Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. (Harzianum Clade) LZ117
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Sequencing, Assembly, and Assessing
2.2. Phylogenetic Analysis
2.3. Generation of a Time-Scaled Phylogeny of Trichoderma Species
2.4. Gene Prediction and Functional Annotation
2.5. Vector Construction and Protoplast Transformation
2.6. Quantitative Reverse Transcription Polymerase Chain Reaction Analysis
2.7. Assays for Cellulase and Mycelial Biomass
3. Results
3.1. Taxonomic Assignment of Trichoderma sp. LZ117
3.2. Morphological Characterization
3.3. Properties of the Trichoderma sp. LZ117 Genome
3.4. Gene Prediction and Classification
3.4.1. Transporters Annotated from TCDB and Initial Function Analysis
3.4.2. Predicted Secretome
3.4.3. CAZymes
3.4.4. Clusters of Secondary Metabolism
3.5. Protoplast Formation of Trichoderma sp. LZ117
3.6. Overexpression of Maltose Permease Mal1 in Trichoderma sp. LZ117
3.7. Carbon Catabolite Repression (CCR) in Trichoderma sp. LZ117
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.; Gupta, R.; Jain, K.K.; Kuhad, R.C. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess. Biosyst. Eng. 2016, 39, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Sarsaiya, S.; Awasthi, S.K.; Awasthi, M.K.; Awasthi, A.K.; Mishra, S.; Chen, J. The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Bioresour. Technol. 2018, 251, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Han, J.; Li, Y.; Liu, J.; Gan, L.; Long, M. Promoting cellulase and hemicellulase production from Trichoderma orientalis EU7-22 by overexpression of transcription factors Xyr1 and Ace3. Bioresour. Technol. 2020, 296, 122355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Luo, L.; Wang, E.; Wang, R.; Liu, L.; Liu, J.; Yuan, H. Low-cost cellulase-hemicellulase mixture secreted by Trichoderma harzianum EM0925 with complete saccharification efficacy of lignocellulose. Int. J. Mol. Sci. 2020, 21, 371. [Google Scholar] [CrossRef]
- Wang, H.; Zhai, L.; Geng, A. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J. Biosci. Bioeng. 2020, 129, 242–249. [Google Scholar] [CrossRef]
- Libardi, N.; Soccol, C.R.; Tanobe, V.O.A.; Vandenberghe, L.P.S. Definition of liquid and powder cellulase formulations using domestic wastewater in bubble column reactor. Appl. Biochem. Biotechnol. 2020, 190, 113–128. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.M.; Heo, Y.M.; Hong, J.H.; Jang, S.; Ahn, B.J.; Lee, S.S.; Kim, J.J. Optimization of fungal enzyme production by Trichoderma harzianum KUC1716 through surfactant-induced morphological changes. Mycobiology 2017, 45, 48–51. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, F.; Li, J.; Zhang, Z.; Bai, F.W.; Chen, J.; Zhao, X.Q. Rapid production of lignocellulolytic enzymes by Trichoderma harzianum LZ117 isolated from Tibet for biomass degradation. Bioresour. Technol. 2019, 292, 122063. [Google Scholar] [CrossRef]
- Chaverri, P.; Branco, R.F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef]
- Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Altomare, C. Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: Insight into the genetic endowment of a multi-target biocontrol strain. BMC Genom. 2018, 19, 662. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Kubicek, C.P.; Komoń-Zelazowska, M.; Mulaw, T.B.; Bissett, J. The Trichoderma harzianum demon: Complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol. Biol. 2010, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Zhang, F.; Jiang, D.D.; Li, J.; Wang, F.L.; Zhang, Z.; Wang, W.; Zhao, X.Q. Diversity of cellulase-producing filamentous fungi from Tibet and transcriptomic analysis of a superior cellulase producer Trichoderma harzianum LZ117. Front. Microbiol. 2020, 11, 1617. [Google Scholar] [CrossRef]
- Li, W.C.; Lin, T.C.; Chen, C.L.; Liu, H.C.; Lin, H.N.; Chao, J.L.; Hsieh, C.H.; Ni, H.F.; Chen, R.S.; Wang, T.F. Complete genome sequences and genome-wide characterization of Trichoderma biocontrol agents provide bew insights into their evolution and variation in genome organization, sexual development, and fungal-plant interactions. Microbiol. Spectr. 2021, 9, e0066321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Zhu, X.; Wang, W. Genome and transcriptome sequencing of Trichoderma harzianum T4, an important biocontrol fungus of Rhizoctonia solani, reveals genes related to mycoparasitism. Can. J. Microbiol. 2024, 70, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Liu, B.; Han, J.; Kong, N.; Yang, Y.; Wang, Y.; Liu, Z. Decrypting biocontrol functions and application modes by genomes data of three Trichoderma Strains/Species. Fungal Genet Biol. 2024, 172, 103889. [Google Scholar] [CrossRef]
- Han, W.; Wu, Z.; Zhong, Z.; Williams, J.; Jacobsen, S.E.; Sun, Z.; Tang, Y. Assessing the biosynthetic inventory of the biocontrol fungus Trichoderma afroharzianum T22. J. Agric. Food. Chem. 2023, 71, 11502–11519. [Google Scholar] [CrossRef]
- Rush, T.A.; Shrestha, H.K.; Gopalakrishnan, M.M.; Spangler, M.K.; Ellis, J.C.; Labbé, J.L.; Abraham, P.E. Bioprospecting Trichoderma: A systematic roadmap to screen genomes and natural products for biocontrol applications. Front. Fungal Biol. 2021, 2, 716511. [Google Scholar] [CrossRef]
- Rosolen, R.R.; Horta, M.A.C.; de Azevedo, P.H.C.; da Silva, C.C.; Sforca, D.A.; Goldman, G.H.; de Souza, A.P. Whole-genome sequencing and comparative genomic analysis of potential biotechnological strains of Trichoderma harzianum, Trichoderma atroviride, and Trichoderma reesei. Mol. Genet. Genom. 2023, 298, 735–754. [Google Scholar] [CrossRef]
- Schalamun, M.; Schmoll, M. Trichoderma—genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. Front. Fungal Biol. 2022, 3, 1002161. [Google Scholar] [CrossRef]
- Hidayati, F.L.N.; Suroto, D.A.; Sardjono; Cahyanto, M.N.; Widada, J. Whole-genome sequence data of cellulase-producing fungi Trichoderma asperellum PK1J2, isolated from palm empty fruit bunch in Riau, Indonesia. Data Brief 2022, 45, 108607. [Google Scholar] [CrossRef]
- Kooloth-Valappil, P.; Christopher, M.; Sreeja-Raju, A.; Mathew, R.M.; Kuni-Parambil, R.; Abraham, A.; Sankar, M.; Pandey, A.; Sukumaran, R.K. Draft genome of the glucose tolerant β-glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. Fungal Genet. Biol. 2021, 151, 103551. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Kuo, H.W.; Kao, M.R.; Lin, W.D.; Li, C.W.; Hung, K.S.; Yang, S.C.; Yu, S.M.; Ho, T.D. From simple and specific zymographic detections to the annotation of a fungus Daldinia caldariorum D263 that encodes a wide range of highly bioactive cellulolytic enzymes. Biotechnol. Biofuels 2021, 14, 120. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Steindorff, A.S.; Chenthamara, K.; Manganiello, G.; Henrissat, B.; Zhang, J.; Cai, F.; Kopchinskiy, A.G.; Kubicek, E.M.; Kuo, A.; et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genom. 2019, 20, 485. [Google Scholar] [CrossRef]
