and culture broth alone). Furthermore, inoculation with Trichoderma conidia promoted rice growth and induced a defense response against R. solani during the seedling stage. Trichoderma Z2-03 displayed an antifungal capacity against R. solani, achieving 74.17% inhibition (as measured through dual culture assay) and the production of siderophores on the CAS medium. The pot experiment revealed that inoculation with the Trichoderma sp. Z2-03 conidial suspension increased the number of tillers and the plant height in the “Chor Khing” rice variety, and suppressed the percentage of disease incidence (PDI). The Trichoderma isolate Z2-03 was identified, based on the morphology and molecular properties of ITS, translation elongation factor 1-alpha (tef1-α), and RNA polymerase 2 (rpb2), as Trichoderma breve Z2-03. Our results reveal the ability of T. breve Z2-03 to act as a plant growth promoter, enhancing growth and development in the “Chor Khing” rice variety, as well as a biological control agent through its competition and defense induction mechanism in this rice variety.
Keywords: fungicidal activity; indole-3-acetic acid; local rice; plant growth promoting fungus fungicidal activity; indole-3-acetic acid; local rice; plant growth promoting fungus

Share and Cite

MDPI and ACS Style

Intana, W.; Suwannarach, N.; Kumla, J.; Wonglom, P.; Sunpapao, A. Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety “Chor Khing” Using Trichoderma breve Z2-03. J. Fungi 2024, 10, 417. https://doi.org/10.3390/jof10060417

AMA Style

Intana W, Suwannarach N, Kumla J, Wonglom P, Sunpapao A. Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety “Chor Khing” Using Trichoderma breve Z2-03. Journal of Fungi. 2024; 10(6):417. https://doi.org/10.3390/jof10060417

Chicago/Turabian Style

Intana, Warin, Nakarin Suwannarach, Jaturong Kumla, Prisana Wonglom, and Anurag Sunpapao. 2024. "Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety “Chor Khing” Using Trichoderma breve Z2-03" Journal of Fungi 10, no. 6: 417. https://doi.org/10.3390/jof10060417

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop