Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Isolation and Purification of Endophytic Fungi from Acer truncatum
2.3. Identification of Endophytic Fungi from Acer truncatum
2.4. T. verruculosus Phosphorus Solubilization Pi Experiment
2.5. Potted Plant Experiment
2.6. Determination of Morphological Index
2.7. Determination of Pi Content in Cucumber Plants
2.8. Determination of Nutrient Content in Soil
2.9. Determination of Photosynthetic Pigment Content
2.10. Chlorophyll Fluorescence Parameters
2.11. Transient Measurement of OJIP and Kinetic Analysis of Rapid Fluorescence Induction
2.12. Statistical Analysis
3. Results
3.1. Results of Blast Sequence Comparison of Endophytic Fungi of Acer Truncatum
3.2. The Solubility of T. verruculosus to Insoluble Pi
3.3. Physical and Chemical Properties of Soil
3.4. Pi Content in Aboveground and Underground Parts
3.5. Morphological Growth Index
3.6. Effects of T. verruculosus Inoculation on Chlorophyll Content
3.7. Chlorophyll a Fluorescence Parameters
3.8. OJIP Curve Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, L.; Liu, D. Ethylene and plant responses to phosphate deficiency. Front. Plant Sci. 2015, 6, 796. [Google Scholar] [CrossRef]
- Kochian, L.V. Plant nutrition: Rooting for more phosphorus. Nature 2012, 488, 466–467. [Google Scholar] [CrossRef]
- Raghothama, K.G. Phosphate transport and signaling. Curr. Opin. Plant Biol. 2000, 3, 182–187. [Google Scholar] [CrossRef]
- Zhang, T.C.; Dahab, M.F.; Nunes, G.S.; Hu, C.; Surampalli, R. Phosphorus fate and transport in soil columns loaded intermittently with influent of high phosphorus concentrations. Water Environ. Res. 2007, 79, 2343–2351. [Google Scholar] [CrossRef]
- Dissanayaka, D.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent insights into the metabolic adaptations of phosphorus−deprived plants. J. Exp. Bot. 2021, 72, 199–223. [Google Scholar] [CrossRef]
- Rao, I.M.; Fredeen, A.L.; Terry, N. Leaf Phosphate Status, Photosynthesis, and Carbon Partitioning in Sugar Beet: III. Diurnal Changes in Carbon Partitioning and Carbon Export. Plant Physiol. 1990, 92, 29–36. [Google Scholar] [CrossRef]
- Khan, H.; Akbar, W.A.; Shah, Z.; Rahim, H.U.; Taj, A.; Alatalo, J.M. Coupling phosphate−solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline−calcareous soil. Heliyon 2022, 8, e09081. [Google Scholar] [CrossRef] [PubMed]
- Ducousso−Détrez, A.; Fontaine, J.; Lounès−Hadj Sahraoui, A.; Hijri, M. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms 2022, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, V.V.; Kalagudi, G.M. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol. Adv. 2005, 23, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Bajouco, R.; Pinheiro, J.; Pereira, B.; Ferreira, R.; Coutinho, J. Risk of phosphorus losses from Andosols under fertilized pasture. Environ. Sci. Pollut. Res. Int. 2020, 27, 19592–19602. [Google Scholar] [CrossRef]
