Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review
Abstract
:1. Introduction
2. Epidemiology
3. Pathogenesis
3.1. Role of Inflammation
3.1.1. C-Reactive Protein
3.1.2. Angiopoietin and Interleukin
3.1.3. Nitric Oxide
3.1.4. Role of Novel Biomarkers
3.2. Role of Right Ventricular Failure/Renal Vein Congestion
3.3. Role of Thromboembolism
3.4. Contrast-Induced AKI
3.5. Role of Mechanical Circulatory Support
4. Outcomes
4.1. In-Hospital Outcomes
4.2. Long-Term Outcomes
5. Management
5.1. Cardiac Management
5.2. Renal Management
5.3. Supportive Therapies
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AMI | acute myocardial infarction |
AKI | acute kidney injury |
CS | cardiogenic shock |
CI | cardiac index |
CRRT | continuous renal replacement therapy |
CVVH | continuous veno-venous hemofiltration |
CVP | central venous pressure |
ECMO | extracorporeal membrane oxygenation |
HF | heart failure |
hs-CRP | high sensitivity C-reactive protein |
IABP | intra-aortic balloon pump |
MCS | mechanical circulatory support |
MAPK | mitogen-activated protein kinase |
PMR | papillary muscle rupture |
pVADs | percutaneous ventricular assist devices |
PCI | primary percutaneous intervention |
RRT | renal replacement therapy |
RV | right ventricle/right ventricular |
STEMI | ST-segment-elevation myocardial infarction |
VSD | ventricular septal defect |
References
- Vallabhajosyula, S.; Dunlay, S.M.; Prasad, A.; Kashani, K.; Sakhuja, A.; Gersh, B.J.; Jaffe, A.S.; Holmes, D.R.; Barsness, G.W. Acute Noncardiac Organ Failure in Acute Myocardial Infarction with Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 1781–1791. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Dunlay, S.M.; Barsness, G.W.; Vallabhajosyula, S.; Vallabhajosyula, S.; Sundaragiri, P.R.; Gersh, B.J.; Jaffe, A.S.; Kashani, K. Temporal trends, predictors, and outcomes of acute kidney injury and hemodialysis use in acute myocardial infarction-related cardiogenic shock. PLoS ONE 2019, 14, e0222894. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Dunlay, S.M.; Kashani, K.; Vallabhajosyula, S.; Vallabhajosyula, S.; Sundaragiri, P.R.; Jaffe, A.S.; Barsness, G.W. Temporal trends and outcomes of prolonged invasive mechanical ventilation and tracheostomy use in acute myocardial infarction with cardiogenic shock in the United States. Int. J. Cardiol. 2019, 285, 6–10. [Google Scholar] [CrossRef]
- Shah, M.; Patil, S.; Patel, B.; Agarwal, M.; Davila, C.D.; Garg, L.; Agrawal, S.; Kapur, N.K.; Jorde, U.P. Causes and Predictors of 30-Day Readmission in Patients with Acute Myocardial Infarction and Cardiogenic Shock. Circ. Heart Fail. 2018, 11, e004310. [Google Scholar] [CrossRef] [PubMed]
- Tarvasmäki, T.; Haapio, M.; Mebazaa, A.; Sionis, A.; Silva-Cardoso, J.; Tolppanen, H.; Lindholm, M.G.; Pulkki, K.; Parissis, J.; Harjola, V.-P.; et al. Acute kidney injury in cardiogenic shock: Definitions, incidence, haemodynamic alterations, and mortality. Eur. J. Heart Fail. 2018, 20, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; De Metrio, M.; Lauri, G.; Marana, I.; Moltrasio, M.; Rubino, M.; Veglia, F.; Montorsi, P.; et al. Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission*. Crit. Care Med. 2010, 38, 438–444. [Google Scholar] [CrossRef]
