Fat-to-Muscle Ratios and the Non-Achievement of LDL Cholesterol Targets: Analysis of the Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of the LDL Cholesterol Target Levels Based on CVD Risk Levels
2.3. Assessment of Body Composition
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Longitudinal Relationship between FMR and the Incident Non-Achievement of LDL Cholesterol Targets
3.3. Proportions of Non-Achievement of LDL Cholesterol Targets in the Sex-specific FMR Tertile Groups during the Follow-up Period
3.4. Comparison of the Predictive Powers of FMR and BMI for the Non-Achievement of LDL Cholesterol Targets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dwivedi, A.K.; Dubey, P.; Cistola, D.P.; Reddy, S.Y. Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Curr. Cardiol. Rep. 2020, 22, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef] [Green Version]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Ito, H.; Nakasuga, K.; Ohshima, A.; Sakai, Y.; Maruyama, T.; Kaji, Y.; Harada, M.; Jingu, S.; Sakamoto, M. Excess accumula-tion of body fat is related to dyslipidemia in normal-weight subjects. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Lee, H.S.; Cho, A.-R.; Lee, Y.-J.; Kwon, Y.-J. Relationship between muscle mass index and LDL cholesterol target levels: Analysis of two studies of the Korean population. Atherosclerosis 2021, 325, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Franzosi, M.G. Should we continue to use bmi as a cardiovascular risk factor? Lancet 2006, 368, 624–625. [Google Scholar] [CrossRef]
- Iacobini, C.; Pugliese, G.; Fantauzzi, C.B.; Federici, M.; Menini, S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019, 92, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.; King, M.; Yi, Y.; Gulliver, W.; Sun, G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 741–747. [Google Scholar] [CrossRef]
- Czernichow, S.; Kengne, A.-P.; Stamatakis, E.; Hamer, M.; Batty, G.D. Body mass index, waist circumference and waist-hip ratio: Which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes. Rev. 2011, 12, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, H.J.; Chen, S.; Chen, L.; Wang, X.; Zhang, L.Y.; Pan, L.; Wang, L.; Feng, K.; Wang, K.; et al. Fat-to-muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomed. Environ. Sci. 2018, 31, 261–271. [Google Scholar]
- Ramírez-Vélez, R.; Carrillo, H.A.; Correa-Bautista, J.E.; Schmidt-RioValle, J.; González-Jiménez, E.; Correa-Rodríguez, M.; González-Ruíz, K.; García-Hermoso, A. Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients 2018, 10, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.-G.; Song, H.J.; Song, Y.R. Fat-to-muscle ratio as a predictor of insulin resistance and metabolic syndrome in Korean adults. J. CACHEXIA SARCOPENI. 2020, 11, 710–725. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xiang, J.; Hou, Y.; Xuan, L.; Wang, T.; Li, M.; Zhao, Z.; Xu, Y.; Lu, J.; Chen, Y.; et al. Fat mass to fat-free mass ratio and the risk of non-alcoholic fatty liver disease and fibrosis in non-obese and obese individuals. Nutr. Metab. 2021, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 esc/eas guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovas-cular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.G.; Ko, G.E.S.g. Cohort profile: The korean genome and epidemiology study (koges) consortium. Int. J. Ep-idemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Rhee, E.-J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S.; et al. 2018 Guidelines for the management of dyslipidemia. Korean. J. Intern. Med. 2019, 34, 723–771. [Google Scholar] [CrossRef] [Green Version]
