Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Distribution of Candida Species Obtained from Clinical Samples during the Two Study Periods
3.2. Dynamics of Candidemia Incidence Pre-Pandemic and Pandemic Periods
3.3. Distribution of Candidemia Incidence between Intensive-Care-Unit (ICU) and Non-ICU Patients
3.4. The Effect of the COVID-19 Pandemic on Antifungal Susceptibility Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report–51; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: http://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations--(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 24 January 2024).
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The Landscape of Candidemia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Messer, S.A.; Hollis, R.J.; Group, S.P. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J. Clin. Microbiol. 2002, 40, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Barreiros, G.; Guimaraes, L.F.; Deriquehem, V.A.S.; Castineiras, A.C.; Nouer, S.A. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses 2021, 64, 152–156. [Google Scholar] [CrossRef]
- Riche, C.V.W.; Cassol, R.; Pasqualotto, A.C. Is the Frequency of Candidemia Increasing in COVID-19 Patients Receiving Corticosteroids? J. Fungi 2020, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Germinario, B.N.; Ferrante, M.; Frangi, C.; Li Voti, R.; Muccini, C.; Ripa, M.; Group, C.O.-B.S. Candidemia in Coronavirus Disease 2019 (COVID-19) Patients: Incidence and Characteristics in a Prospective Cohort Compared With Historical Non-COVID-19 Controls. Clin. Infect. Dis. 2021, 73, e2838–e2839. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang, O.; et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhan, H.; Zhang, F.; Liu, Q.; Tso, E.Y.K.; Lui, G.C.Y.; Chen, N.; Li, A.; Lu, W.; Chan, F.K.L.; et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020, 159, 1302–1310.e1305. [Google Scholar] [CrossRef]
- Won, E.J.; Choi, M.J.; Jeong, S.H.; Kim, D.; Shin, K.S.; Shin, J.H.; Kim, Y.R.; Kim, H.S.; Kim, Y.A.; Uh, Y.; et al. Nationwide Surveillance of Antifungal Resistance of Candida Bloodstream Isolates in South Korean Hospitals: Two Year Report from Kor-GLASS. J. Fungi 2022, 8, 996. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeast, 2nd ed.; CLSI M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Franconi, I.; Rizzato, C.; Tavanti, A.; Falcone, M.; Lupetti, A. Paradigm Shift: Candida parapsilosis sensu stricto as the Most Prevalent Candida Species Isolated from Bloodstream Infections with Increasing Azole-Non-Susceptibility Rates: Trends from 2015-2022 Survey. J. Fungi 2023, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Routsi, C.; Meletiadis, J.; Charitidou, E.; Gkoufa, A.; Kokkoris, S.; Karageorgiou, S.; Giannopoulos, C.; Koulenti, D.; Andrikogiannopoulos, P.; Perivolioti, E.; et al. Epidemiology of Candidemia and Fluconazole Resistance in an ICU before and during the COVID-19 Pandemic Era. Antibiotics 2022, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Anaissie, E. Revisiting the source of candidemia: Skin or gut? Clin. Infect. Dis. 2001, 33, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Carvalho, A.; Nguyen, M.H.