- Puymirat, E.; Fagon, J.Y.; Aegerter, P.; Diehl, J.L.; Monnier, A.; Hauw-Berlemont, C.; Boissier, F.; Chatellier, G.; Guidet, B.; Danchin, N.; et al. Cardiogenic shock in intensive care units: Evolution of prevalence, patient profile, management and outcomes, 1997–2012. Eur. J. Heart Fail. 2017, 19, 192–200. [Google Scholar] [CrossRef]
- Aubry, P.; Brillet, G.; Catella, L.; Schmidt, A.; Bénard, S. Outcomes, risk factors and health burden of contrast-induced acute kidney injury: An observational study of one million hospitalizations with image-guided cardiovascular procedures. BMC Nephrol. 2016, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Delmas, C.; Puymirat, E.; Leurent, G.; Elbaz, M.; Manzo-Silberman, S.; Bonello, L.; Gerbaud, E.; Bataille, V.; Levy, B.; Lamblin, N.; et al. Design and preliminary results of FRENSHOCK 2016: A prospective nationwide multicentre registry on cardiogenic shock. Arch. Cardiovasc. Dis. 2019, 112, 343–353. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Ya’Qoub, L.; Dunlay, S.M.; Vallabhajosyula, S.; Vallabhajosyula, S.; Sundaragiri, P.R.; Jaffe, A.S.; Gersh, B.J.; Kashani, K. Sex disparities in acute kidney injury complicating acute myocardial infarction with cardiogenic shock. ESC Heart Fail. 2019, 6, 874–877. [Google Scholar] [CrossRef] [Green Version]
- Elbadawi, A.; Elgendy, I.Y.; Mahmoud, K.; Barakat, A.F.; Mentias, A.; Mohamed, A.H.; Ogunbayo, G.O.; Megaly, M.; Saad, M.; Omer, M.; et al. Temporal Trends and Outcomes of Mechanical Complications in Patients with Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2019, 12, 1825–1836. [Google Scholar] [CrossRef]
- Rewa, O.; Bagshaw, S.M. Acute kidney injury—epidemiology, outcomes and economics. Nat. Rev. Nephrol. 2014, 10, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Dupont, M.; Mullens, W.; Tang, W.H.W. Impact of Systemic Venous Congestion in Heart Failure. Curr. Heart Fail. Rep. 2011, 8, 233–241. [Google Scholar] [CrossRef]
- Husain-Syed, F.; McCullough, P.A.; Birk, H.-W.; Renker, M.; Brocca, A.; Seeger, W.; Ronco, C. Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J. Am. Coll. Cardiol. 2015, 65, 2433–2448. [Google Scholar] [CrossRef]
- Cosentino, N.; Genovese, S.; Campodonico, J.; Bonomi, A.; Lucci, C.; Milazzo, V.; Moltrasio, M.; Biondi, M.L.; Riggio, D.; Veglia, F.; et al. High-Sensitivity C-Reactive Protein and Acute Kidney Injury in Patients with Acute Myocardial Infarction: A Prospective Observational Study. J. Clin. Med. 2019, 8, 2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer, P.; Gauer, S.; Wegner, B.; Schubert, R.; Geiger, H. C-reactive protein induced activation of MAP-K and RANTES in human renal distal tubular epithelial cells in vitro. Clin. Nephrol. 2006, 66, 177–183. [Google Scholar] [CrossRef]
- Lai, W.; Tang, Y.; Huang, X.R.; Tang, P.M.K.; Xu, A.; Szalai, A.J.; Lou, T.-Q.; Lan, H.Y. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int. 2016, 90, 610–626. [Google Scholar] [CrossRef] [Green Version]