- Kushner, R.F.; Kunigk, A.; Alspaugh, M.; Andronis, P.T.; A. Leitch, C.; A. Schoeller, D. Validation of bioelectrical-impedance analysis as a measurement of change in body composition in obesity. Am. J. Clin. Nutr. 1990, 52, 219–223. [Google Scholar] [CrossRef]
- Aglago, E.K.; El Menchawy, I.; El Kari, K.; El Hamdouchi, A.; Barkat, A.; Bengueddour, R.; El Haloui, N.; Mokhtar, N.; Aguenaou, H. Development and validation of bioelectrical impedance analysis equations for predicting total body water and fat-free mass in North-African adults. Eur. J. Clin. Nutr. 2013, 67, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, C.-H.; Kim, D.-W.; Park, M.; Park, H.S.; Min, S.-S.; Han, S.-H.; Yee, J.-Y.; Chung, S.; Kim, C. External cross-validation of bioelectrical impedance analysis for the assessment of body composition in Korean adults. Nutr. Res. Pr. 2011, 5, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Lee, W.-Y.; Kim, S.S.; Kang, J.-H.; Kang, J.-H.; Kim, K.K.; Kim, B.-Y.; Kim, Y.-H.; Kim, W.-J.; Kim, E.M.; et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2019, 28, 40–45. [Google Scholar] [CrossRef]
- Friedewald, W.T.; I. Levy, R.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-Y.; Fang, W.-H.; Wang, C.-C.; Kao, T.-W.; Yang, H.-F.; Wu, C.-J.; Sun, Y.-S.; Wang, Y.-C.; Chen, W.-L. Fat-to-muscle ratio is a useful index for cardiometabolic risks: A population-based observational study. PLoS ONE 2019, 14, e0214994. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, D.A.; Puglisi, M.J.; Hasty, A.H. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr. Diabetes Rep. 2009, 9, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.K., 2013 #1}; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the national lipid as-sociation. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillet, C.; Boirie, Y. Insulin resistance: A contributing factor to age-related muscle mass loss? Diabetes Metab. 2005, 31, 5S20–5S26. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Jornayvaz, F.; Samuel, V.T.; Shulman, G. The Role of Muscle Insulin Resistance in the Pathogenesis of Atherogenic Dyslipidemia and Nonalcoholic Fatty Liver Disease Associated with the Metabolic Syndrome. Annu. Rev. Nutr. 2010, 30, 273–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C. Sexual dimorphism of body composition. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Greendale, G.A.; Sternfeld, B.; Huang, M.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.-F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Cibičková, L.; Langová, K.; Vaverková, H.; Lukeš, J.; Cibiček, N. Superior Role of Waist Circumference to Body-Mass Index in the Prediction of Cardiometabolic Risk in Dyslipidemic Patients. Physiol. Res. 2019, 68, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Byambasukh, O.; Eisenga, M.F.; Gansevoort, R.T.; Bakker, S.J.; Corpeleijn, E. Body fat estimates from bioelectrical impedance equations in cardiovascular risk assessment: The PREVEND cohort study. Eur. J. Prev. Cardiol. 2019, 26, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body mass index, the most widely used but also widely criticized index: Would a criterion standard measure of total body fat be a better predictor of cardiovascular disease mortality? Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32, S56–S59. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-C.; Li, C.-I.; Lin, W.-Y.; Liu, C.-S.; Hsu, H.-S.; Lee, C.-C.; Chen, F.-N.; Li, T.-C.; Lin, C.