- Seidl, V.; Gamauf, C.; Druzhinina, I.S.; Seiboth, B.; Hartl, L.; Kubicek, C.P. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genom. 2008, 9, 327. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing genomic data quality and beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef]
- Yang, E.; Xu, L.; Yang, Y.; Zhang, X.; Xiang, M.; Wang, C.; An, Z.; Liu, X. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl. Acad. Sci. USA 2012, 109, 10960–10965. [Google Scholar] [CrossRef]
- Sung, G.H.; Poinar, G.O., Jr.; Spatafora, J.W. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol. 2008, 49, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, X.Q.; Bai, F.W. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 2018, 247, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Gruber, F.; Visser, J.; Kubicek, C.P.; de Graaff, L.H. The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr. Genet. 1990, 18, 71–76. [Google Scholar] [CrossRef]
- Meng, Q.S.; Zhang, F.; Wang, W.; Liu, C.G.; Zhao, X.Q.; Bai, F.W. Engineering the effector domain of the artificial transcription factor to improve cellulase production by Trichoderma reesei. Front. Bioeng. Biotechnol. 2020, 8, 675. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Meng, Q.S.; Zhang, F.; Liu, C.G.; Bai, F.W.; Zhao, X.Q. Measurement of cellulase and xylanase activities in Trichoderma reesei. Methods. Mol. Biol. 2021, 2234, 135–146. [Google Scholar]
- Aro, N.; Ilmén, M.; Saloheimo, A.; Penttilä, M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 2003, 69, 56–65. [Google Scholar] [CrossRef]
- Cai, F.; Kubicek, C.P.; Druzhinina, I.S. Genetic transformation of Trichoderma spp. Methods. Mol. Biol. 2021, 2290, 171–185. [Google Scholar]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhinina, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K.; et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, R.; Piaggeschi, G.; Fiorini, L.; Bertolini, E.; Zapparata, A.; Pè, M.E.; Sarrocco, S.; Vannacci, G. Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc. 2015, 3, e00647-15. [Google Scholar] [CrossRef]
- Chung, D.; Kwon, Y.M.; Yang, Y. Telomere-to-telomere genome assembly of asparaginase-producing Trichoderma simmonsii. BMC Genom. 2021, 22, 830. [Google Scholar] [CrossRef]
- Li, W.C.; Huang, C.H.; Chen, C.L.; Chuang, Y.C.; Tung, S.Y.; Wang, T.F. Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol. Biofuels 2017, 10, 170. [Google Scholar] [CrossRef]
- Martinez, D.; Berka, R.M.; Henrissat, B.; Saloheimo, M.; Arvas, M.; Baker, S.E.; Chapman, J.; Chertkov, O.; Coutinho, P.M.; Cullen, D.; et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 2008, 26, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Quistgaard, E.M.; Low, C.; Guettou, F.; Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way. Nat. Rev. Mol. Cell. Biol. 2016, 17, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, I.S.; Shelest, E.; Kubicek, C.P. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol. Lett. 2012, 337, 1–9. [Google Scholar] [CrossRef]
- Berka, R.M.; Grigoriev, I.V.; Otillar, R.; Salamov, A.; Grimwood, J.; Reid, I.; Ishmael, N.; John, T.; Darmond, C.; Moisan, M.C.; et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 2011, 29, 922–927. [Google Scholar] [CrossRef]