- Sattari, S.Z.; Bouwman, A.F.; Giller, K.E.; van Ittersum, M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA 2012, 109, 6348–6353. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Bi, Q.F.; Li, K.J.; Zheng, B.X.; Liu, X.P.; Li, H.Z.; Jin, B.J.; Ding, K.; Yang, X.R.; Lin, X.Y.; Zhu, Y.G. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci. Total Environ. 2020, 703, 134977. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Li, S.; Wen, J.; Zhu, L.; Yan, K.; Du, Y.; Ren, J.; Li, S.; Chen, Z.; et al. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: A woody oil−tree species producing nervonic acid. BMC Plant Biol. 2022, 22, 29. [Google Scholar] [CrossRef]
- Wang, R.; Liu, P.; Fan, J.; Li, L. Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation. Sci. Rep. 2018, 8, 15504. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Zhu, L.; Bi, C.; Li, S.; Li, S.; Wen, J.; Yan, K.; Li, Q. Characterization of the Complete Chloroplast Genome of Acer truncatum Bunge (Sapindales: Aceraceae): A New Woody Oil Tree Species Producing Nervonic Acid. Biomed. Res. Int. 2019, 2019, 7417239. [Google Scholar] [CrossRef]
- Gu, R.; Rybalov, L.; Negrin, A.; Morcol, T.; Long, W.; Myers, A.K.; Isaac, G.; Yuk, J.; Kennelly, E.J.; Long, C. Metabolic Profiling of Different Parts of Acer truncatum from the Mongolian Plateau Using UPLC−QTOF−MS with Comparative Bioactivity Assays. J. Agric. Food Chem. 2019, 67, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; He, S.; Wang, X.; Rengel, Z.; Chen, L.; Wang, X.; Pei, S.; Xin, X.; Zhang, X. Isolation and characterization of phosphate−solubilizing bacterium Pantoea rhizosphaerae sp. nov. from Acer truncatum rhizosphere soil and its effect on Acer truncatum growth. Front. Plant Sci. 2023, 14, 1218445. [Google Scholar] [CrossRef] [PubMed]
- Pietro−Souza, W.; de Campos Pereira, F.; Mello, I.S.; Stachack, F.F.F.; Terezo, A.J.; Cunha, C.N.D.; White, J.F.; Li, H.; Soares, M.A. Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 2020, 240, 124874. [Google Scholar] [CrossRef]
- Tétard−Jones, C.; Edwards, R. Potential roles for microbial endophytes in herbicide tolerance in plants. Pest. Manag. Sci. 2016, 72, 203–209. [Google Scholar] [CrossRef]
- Yin, L.; Ren, A.; Wei, M.; Wu, L.; Zhou, Y.; Li, X.; Gao, Y. Neotyphodium coenophialum−infected tall fescue and its potential application in the phytoremediation of saline soils. Int. J. Phytoremed. 2014, 16, 235–246. [Google Scholar] [CrossRef]
- McLellan, C.A.; Turbyville, T.J.; Wijeratne, E.M.; Kerschen, A.; Vierling, E.; Queitsch, C.; Whitesell, L.; Gunatilaka, A.A. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol. 2007, 145, 174–182. [Google Scholar] [CrossRef]
- Varga, T.; Hixson, K.K.; Ahkami, A.H.; Sher, A.W.; Barnes, M.E.; Chu, R.K.; Battu, A.K.; Nicora, C.D.; Winkler, T.E.; Reno, L.R.; et al. Endophyte−Promoted Phosphorus Solubilization in Populus. Front. Plant Sci. 2020, 11, 567918. [Google Scholar] [CrossRef]
- Morales, F.; Ancín, M.; Fakhet, D.; González−Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wang, X.; Xu, H.; Zhou, X.; Mu, C. Effect of Trichoderma viride on insoluble phosphorus absorption ability and growth of Melilotus officinalis. Sci. Rep. 2023, 13, 12345. [Google Scholar] [CrossRef] [PubMed]