-C. Percentage of Body Fat Assessment Using Bioelectrical Impedance Analysis and Dual-Energy X-ray Absorptiometry in a Weight Loss Program for Obese or Overweight Chinese Adults. PLoS ONE 2013, 8, e58272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Lee, J.; Jang, S.; Jeong, H.; Ryu, O.-H. Validation of the Friedewald formula for estimating low density lipoprotein cholesterol: The Korea National Health and Nutrition Examination Survey, 2009 to 2011. Korean, J. Intern. Med. 2020, 35, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.C.; Blair, S.N.; O. Bonow, R.; Brass, L.M.; Cerqueira, M.D.; Dracup, K.; Fuster, V.; Gotto, A.; Grundy, S.M.; Miller, N.H.; et al. AHA/ACC guidelines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update: A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J. Am. Coll. Cardiol. 2001, 38, 1581–1583. [Google Scholar] [CrossRef]
- Expert Panel on Detection, E.; Treatment of High Blood Cholesterol in, A. Executive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA 2001, 285, 2486–2497. [Google Scholar]
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Fat-to-Muscle Ratio | T1 (<0.241) | T2 (0.241–0.314) | T3 (>0.314) | p | T1 (<0.439) | T2 (0.439–0.527) | T3 (>0.527) | p |
Number, n | 620 | 619 | 619 | 789 | 787 | 789 | ||
Age, years | 50.6 ± 8.8 | 50.3 ± 8.5 | 51.4 ± 8.6 | 0.096 | 49.0 ± 8.4 | 49.7 ± 8.2 | 51.7 ± 8.7 | <0.001 |
BMI, kg/m2 | 21.6 ± 2.2 | 23.9 ± 2.0 | 26.3 ± 2.3 | <0.001 | 21.9 ± 2.0 | 24.3 ± 1.9 | 27.3 ± 2.7 | <0.001 |
Obese, n (%) | 35 (5.6%) | 175 (28.3%) | 440 (71.1%) | <0.001 | 43 (5.4%) | 280 (35.6%) | 640 (81.1%) | <0.001 |
Mean blood pressure, mmHg | 93.7 ± 12.0 | 96.2 ± 11.2 | 98.8 ± 11.8 | <0.001 | 89.3 ± 12.2 | 91.9 ± 12.9 | 95.4 ± 12.7 | <0.001 |
Glucose, mg/dL | 82.6 ± 9.7 | 85.3 ± 14.5 | 86.6 ± 11.9 | <0.001 | 79.9 ± 7.3 | 80.8 ± 10.5 | 82.2 ± 11.5 | <0.001 |
Total cholesterol, mg/dL | 171.3 ± 27.7 | 178.7 ± 26.7 | 183.2 ± 26.2 | <0.001 | 174.3 ± 27.4 | 179.7 ± 28.0 | 183.7 ± 27.9 | <0.001 |
Triglyceride, mg/dL | 111.0 [87.0; 146.5] | 142.0 [108.5; 194.0] | 176.0 [128.0; 236.5] | <0.001 | 99.0 [80.0; 131.0] | 119.0 [91.0; 160.0] | 128.0 [99.0; 177.0] | <0.001 |
HDL cholesterol, mg/dL | 47.7 ± 11.2 | 43.0 ± 9.1 | 41.3 ± 8.6 | <0.001 | 48.7 ± 10.6 | 45.4 ± 9.9 | 45.0 ± 9.4 | <0.001 |
LDL cholesterol, mg/dL | 98.5 ± 25.6 | 103.9 ± 26.0 | 104.9 ± 24.8 | <0.001 | 103.2 ± 23.5 | 107.2 ± 24.2 | 109.4 ± 24.7 | <0.001 |
CRP, mg/dL | 0.11 [0.04; 0.19] | 0.14 [0.07; 0.24] | 0.16 [0.08; 0.27] | <0.001 | 0.09 [0.03; 0.17] | 0.12 [0.05; 0.21] | 0.15 [0.08; 0.27] | <0.001 |
Current smokier, n (%) | 325 (52.7%) | 256 (41.6%) | 232 (37.8%) | <0.001 | 30 (3.9%) | 15 (1.9%) | 21 (2.7%) | 0.070 |
Current drinker, n (%) | 437 (70.8%) | 458 (74.4%) | 444 (72.5%) | 0.382 | 249 (31.8%) | 222 (28.6%) | 206 (26.2%) | 0.049 |
Physical activity, n (%) | <0.001 | 0.007 | ||||||
<7.5 METs-h/week | 34 (5.8%) | 38 (6.4%) | 29 (4.8%) | 59 (7.8%) | 71 (9.3%) | 91 (12.0%) | ||
7.5–30 METs-h/week | 309 (53.0%) | 394 (66.7%) | 419 (69.7%) | 497 (65.4%) | 506 (66.3%) | 510 (67.5%) | ||
>30 METs-h/week | 240 (41.2%) | 159 (26.9%) | 153 (25.5%) | 204 (26.8%) | 186 (24.4%) | 155 (20.5%) | ||
Daily caloric intake, kcal/day | 2016.1 ± 656.5 | 2020.3 ± 603.3 | 1998.0 ± 704.9 | 0.632 | 1914.9 ± 726.6 | 1901.1 ± 693.3 | 1897.0 ± 715.8 | 0.623 |
Daily protein intake, g/day | 68.3 ± 27.4 | 69.4 ± 25.3 | 68.4 ± 28.1 | 0.997 | 64.8 ± 29.6 | 65.4 ± 33.9 | 63.7 ± 29.1 | 0.512 |
Daily fat intake, g/day | 35.5 ± 20.6 | 36.2 ± 18.3 | 34.8 ± 19.7 | 0.552 | 31.3 ± 19.6 | 30.9 ± 22.1 | 29.5 ± 20.5 | 0.093 |
Daily carbohydrate intake, g/day | 350.3 ± 108.2 | 349.0 ± 101.5 | 347.4 ± 117.3 | 0.654 | 339.5 ± 125.3 | 336.1 ± 112.2 | 340.1 ± 124.2 | 0.927 |