- Cuomo, C.A.; Untereiner, W.A.; Ma, L.J.; Grabherr, M.; Birren, B.W. Draft genome sequence of the cellulolytic fungus Chaetomium globosum. Genome Announc. 2015, 3, e00021-15. [Google Scholar] [CrossRef]
- Galagan, J.E.; Calvo, S.E.; Borkovich, K.A.; Selker, E.U.; Read, N.D.; Jaffe, D.; FitzHugh, W.; Ma, L.J.; Smirnov, S.; Purcell, S.; et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003, 422, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Galagan, J.E.; Calvo, S.E.; Cuomo, C.; Ma, L.J.; Wortman, J.R.; Batzoglou, S.; Lee, S.I.; Baştürkmen, M.; Spevak, C.C.; Clutterbuck, J.; et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 2005, 438, 1105–1115. [Google Scholar] [CrossRef]
- Yin, Y.; Mao, X.; Yang, J.; Chen, X.; Mao, F.; Xu, Y. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012, 40, W445–W451. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Pei, R.; Zhou, J.; Zeng, B.; Tu, Y.; He, B. Molecular regulation of fungal secondary metabolism. World. J. Microbiol. Biotechnol. 2023, 39, 204. [Google Scholar] [CrossRef]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- van den Berg, M.A.; Maruthachalam, K. Genetic Transformation Systems in Fungi; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Cai, W.; Chen, Y.; Zhang, L.; Fang, X.; Wang, W. A three-gene cluster in Trichoderma reesei reveals a potential role of dmm2 in DNA repair and cellulase production. Biotechnol. Biofuels Bioprod. 2022, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Chum, P.Y.; Schmidt, G.; Saloheimo, M.; Landowski, C.P. Transient silencing of DNA repair genes improves targeted gene integration in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 2017, 83, e00535-17. [Google Scholar] [CrossRef]
- Adnan, M.; Ma, X.; Olsson, S.; Wang, J.; Liu, G. Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol. Res. 2022, 259, 127011. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, R.; Han, L.; Guo, W.; Du, Z.; Niu, K.; Liu, Y.; Jia, C.; Fang, X. Use of fusion transcription factors to reprogram cellulase transcription and enable efficient cellulase production in Trichoderma reesei. Biotechnol. Biofuels 2019, 12, 244. [Google Scholar] [CrossRef]
- Rassinger, A.; Gacek-Matthews, A.; Strauss, J.; Mach, R.L.; Mach-Aigner, A.R. Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator. Fungal. Biol. Biotechnol. 2018, 5, 15. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World. J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef]
- Strakowska, J.; Błaszczyk, L.; Chełkowski, J. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J. Basic. Microbiol. 2014, 54 (Suppl. S1), S2–S13. [Google Scholar] [CrossRef] [PubMed]
- Bissett, J. A revision of the genus Trichoderma . II. Infrageneric classification. Can. J. Bot. 1991, 69, 2357–2372. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Kopchinskiy, A.G.; Kubicek, C.P. The first 100 Trichoderma species characterized by molecular data. Mycoscience 2006, 47, 55. [Google Scholar] [CrossRef]
- Druzhinina, I.S.; Chenthamara, K.; Zhang, J.; Atanasova, L.; Yang, D.; Miao, Y.; Rahimi, M.J.; Grujic, M.; Cai, F.; Pourmehdi, S.; et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 2018, 14, e1007322. [Google Scholar] [CrossRef]