- Shacham, Y.; Rubinow, E.L.-; Steinvil, A.; Keren, G.; Roth, A.; Arbel, Y. High sensitive C-reactive protein and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention. Clin. Exp. Nephrol. 2014, 19, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Pöss, J.; Fuernau, G.; Denks, D.; Desch, S.; Eitel, I.; De Waha, S.; Link, A.; Schuler, G.; Adams, V.; Böhm, M.; et al. Angiopoietin-2 in acute myocardial infarction complicated by cardiogenic shock-a biomarker substudy of the IABP-SHOCK II-Trial. Eur. J. Heart Fail. 2015, 17, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Andrié, R.P.; Becher, U.M.; Frommold, R.; Tiyerili, V.; Schrickel, J.W.; Nickenig, G.; Schwab, J.O. Interleukin-6 is the strongest predictor of 30-day mortality in patients with cardiogenic shock due to myocardial infarction. Crit. Care 2012, 16, R152. [Google Scholar] [CrossRef] [Green Version]
- Geppert, A.; Dorninger, A.; Delle-Karth, G.; Zorn, G.; Heinz, G.; Huber, K. Plasma concentrations of interleukin-6, organ failure, vasopressor support, and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction*. Crit. Care Med. 2006, 34, 2035–2042. [Google Scholar] [CrossRef]
- Geppert, A.; Steiner, A.; Zorn, G.; Delle-Karth, G.; Koreny, M.; Haumer, M.; Siostrzonek, P.; Huber, K.; Heinz, G. Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Crit. Care Med. 2002, 30, 1987–1994. [Google Scholar] [CrossRef]
- Braunwald, E. Biomarkers in Heart Failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef] [Green Version]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Parenica, J.; Kala, P.; Mebazaa, A.; Littnerova, S.; Benesova, K.; Tomandl, J.; Pavkova, M.G.; Jarkovský, J.; Spinar, J.; Tomandlova, M.; et al. Activation of the Nitric Oxide Pathway and Acute Myocardial Infarction Complicated by Acute Kidney Injury. Cardiorenal Med. 2020, 10, 85–96. [Google Scholar] [CrossRef]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference. JAMA Netw. Open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Yang, T.; Sun, S.; Lin, L.; Han, M.; Liu, Q.; Zeng, X.; Zhao, Y.; Li, Y.; Su, B.; Huang, S.; et al. Predictive Factors Upon Discontinuation of Renal Replacement Therapy for Long-Term Chronic Dialysis and Death in Acute Kidney Injury Patients: Predictive Factors Upon Disccontinuation of RRT. Artif. Organs 2017, 41, 1127–1134. [Google Scholar] [CrossRef]
- Schunk, S.J.; Zarbock, A.; Meersch, M.; Küllmar, M.; Kellum, J.A.; Schmit, D.; Wagner, M.; Triem, S.; Wagenpfeil, S.; Gröne, H.-J.; et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: An observational cohort study. Lancet 2019, 394, 488–496. [Google Scholar] [CrossRef]
- Mårtensson, J.; Martling, C.-R.; Bell, M. Novel biomarkers of acute kidney injury and failure: Clinical applicability. Br. J. Anaesth. 2012, 109, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef]
- Meersch, M.; Schmidt, C.; Hoffmeier, A.; Van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensiv. Care Med. 2017, 43, 1551–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göcze, I.; Jauch, D.; Götz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Use of Cell Cycle Arrest Biomarkers in Conjunction with Clas.: Critical Care Medicine. Available online: https://journals.lww.com/ccmjournal/Fulltext/2019/10000/Use_of_Cell_Cycle_Arrest_Biomarkers_in_Conjunction.38.aspx (accessed on 25 July 2021).