- Manganyi, M.C.; Ateba, C.N. Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms 2020, 8, 1934. [Google Scholar] [CrossRef]
- Yu, H.; Wu, X.; Zhang, G.; Zhou, F.; Harvey, P.R.; Wang, L.; Fan, S.; Xie, X.; Li, F.; Zhou, H.; et al. Identification of the Phosphorus−Solubilizing Bacteria Strain JP233 and Its Effects on Soil Phosphorus Leaching Loss and Crop Growth. Front. Microbiol. 2022, 13, 892533. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, C.; Kong, C.; Zeng, H.; Yu, W.; Wu, J. Genomics analysis of three phosphorus−dissolving bacteria isolated from Torreya grandis soil. Int. Microbiol. 2023, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Qin, Y.; Wu, H.; Zuo, W.; He, H.; Tan, J.; Wang, Y.; He, D. Isolation and Characterization of Phosphorus Solubilizing Bacteria with Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. Front. Microbiol. 2020, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds. Microorganisms 2022, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Pan, X.; Li, J.; Jia, Z.; Fang, T.; Jiang, Y. Isolation and Molecular Identification of the Native Microflora on Flammulina velutipes Fruiting Bodies and Modeling the Growth of Dominant Microbiota (Lactococcus lactis). Front. Microbiol. 2021, 12, 664874. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Ojida, A.; Mito−oka, Y.; Sada, K.; Hamachi, I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)−dipicolylamine)−based artificial receptors. J. Am. Chem. Soc. 2004, 126, 2454–2463. [Google Scholar] [CrossRef]
- Suárez, J.C.; Vanegas, J.I.; Contreras, A.T.; Anzola, J.A.; Urban, M.O.; Beebe, S.E.; Rao, I.M. Chlorophyll Fluorescence Imaging as a Tool for Evaluating Disease Resistance of Common Bean Lines in the Western Amazon Region of Colombia. Plants 2022, 11, 1371. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, Y.; Cong, Y.; Zhu, P.; Xing, J.; Cui, J.; Xu, W.; Shi, Q.; Diao, M.; Liu, H.Y. Ascorbic Acid−Induced Photosynthetic Adaptability of Processing Tomatoes to Salt Stress Probed by Fast OJIP Fluorescence Rise. Front. Plant Sci. 2021, 12, 594400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Meng, H.; Li, L.; Cui, H.; Wei, Z.; Yang, T.; Dang, Q. Revealing the Inner Dynamics of Fulvic Acid from Different Compost−Amended Soils through Microbial and Chemical Analyses. J. Agric. Food Chem. 2020, 68, 3722–3728. [Google Scholar] [CrossRef]
- Stefanoni Rubio, P.J.; Godoy, M.S.; Della Mónica, I.F.; Pettinari, M.J.; Godeas, A.M.; Scervino, J.M. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Curr. Microbiol. 2016, 72, 41–47. [Google Scholar] [CrossRef]
- He, X.L.; Li, Q.; Peng, W.H.; Zhou, J.; Cao, X.L.; Wang, D.; Huang, Z.Q.; Tan, W.; Li, Y.; Gan, B.C. Intra− and inter−isolate variation of ribosomal and protein−coding genes in Pleurotus: Implications for molecular identification and phylogeny on fungal groups. BMC Microbiol. 2017, 17, 139. [Google Scholar] [CrossRef]