- Cao, Z.J.; Qin, W.T.; Zhao, J.; Liu, Y.; Wang, S.X.; Zheng, S.Y. Three New Trichoderma species in Harzianum Clade associated with the contaminated substrates of edible fungi. J. Fungi 2022, 8, 1154. [Google Scholar] [CrossRef]
- Zhao, R.; Mao, L.J.; Zhang, C.L. Three new species of Trichoderma (Hypocreales, Hypocreaceae) from soils in China. MycoKeys 2023, 97, 21–40. [Google Scholar] [CrossRef]
- Gu, X.; Wang, R.; Sun, Q.; Wu, B.; Sun, J.Z. Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 2020, 73, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Dou, K.; Gao, J.; Zhang, C.; Yang, H.; Jiang, X.; Li, J.; Li, Y.; Wang, W.; Xian, H.; Li, S.; et al. Trichoderma biodiversity in major ecological systems of China. J. Microbiol. 2019, 57, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Kjærbølling, I.; Vesth, T.; Frisvad, J.C.; Nybo, J.L.; Theobald, S.; Kildgaard, S.; Petersen, T.I.; Kuo, A.; Sato, A.; Lyhne, E.K.; et al. A comparative genomics study of 23 Aspergillus species from section Flavi. Nat. Commun. 2020, 11, 1106. [Google Scholar] [CrossRef]
- Yang, J.; Yue, H.R.; Pan, L.Y.; Feng, J.X.; Zhao, S.; Suwannarangsee, S.; Champreda, V.; Liu, C.G.; Zhao, X.Q. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. Bioresour. Technol. 2023, 385, 129449. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, X.; Song, J.; Li, D.; Han, L.; Sun, X.; Guo, L.; Xiang, W.; Zhao, J.; Wang, X. Streptomyces botrytidirepellens sp. nov., a novel actinomycete with antifungal activity against Botrytis cinerea. Int. J. Syst. Evol. Microbiol. 2021, 71. [Google Scholar] [CrossRef]
- D’Angelo, K.A.; Schissel, C.K.; Pentelute, B.L.; Movassaghi, M. Total synthesis of himastatin. Science 2022, 375, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Jakubiec-Krzesniak, K.; Rajnisz-Mateusiak, A.; Guspiel, A.; Ziemska, J.; Solecka, J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol. J. Microbiol. 2018, 67, 259–272. [Google Scholar] [CrossRef]
- Mattam, A.J.; Chaudhari, Y.B.; Velankar, H.R. Factors regulating cellulolytic gene expression in filamentous fungi: An overview. Microb. Cell Fact. 2022, 21, 44. [Google Scholar] [CrossRef] [PubMed]
- Porciuncula Jde, O.; Furukawa, T.; Shida, Y.; Mori, K.; Kuhara, S.; Morikawa, Y.; Ogasawara, W. Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Biosci. Biotechnol. Biochem. 2013, 77, 1014–1022. [Google Scholar] [CrossRef]
- Zhang, W.; Kou, Y.; Xu, J.; Cao, Y.; Zhao, G.; Shao, J.; Wang, H.; Wang, Z.; Bao, X.; Chen, G.; et al. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J. Biol. Chem. 2013, 288, 32861–32872. [Google Scholar] [CrossRef]
- Walker, J.R.; Corpina, R.A.; Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001, 412, 607–614. [Google Scholar] [CrossRef]
- Qi, X.; Su, X.; Guo, H.; Qi, J.; Cheng, H. A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahliae. World. J. Microb. Biot. 2015, 31, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Pastink, A.; Eeken, J.C.J.; Lohman, P.H.M. Genomic integrity and the repair of double-strand DNA breaks. Mutat. Res.-Fund. Mol. M. 2001, 480–481, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Zheng, W.; Islam, W.; Arif, M.; Abubakar, Y.S.; Wang, Z.; Lu, G. Carbon catabolite repression in filamentous fungi. Int. J. Mol. Sci. 2017, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Franzino, T.; Boubakri, H.; Cernava, T.; Abrouk, D.; Achouak, W.; Reverchon, S.; Nasser, W.; Haichar, F.E.Z. Implications of carbon catabolite repression for plant-microbe interactions. Plant Commun. 2022, 3, 100272. [Google Scholar] [CrossRef]