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-Associated Candidiasis (CAC): An Underestimated Complication in the Absence of Immunological Predispositions? J. Fungi 2020, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20 (Suppl. S6), 5–10. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Won, E.J.; Jeong, S.H.; Shin, K.S.; Shin, J.H.; Kim, Y.R.; Kim, H.S.; Kim, Y.A.; Uh, Y.; Kim, T.S.; et al. Dynamics and Predictors of Mortality Due to Candidemia Caused by Different Candida Species: Comparison of Intensive Care Unit-Associated Candidemia (ICUAC) and Non-ICUAC. J. Fungi 2021, 7, 597. [Google Scholar] [CrossRef]
- Arastehfar, A.; Lass-Florl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
- Yamin, D.; Akanmu, M.H.; Al Mutair, A.; Alhumaid, S.; Rabaan, A.A.; Hajissa, K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, Y.J.; Yong, D.; Byun, J.H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-Resistant Candida parapsilosis Bloodstream Isolates with Y132F Mutation in ERG11 Gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef]
- Trevijano-Contador, N.; Torres-Cano, A.; Carballo-Gonzalez, C.; Puig-Asensio, M.; Martin-Gomez, M.T.; Jimenez-Martinez, E.; Romero, D.; Nuvials, F.X.; Olmos-Arenas, R.; Moreto-Castellsague, M.C.; et al. Global Emergence of Resistance to Fluconazole and Voriconazole in Candida parapsilosis in Tertiary Hospitals in Spain During the COVID-19 Pandemic. Open Forum Infect. Dis. 2022, 9, ofac605. [Google Scholar] [CrossRef] [PubMed]
- Thomaz, D.Y.; Del Negro, G.M.B.; Ribeiro, L.B.; da Silva, M.; Carvalho, G.; Camargo, C.H.; de Almeida, J.N., Jr.; Motta, A.L.; Siciliano, R.F.; Sejas, O.N.E.; et al. A Brazilian Inter-Hospital Candidemia Outbreak Caused by Fluconazole-Resistant Candida parapsilosis in the COVID-19 Era. J. Fungi 2022, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Prestel, C.; Anderson, E.; Forsberg, K.; Lyman, M.; de Perio, M.A.; Kuhar, D.; Edwards, K.; Rivera, M.; Shugart, A.; Walters, M.; et al. Candida auris Outbreak in a COVID-19 Specialty Care Unit—Florida, July–August 2020. Morb. Mortal. Wkly. Rep. 2021, 70, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Daneshnia, F.; de Almeida Junior, J.N.; Arastehfar, A.; Lombardi, L.; Shor, E.; Moreno, L.; Verena Mendes, A.; Goreth Barberino, M.; Thomaz Yamamoto, D.; Butler, G.; et al. Determinants of fluconazole resistance and echinocandin tolerance in C. parapsilosis isolates causing a large clonal candidemia outbreak among COVID-19 patients in a Brazilian ICU. Emerg. Microbes Infect. 2022, 11, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Suh, J.W.; Kim, M.J. Epidemiological Trends of Candidemia and the Impact of Adherence to the Candidemia Guideline: Six-Year Single-Center Experience. J. Fungi 2021, 7, 275. [Google Scholar] [CrossRef]
- Byun, J.H.; Won, E.J.; Cho, H.W.; Kim, D.; Lee, H.; Kim, S.H.; Choi, M.J.; Byun, S.A.; Lee, G.Y.; Kee, S.J.; et al. Detection and Characterization of Two Phenotypes of Candida parapsilosis in South Korea: Clinical Features and Microbiological Findings. Microbiol. Spectr. 2023, 11, e0006623. [Google Scholar] [CrossRef]
- Diaz-Garcia, J.; Mesquida, A.; Machado, M.; Sanchez-Carrillo, C.; Munoz, P.; Escribano, P.; Guinea, J. Yeasts from blood cultures in the wake of the COVID-19 pandemic in a tertiary care hospital: Shift in species epidemiology, steady low antifungal resistance and full in vitro ibrexafungerp activity. Med. Mycol. 2023, 61, myad072. [Google Scholar] [CrossRef]