- Sfakianaki, M.; Sfichi, L.; Kotzabasis, K. The involvement of LHCII−associated polyamines in the response of the photosynthetic apparatus to low temperature. J. Photochem. Photobiol. B 2006, 84, 181–188. [Google Scholar] [CrossRef]
- Della Mónica, I.F.; Godoy, M.S.; Godeas, A.M.; Scervino, J.M. Fungal extracellular phosphatases: Their role in P cycling under different pH and P sources availability. J. Appl. Microbiol. 2018, 124, 155–165. [Google Scholar] [CrossRef]
- Padhi, S.; Masi, M.; Cimmino, A.; Tuzi, A.; Jena, S.; Tayung, K.; Evidente, A. Funiculosone, a substituted dihydroxanthene−1,9−dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry 2019, 157, 175–183. [Google Scholar] [CrossRef]
- Patel, D.; Patel, A.; Patel, M.; Goswami, D. Talaromyces pinophilus strain M13: A portrayal of novel groundbreaking fungal strain for phytointensification. Environ. Sci. Pollut. Res. Int. 2021, 28, 8758–8769. [Google Scholar] [CrossRef]
- Hwangbo, H.; Park, R.D.; Kim, Y.W.; Rim, Y.S.; Park, K.H.; Kim, T.H.; Suh, J.S.; Kim, K.Y. 2−ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 2003, 47, 87–92. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S. Identification and Characterization of the Phosphate−Solubilizing Bacterium Pantoea sp. S32 in Reclamation Soil in Shanxi, China. Front. Microbiol. 2019, 10, 2171. [Google Scholar] [CrossRef] [PubMed]
- Mayadunna, N.; Karunarathna, S.C.; Asad, S.; Stephenson, S.L.; Elgorban, A.M.; Al−Rejaie, S.; Kumla, J.; Yapa, N.; Suwannarach, N. Isolation of Phosphate−Solubilizing Microorganisms and the Formulation of Biofertilizer for Sustainable Processing of Phosphate Rock. Life 2023, 13, 782. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.L.; Liu, J.; Jia, P.; Yang, T.T.; Zeng, Q.W.; Zhang, S.C.; Liao, B.; Shu, W.S.; Li, J.T. Novel phosphate−solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020, 14, 1600–1613. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.; Zhang, Q.; Li, S.; Sun, Y.; Lu, W.; Ma, C. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate−solubilizing bacteria under different phosphorus application levels. AMB Express 2020, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Fu, Y.; Qu, Z.; Zhao, H.; Sun, Y.; Lin, Y.; Xie, J.; Cheng, J.; Jiang, D. Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environ. Microbiol. 2021, 23, 5946–5961. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Pagès, L.; Wu, J. Relationships between root diameter, root length and root branching along lateral roots in adult, field−grown maize. Ann. Bot. 2016, 117, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Guo, Y.; Xu, K.; Zhang, L. Protective mechanism in photoinhibition of photosynthesis in Citrus unshiu leaves. Ying Yong Sheng Tai Xue Bao 2003, 14, 47–50. [Google Scholar] [PubMed]
- Qi, S.; Wang, J.; Wan, L.; Dai, Z.; da Silva Matos, D.M.; Du, D.; Egan, S.; Bonser, S.P.; Thomas, T.; Moles, A.T. Arbuscular Mycorrhizal Fungi Contribute to Phosphorous Uptake and Allocation Strategies of Solidago canadensis in a Phosphorous−Deficient Environment. Front. Plant Sci. 2022, 13, 831654. [Google Scholar] [CrossRef] [PubMed]