- Han, L.; Tan, Y.; Ma, W.; Niu, K.; Hou, S.; Guo, W.; Liu, Y.; Fang, X. Precision engineering of the transcription factor Cre1 in Hypocrea jecorina (Trichoderma reesei) for efficient cellulase production in the presence of glucose. Front. Bioeng. Biotechnol. 2020, 8, 852. [Google Scholar] [CrossRef]
Item | Count | |
---|---|---|
Sequencing | Total sequenced bases | 6,784,405,156 bp |
Number of reads | 277,355 | |
Mean read length | 24,461 bp | |
N50 reads | 29,320 | |
Mean read quality | 9.5 | |
Assembly | N50_length | 6,585,579 bp |
Number of contigs | 10 | |
Number of scaffolds | 9 | |
Genome size | 41,121,336 bp | |
GC content | 47.38% | |
Predicted genes | 12,707 | |
Assessing | Complete and single-copy BUSCOs (S) | 751 (99,1%) |
Complete and duplicated BUSCOs (D) | 3 (0.4%) | |
Missing BUSCOs (M) | 4 (0.5%) | |
Complete BUSCOs (C) | 754 (99.5%) |
Species | Strain | Coverage | Genome Size (Mb) | GC Content (%) | N50 Reads | Assembly Level | Genes | Reference |
---|---|---|---|---|---|---|---|---|
Trichoderma sp. | LZ117 | 92× | 41 | 47.4 | 6,585,579 | Contigs (10) | 12,707 | This study |
T. atrobrunueum | ITEM 908 | 60× | 39 | 49.18 | 129,299 | Scaffolds (804) | 8649 | [10] |
T. atroviride | CBMAI-0020 | 229× | 36 | 49.5 | 3,146,023 | Contigs (14) | 10,082 | [18] |
T. atroviride | IMI206040 | 8× | 36 | 49.7 | 2,007,903 | Contigs (29) | 11,809 | [42] |
T. harzianum | IOC-3844 | 164× | 40 | 47.5 | 3,607,994 | Contigs (15) | 10,786 | [18] |
T. harzianum | CBMAI-0178 | 219× | 39 | 49.4 | 2,983,622 | Contigs (18) | 11,322 | [18] |
T. harzianum | T6776 | 85× | 39 | 48.5 | 68,846 | Scaffolds (1572) | 11,501 | [43] |
T. harzianum | CBS 226.95 | 120× | 41 | 47.6 | 2,414,909 | Scaffolds (532) | 14,269 | - |
T. virens | Gv29-8 | 8× | 39 | 49.2 | 1,836,662 | Scaffolds (93) | 12,405 | [42] |
T. simmonsii | GH-Sj1 | - | 40 | 48.1 | 6,451,197 | Scaffolds (7) | 13,296 | [44] |
T. reesei | QM6a | 80× | 35 | 51.0 | 18,236 | Chromosomes (7) | 10,877 | [45] |
T. reesei | QM6a | 9× | 33 | 52.8 | 1,219,543 | Scaffolds (77) | 9109 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Reyes Loaiciga, C.; Yue, H.-R.; Hou, Y.-J.; Li, J.; Li, C.-X.; Li, J.; Zou, Y.; Zhao, S.; Zhang, F.-L.; et al. Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. (Harzianum Clade) LZ117. J. Fungi 2024, 10, 697. https://doi.org/10.3390/jof10100697
Yang J, Reyes Loaiciga C, Yue H-R, Hou Y-J, Li J, Li C-X, Li J, Zou Y, Zhao S, Zhang F-L, et al. Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. (Harzianum Clade) LZ117. Journal of Fungi. 2024; 10(10):697. https://doi.org/10.3390/jof10100697
Chicago/Turabian StyleYang, Jie, Cristopher Reyes Loaiciga, Hou-Ru Yue, Ya-Jing Hou, Jun Li, Cheng-Xi Li, Jing Li, Yue Zou, Shuai Zhao, Feng-Li Zhang, and et al. 2024. "Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. (Harzianum Clade) LZ117" Journal of Fungi 10, no. 10: 697. https://doi.org/10.3390/jof10100697
APA StyleYang, J., Reyes Loaiciga, C., Yue, H.-R., Hou, Y.-J., Li, J., Li, C.-X., Li, J., Zou, Y., Zhao, S., Zhang, F.-L., & Zhao, X.-Q. (2024). Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. (Harzianum Clade) LZ117. Journal of Fungi, 10(10), 697. https://doi.org/10.3390/jof10100697