Taking anti-dyslipidemic medication, n (%) | 0 (0.0%) | 3 (1.2%) | 3 (1.1%) | 0.304 | 0 (0.0%) | 1 (0.2%) | 3 (0.7%) | 0.238 |
Hypertension, n (%) | 169 (27.3%) | 188 (30.4%) | 270 (43.6%) | < 0.001 | 135 (17.1%) | 179 (22.7%) | 270 (34.2%) | <0.001 |
Diabetes mellitus, n (%) | 17 (2.7%) | 18 (2.9%) | 14 (2.3%) | 0.762 | 10 (1.3%) | 16 (2.0%) | 16 (2.0%) | 0.416 |
Fat/Muscle Ratio | |||||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
HR | 95% CI | p | HR | 95% CI | p | ||
Men | |||||||
Unadjusted | 1 (reference) | 1.65 | 1.39–1.97 | <0.001 | 2.08 | 1.75–2.47 | <0.001 |
Model 1 | 1 (reference) | 1.67 | 1.39–2.02 | <0.001 | 2.14 | 1.73–2.65 | <0.001 |
Model 2 | 1 (reference) | 1.64 | 1.36–1.98 | <0.001 | 2.05 | 1.65–2.54 | <0.001 |
Model 3 | 1 (reference) | 1.56 | 1.29–1.90 | <0.001 | 1.86 | 1.47–2.31 | <0.001 |
Women | |||||||
Unadjusted | 1 (reference) | 1.49 | 1.28–1.73 | <0.001 | 1.72 | 1.49–2.00 | <0.001 |
Model 1 | 1 (reference) | 1.42 | 1.21–1.67 | <0.001 | 1.43 | 1.17–1.75 | <0.001 |
Model 2 | 1 (reference) | 1.40 | 1.19–1.65 | <0.001 | 1.42 | 1.16–1.74 | <0.001 |
Model 3 | 1 (reference) | 1.40 | 1.18–1.66 | <0.001 | 1.31 | 1.06–1.62 | 0.011 |
Fat/Muscle Ratio | |||||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
Estimated Proportion, % (SE) | Estimated Proportion, % (SE) | Estimated Proportion, % (SE) | Overall p | Post hoc p T2 vs. T1 | Post hoc p T3 vs. T1 | Post hoc p T3 vs. T2 | |
Men | |||||||
1st f/u | 15.0 (1.5) | 25.1 (1.8) | 32.1 (1.9) | group: p < 0.001 time: p < 0.001 group-by-time: p = 0.002 | < 0.001 | < 0.001 | 0.008 |
2nd f/u | 8.3 (1.2) | 13.5 (1.5) | 15.7 (1.6) | 0.007 | < 0.001 | 0.330 | |
3rd f/u | 17.4 (1.7) | 24.8 (2.0) | 30.1 (2.1) | < 0.001 | < 0.001 | 0.062 | |
4th f/u | 20.0 (1.8) | 27.9 (2.0) | 34.8 (2.2) | 0.005 | < 0.001 | 0.020 | |
5th f/u | 12.1 (1.6) | 18.3 (1.8) | 24.0 (2.0) | 0.010 | < 0.001 | 0.035 | |
6th f/u | 14.9 (1.7) | 23.6 (2.0) | 24.3 (2.1) | 0.001 | < 0.001 | 0.811 | |
Women | |||||||
1st f/u | 14.8 (1.3) | 24.9 (1.6) | 30.4 (1.7) | group: p < 0.001 time: p < 0.001 group-by-time: p < 0.001 | < 0.001 | < 0.001 | 0.018 |
2nd f/u | 5.1 (0.9) | 11.8 (1.3) | 14.7 (1.4) | < 0.001 | < 0.001 | 0.122 | |
3rd f/u | 15.8 (1.5) | 22.2 (1.7) | 27.2 (1.8) | 0.005 | < 0.001 | 0.041 | |
4th f/u | 22.4 (1.7) | 32.2 (1.9) | 31.4 (1.9) | < 0.001 | < 0.001 | 0.752 | |
5th f/u | 19.9 (1.6) | 21.2 (1.7) | 24.9 (1.8) | 0.589 | 0.042 | 0.139 | |
6th f/u | 17.8 (1.6) | 25.5 (1.8) | 22.0 (1.8) | 0.001 | 0.075 | 0.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, A.-R.; Lee, J.-H.; Kwon, Y.-J. Fat-to-Muscle Ratios and the Non-Achievement of LDL Cholesterol Targets: Analysis of the Korean Genome and Epidemiology Study. J. Cardiovasc. Dev. Dis. 2021, 8, 96. https://doi.org/10.3390/jcdd8080096
Cho A-R, Lee J-H, Kwon Y-J. Fat-to-Muscle Ratios and the Non-Achievement of LDL Cholesterol Targets: Analysis of the Korean Genome and Epidemiology Study. Journal of Cardiovascular Development and Disease. 2021; 8(8):96. https://doi.org/10.3390/jcdd8080096
Chicago/Turabian StyleCho, A-Ra, Jun-Hyuk Lee, and Yu-Jin Kwon. 2021. "Fat-to-Muscle Ratios and the Non-Achievement of LDL Cholesterol Targets: Analysis of the Korean Genome and Epidemiology Study" Journal of Cardiovascular Development and Disease 8, no. 8: 96. https://doi.org/10.3390/jcdd8080096
APA StyleCho, A.-R., Lee, J.-H., & Kwon, Y.-J. (2021). Fat-to-Muscle Ratios and the Non-Achievement of LDL Cholesterol Targets: Analysis of the Korean Genome and Epidemiology Study. Journal of Cardiovascular Development and Disease, 8(8), 96. https://doi.org/10.3390/jcdd8080096