- Tubuxin, B.; Rahimzadeh−Bajgiran, P.; Ginnan, Y.; Hosoi, F.; Omasa, K. Estimating chlorophyll content and photochemical yield of photosystem II (ϕPSII) using solar−induced chlorophyll fluorescence measurements at different growing stages of attached leaves. J. Exp. Bot. 2015, 66, 5595–5603. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.A.; Reynolds, M.; Salvucci, M.E.; Raines, C.; Andralojc, P.J.; Zhu, X.G.; Price, G.D.; Condon, A.G.; Furbank, R.T. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 2011, 62, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Oljira, A.M.; Hussain, T.; Waghmode, T.R.; Zhao, H.; Sun, H.; Liu, X.; Wang, X.; Liu, B. Trichoderma Enhances Net Photosynthesis, Water Use Efficiency, and Growth of Wheat (Triticum aestivum L.) under Salt Stress. Microorganisms 2020, 8, 1565. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Within−Leaf Nitrogen Allocation in Adaptation to Low Nitrogen Supply in Maize during Grain−Filling Stage. Front. Plant Sci. 2016, 7, 699. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef]
Chlorophyll Fluorescence Parameter | Formula |
---|---|
Maximum efficiency of PSII photochemistry (Fv/Fm) | (Fm − Fo)/Fm |
photochemical quenching (qP) | (Fm′ − Fs)/(Fm′ − Fo′) |
nonphotochemical quenching (NPQ) | (Fm − Fm′)/Fm′ |
electron transport rate (ETR) | PAR × ΦpsII × 0.84 × 0.5 |
Parameters | Explanation |
---|---|
Fo | Minimum fluorescence |
Fm | Maximum fluorescence |
Fj | 2 ms instantaneous fluorescence |
Vj = (Fj − Fo)/(Fm − Fo) | J-phase relatively variable fluorescence |
Ψo = (1 − Vj) | The captured light energy was used for the quantum yield of QA—downstream electron transport |
φEo = [1 − (Fo/Fm)](1 − Vj) | The absorbed energy was used for the quantum yield of electron transport |
ABS/RC | Energy absorbed per unit reaction center |
TRo/RC | Energy captured per unit reaction center |
ETo/RC | Energy transferred by electrons per unit reaction center |
DIo/RC | Dissipated energy flux per RC |
Organism | Sequencing Organism Number |
---|---|
Alternaria compacta | 1.9.15 |
Trichoderma atroviride | 7.21 |
Coprinellus radians | 2.18 |
Alternaria porri | 3.5.6 |
Actinomucor elegans | 4.10.11 |
Chaetomium globosum | 8.12.17 |
Talaromyces funiculosus | 13 |
Trichoderma asperellum | 16 |
Talaromyces verruculosus | 19 |
Alternaria tenuissima | 20 |
No similar sequences were found in Blast | 14 |
Treatment | Pi Content in Culture Medium (mg·L−1) | Hyphae Pi Content (mg·kg−1) | pH |
---|---|---|---|
TCP + Tv | 105.63 ± 1.58 b | 13.58 ± 0.04 a | 3.85 ± 0.23 b |
TCP | 21.11 ± 2.79 c | 0.00 ± 0.00 c | 7.23 ± 0.12 a |
PC + Tv | 268.80 ± 22.46 a | 12.41 ± 0.33 b | 2.28 ± 0.12 c |
PC | 28.83 ± 8.31 c | 0.00 ± 0.00 c | 3.53 ± 0.42 b |
Treatment | Height of Plant (cm) | Stem Thick (mm) | Area of Leaf (cm2) | Above Ground Dry Weight (g) | Underground Dry Weight (g) |
---|---|---|---|---|---|
P | 29.88 ± 1.92 b | 5.07 ± 0.38 b | 100.96 ± 3.28 b | 1.90 ± 0.12 b | 0.36 ± 0.05 b |
PT | 36.42 ± 10.67 a | 5.9 ± 0.11 a | 120.39 ± 6.62 a | 2.60 ± 0.17 a | 0.42 ± 0.03 a |