- Jung, J.; Kim, M.J.; Kim, J.Y.; Lee, J.Y.; Kwak, S.H.; Hong, M.J.; Chong, Y.P.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; et al. Candida auris colonization or infection of the ear: A single-center study in South Korea from 2016 to 2018. Med. Mycol. 2020, 58, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.A.; Kwon, Y.J.; Lee, G.Y.; Choi, M.J.; Jeong, S.H.; Kim, D.; Choi, M.H.; Kee, S.J.; Kim, S.H.; Shin, M.G.; et al. Virulence Traits and Azole Resistance in Korean Candida auris Isolates. J. Fungi 2023, 9, 979. [Google Scholar] [CrossRef]
Species | Subtotal No. (%) | Number of Clinical Isolates of Candida Species Obtained from 2017 to 2022 | Fold (Pandemic/Pre-Pandemic) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Pre-Pandemic a | Pandemic b | |||
Candida albicans | 5743 (50.4) | 807 | 902 | 946 | 992 | 1006 | 1090 | 2655 | 3088 | 1.2 |
Candida glabrata | 2588 (22.7) | 353 | 368 | 395 | 455 | 538 | 479 | 1116 | 1472 | 1.3 |
Candida tropicalis | 1419 (12.5) | 212 | 185 | 231 | 272 | 242 | 277 | 628 | 791 | 1.3 |
Candida parapsilosis complex c | 893 (7.8) | 114 | 132 | 133 | 138 | 181 | 195 | 379 | 514 | 1.4 |
Clavispora lusitaniae | 187 (1.6) | 16 | 25 | 28 | 34 | 28 | 56 | 69 | 118 | 1.7 |
Candida auris | 181 (1.6) | 43 | 27 | 31 | 31 | 21 | 28 | 101 | 80 | 0.8 |
Pichia kudriavzevii | 163 (1.4) | 26 | 33 | 23 | 25 | 34 | 22 | 82 | 81 | 1.0 |
Meyerozyma guilliermondii | 52 (0.5) | 11 | 9 | 12 | 7 | 9 | 4 | 32 | 20 | 0.6 |
Kluyveromyces marxianus | 38 (0.3) | 1 | 4 | 9 | 9 | 9 | 6 | 14 | 24 | 1.7 |
Cyberlindnera jadinii | 21 (0.2) | 2 | 8 | 1 | 5 | 3 | 2 | 11 | 10 | 0.9 |
Trichomonascus ciferrii | 10 (0.1) | 4 | 2 | 3 | 1 | 6 | 4 | 0.7 | ||
Candida dubliniensis | 10 (0.1) | 1 | 4 | 2 | 1 | 2 | 7 | 3 | 0.4 | |
Candida intermedia | 7 (0.1) | 2 | 2 | 1 | 2 | 2 | 5 | 2.5 | ||
Other Candida species d | 12 (0.1) | 1 | 2 | 5 | 1 | 2 | 1 | 8 | 4 | 0.5 |
Candida, not albicans | 72 (0.6) | 13 | 8 | 6 | 24 | 6 | 15 | 27 | 45 | 1.7 |
Total | 11,396 (100) | 1600 | 1711 | 1826 | 1996 | 2083 | 2180 | 5137 | 6259 | 1.2 |
Incidence/10,000 patient-days | 17.29 | 18.20 | 19.69 | 22.69 | 22.66 | 23.98 | 18.39 | 23.11 | 1.3 |
Incidence/10,000 Patient-Days | Incidence of Candidemia Patients (Episodes/10,000 Patient-Days) | Fold | |||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Pre-Pandemic a | Pandemic b | (Pandemic/Pre-Pandemic) | |
Candida albicans | 0.58 | 0.45 | 0.45 | 0.53 | 0.63 | 0.63 | 0.49 | 0.60 | 1.2 |
Candida glabrata | 0.36 | 0.57 | 0.44 | 0.6 | 0.58 | 0.54 | 0.46 | 0.57 | 1.2 |
Candida tropicalis | 0.28 | 0.22 | 0.3 | 0.36 | 0.39 | 0.27 | 0.27 | 0.34 | 1.3 |
Candida parapsilosis complex c | 0.13 | 0.11 | 0.12 | 0.14 | 0.2 | 0.22 | 0.12 | 0.18 | 1.6 |
Pichia kudriavzevii | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.04 | 1.0 |
Total candidemia | 1.44 | 1.48 | 1.42 | 1.7 | 1.88 | 1.77 | 1.45 | 1.79 | 1.2 |
Species | Number of Candidemia Patients | Relative Ratio of Candidemia Incidence (Pandemic/Pre-Pandemic) | ||||
---|---|---|---|---|---|---|
ICU | Non-ICU | |||||
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | ICU | non-ICU | |
Candida albicans | 31 | 47 | 107 | 115 | 1.5 | 1.1 |