DP | 16.9 ± 2 e | 4.22 ± 0.37 c | 45.05 ± 7.46 f | 1.20 ± 0.31 d | 0.14 ± 0.03 e |
DPT | 20.22 ± 1.05 de | 4.56 ± 0.34 bc | 74.36 ± 5.91 c | 1.38 ± 0.28 cd | 0.2 ± 0.02 d |
LP | 21.98 ± 0.77 cde | 4.61 ± 0.32 bc | 53.83 ± 8.16 e | 1.60 ± 0.31 bcd | 0.23 ± 0.04 d |
LPT | 27.35 ± 1.34 bc | 5.08 ± 0.46 b | 100.48 ± 6.16 b | 1.75 ± 0.32 bc | 0.32 ± 0.03 bc |
TP | 23.23 ± 1.35 cd | 4.77 ± 0.26 b | 66.2 ± 4.6 d | 1.40 ± 0.32 cd | 0.23 ± 0.03 d |
TPT | 28.18 ± 1.53 bc | 5.04 ± 0.32 b | 107.33 ± 7.95 b | 1.63 ± 0.29 bcd | 0.31 ± 0.03 c |
Root Length (cm) | Root Surface Area (cm2) | Root Volume (cm3) | Root Diameter (mm) | Number of Forks | |
---|---|---|---|---|---|
P | 1200.92 ± 457.44 cd | 119.7 ± 46.7 cd | 0.95 ± 0.4 cd | 0.32 ± 0.02 ab | 1772.5 ± 680.79 cde |
PT | 2930.58 ± 756.43 a | 316.77 ± 89.76 a | 2.73 ± 0.85 a | 0.34 ± 0.02 a | 5180.33 ± 1478.36 a |
DP | 573.38 ± 135.4 d | 56.32 ± 16.46 d | 0.44 ± 0.15 d | 0.31 ± 0.02 ab | 766.17 ± 327.6 de |
DPT | 1509.74 ± 393.12 c | 158.52 ± 49.12 bc | 1.33 ± 0.48 bc | 0.33 ± 0.02 ab | 2423.67 ± 892.86 dc |
TP | 505.5 ± 371.77 d | 49.6 ± 36.01 d | 0.39 ± 0.28 d | 0.31 ± 0.02 ab | 579 ± 545.34 e |
TPT | 1397.45 ± 508.02 c | 144.87 ± 59.55 c | 1.2 ± 0.55 bcd | 0.33 ± 0.02 ab | 2170.83 ± 1049.51 bcd |
LP | 586.61 ± 174.15 d | 56.01 ± 19.16 d | 0.43 ± 0.18 d | 0.3 ± 0.03 b | 743.5 ± 283.29 de |
LPT | 2145.19 ± 649.09 b | 221.18 ± 71.08 b | 1.82 ± 0.62 b | 0.33 ± 0.02 ab | 3448.5 ± 1528.79 b |
Treatment | Chlorophyll a Content (mg/g) | Chlorophyll b Content (mg/g) | Chlorophyll Content (mg/g) | Chl a/Chl b |
---|---|---|---|---|
Pi | 1.02 ± 0.1 c | 0.73 ± 0.04 b | 1.45 ± 0.13 c | 1.39 ± 0.18 b |
PT | 1.53 ± 0.19 a | 1.04 ± 0.36 a | 2.57 ± 0.39 a | 1.62 ± 0.32 b |
DP | 0.85 ± 0.05 cd | 0.48 ± 0.07 bc | 1.16 ± 0.11 d | 1.77 ± 0.39 b |
DPT | 1.06 ± 0.08 bc | 0.49 ± 0.06 b | 1.55 ± 0.09 bc | 1.89 ± 0.3 b |
TP | 0.8 ± 0.09 cd | 0.49 ± 0.04 bc | 1.11 ± 0.12 d | 1.62 ± 0.23 b |
TPT | 1.2 ± 0.14 b | 0.55 ± 0.16 c | 1.76 ± 0.27 b | 2.28 ± 0.42 a |
LP | 0.71 ± 0.11 d | 0.39 ± 0.04 d | 0.54 ± 0.15 e | 1.82 ± 0.3 b |
LPT | 0.96 ± 0.08 bcd | 0.41 ± 0.04 c | 1.37 ± 0.1 cd | 2.35 ± 0.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Dong, J.; Lin, X.; Zhou, X.; Xu, H. Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings. J. Fungi 2024, 10, 136. https://doi.org/10.3390/jof10020136
Zeng Q, Dong J, Lin X, Zhou X, Xu H. Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings. Journal of Fungi. 2024; 10(2):136. https://doi.org/10.3390/jof10020136
Chicago/Turabian StyleZeng, Qingpan, Jiawei Dong, Xiaoru Lin, Xiaofu Zhou, and Hongwei Xu. 2024. "Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings" Journal of Fungi 10, no. 2: 136. https://doi.org/10.3390/jof10020136
APA StyleZeng, Q., Dong, J., Lin, X., Zhou, X., & Xu, H. (2024). Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and Evaluation of Its Effects on Insoluble Phosphorus Absorption Capacity and Growth of Cucumber Seedlings. Journal of Fungi, 10(2), 136. https://doi.org/10.3390/jof10020136