Candida glabrata | 39 | 35 | 89 | 120 | 0.9 | 1.3 |
Candida parapsilosis complex a | 13 | 9 | 20 | 41 | 0.7 | 2.1 |
Candida tropicalis | 18 | 26 | 57 | 67 | 1.4 | 1.2 |
Pichia kudriavzevii | 4 | 2 | 8 | 9 | 0.5 | 1.1 |
Meyerozyma guilliermondii | 0 | 0 | 6 | 1 | N/A | 0.2 |
Other Candida species b | 5 | 6 | 7 | 6 | 1.2 | 0.9 |
Total | 110 | 125 | 294 | 359 | 1.1 | 1.2 |
Antifungal Agent a | Pre-Pandemic | Pandemic | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
/Species | No. | %R | %SDD/I | No. | %R | %SDD/I | No. | %R | %SDD/I | %NS | |
Fluconazole | Candida albicans | 111 | 8.1 | 1.8 | 165 | 0.0 | 0.6 | 276 | 3.3 | 1.1 | 4.4 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 1.1 | 155 | 0.0 | 0.7 | 0.7 | |
Candida glabrata | 120 | 2.5 | 97.5 | 159 | 0.0 | 100.0 | 279 | 1.1 | 98.9 | 100.0 | |
Candida parapsilosis complex b | 43 | 7.0 | 2.3 | 62 | 0.0 | 1.6 | 105 | 2.9 | 1.9 | 4.8 | |
Pichia kudriavzevii | 12 | 100.0 | 0.0 | 15 | 100.0 | 0.0 | 27 | 100.0 | 0.0 | 100.0 | |
Total | 348 | 7.8 | 34.5 | 494 | 3.0 | 32.8 | 842 | 5.0 | 33.5 | 38.5 | |
Voriconazole | Candida albicans | 111 | 7.2 | 1.8 | 165 | 0.0 | 0.0 | 276 | 2.9 | 0.7 | 3.6 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida parapsilosis complex b | 43 | 2.3 | 2.3 | 62 | 0.0 | 0.0 | 105 | 1.0 | 1.0 | 2.0 | |
Pichia kudriavzevii | 12 | 0.0 | 8.3 | 15 | 0.0 | 0.0 | 27 | 0.0 | 3.7 | 3.7 | |
Total | 228 | 3.9 | 1.8 | 335 | 0.0 | 0.0 | 563 | 1.6 | 0.7 | 2.3 | |
Caspofungin | Candida albicans | 111 | 0.9 | 0.0 | 165 | 0.6 | 0.0 | 276 | 0.7 | 0.0 | 0.7 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida glabrata | 120 | 10.0 | 1.7 | 159 | 5.7 | 4.4 | 279 | 7.5 | 3.2 | 10.7 | |
Candida parapsilosis complex b | 43 | 0.0 | 0.0 | 62 | 0.0 | 0.0 | 105 | 0.0 | 0.0 | 0.0 | |
Meyerozyma guilliermondii | 5 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | |
Pichia kudriavzevii | 12 | 8.3 | 0.0 | 15 | 6.7 | 0.0 | 27 | 7.4 | 0.0 | 7.4 | |
Total | 353 | 4.0 | 0.6 | 495 | 2.2 | 1.4 | 848 | 2.9 | 1.1 | 4.0 | |
Micafungin | Candida albicans | 111 | 0.9 | 0.0 | 165 | 0.6 | 0.0 | 276 | 0.7 | 0.0 | 0.7 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida glabrata | 120 | 0.0 | 6.7 | 159 | 0.6 | 1.9 | 279 | 0.4 | 3.9 | 4.3 | |
Candida parapsilosis complex b | 43 | 0.0 | 0.0 | 62 | 0.0 | 0.0 | 105 | 0.0 | 0.0 | 0.0 | |
Meyerozyma guilliermondii | 5 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | |
Pichia kudriavzevii | 12 | 0.0 | 8.3 | 15 | 6.7 | 0.0 | 27 | 3.7 | 3.7 | 7.4 | |
Total | 353 | 0.3 | 2.5 | 495 | 0.6 | 0.6 | 848 | 0.5 | 1.4 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, E.J.; Sung, H.; Kim, M.-N. Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). J. Fungi 2024, 10, 193. https://doi.org/10.3390/jof10030193
Won EJ, Sung H, Kim M-N. Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). Journal of Fungi. 2024; 10(3):193. https://doi.org/10.3390/jof10030193
Chicago/Turabian StyleWon, Eun Jeong, Heungsup Sung, and Mi-Na Kim. 2024. "Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022)" Journal of Fungi 10, no. 3: 193. https://doi.org/10.3390/jof10030193
APA StyleWon, E. J., Sung, H., & Kim, M.-N. (2024). Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). Journal of Fungi, 10(3), 193. https://doi.org/10.3390/jof10030193