- Pipili, C.; Ioannidou, S.; Tripodaki, E.-S.; Parisi, M.; Douka, E.; Vasileiadis, I.; Joannidis, M.; Nanas, S. Prediction of the renal replacement therapy requirement in mechanically ventilated critically ill patients by combining biomarkers for glomerular filtration and tubular damage. J. Crit. Care 2014, 29, 692.e7–692.e13. [Google Scholar] [CrossRef]
- Jäntti, T.; for the CardShock Investigators; Tarvasmäki, T.; Harjola, V.-P.; Pulkki, K.; Turkia, H.; Sabell, T.; Tolppanen, H.; Jurkko, R.; Hongisto, M.; et al. Predictive value of plasma proenkephalin and neutrophil gelatinase-associated lipocalin in acute kidney injury and mortality in cardiogenic shock. Ann. Intensiv. Care 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Cosentino, N.; Genovese, S.; Campodonico, J.; De Metrio, M.; Rondinelli, M.; Cornara, S.; Somaschini, A.; Camporotondo, R.; Demarchi, A.; et al. Reduced Cardio-Renal Function Accounts for Most of the In-Hospital Morbidity and Mortality Risk Among Patients with Type 2 Diabetes Undergoing Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. Diabetes Care 2019, 42, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Akker, J.P.V.D.; Bakker, J.; Groeneveld, A.; Uil, C.D. Risk indicators for acute kidney injury in cardiogenic shock. J. Crit. Care 2019, 50, 11–16. [Google Scholar] [CrossRef]
- Binanay, C.; Califf, R.M.; Hasselblad, V.; O’Connor, C.M.; Shah, M.R.; Sopko, G.; Stevenson, L.W.; Francis, G.S.; Leier, C.V.; Miller, L.W.; et al. Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness: The ESCAPE trial. JAMA 2005, 294, 1625–1633. [Google Scholar] [CrossRef] [Green Version]
- Jentzer, J.C.; Ahmed, A.M.; Vallabhajosyula, S.; Burstein, B.; Tabi, M.; Barsness, G.W.; Murphy, J.G.; Best, P.J.; Bell, M.R. Shock in the cardiac intensive care unit: Changes in epidemiology and prognosis over time. Am. Heart J. 2021, 232, 94–104. [Google Scholar] [CrossRef]
- Hanberg, J.S.; Sury, K.; Wilson, F.; Brisco, M.A.; Ahmad, T.; ter Maaten, J.M.; Broughton, J.S.; Assefa, M.; Tang, W.W.; Parikh, C.; et al. Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure. J. Am. Coll. Cardiol. 2016, 67, 2199–2208. [Google Scholar] [CrossRef]
- Matějka, J.; Varvařovský, I.; Rozsíval, V.; Herman, A.; Bláha, K.; Večeřa, J.; Lazarák, T.; Novotný, V.; Mužáková, V.; Vojtíšek, P. Heart failure is the strongest predictor of acute kidney injury in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Kardiol. Pol. 2016, 74, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.W. Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Damman, K.; Van Deursen, V.M.; Navis, G.; Voors, A.A.; Van Veldhuisen, D.J.; Hillege, H.L. Increased Central Venous Pressure Is Associated With Impaired Renal Function and Mortality in a Broad Spectrum of Patients with Cardiovascular Disease. J. Am. Coll. Cardiol. 2009, 53, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Doty, J.M.; Saggi, B.H.; Sugerman, H.J.; Blocher, C.R.; Pin, R.; Fakhry, I.; Gehr, T.W.B.; Sica, D.A. Effect of Increased Renal Venous Pressure on Renal Function. J. Trauma Inj. Infect. Crit. Care 1999, 47, 1000–1003. [Google Scholar] [CrossRef]
- Lo, K.B.; Penalver, J.; Toroghi, H.M.; Jeon, H.D.; Habib, N.; Pinto, W.H.; Ram, P.; Gupta, S.; Rangaswami, J. Invasive Hemodynamic Predictors of Renal Outcomes after Percutaneous Coronary Interventions. Cardiorenal Med. 2019, 9, 382–390. [Google Scholar] [CrossRef]
- Damman, K.; Voors, A.A.; Navis, G.; van Veldhuisen, D.J.; Hillege, H.L. The Cardiorenal Syndrome in Heart Failure. Prog. Cardiovasc. Dis. 2011, 54, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-A.; Sanchez-Lozada, L.-G.; Johnson, R.J.; Kang, D.-H. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 2010, 28, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Korabathina, R.; Heffernan, K.S.; Paruchuri, V.; Patel, A.; Mudd, J.O.; Prutkin, J.M.; Orr, N.M.; Weintraub, A.; Kimmelstiel, C.D.; Kapur, N.K. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter. Cardiovasc. Interv. 2012, 80, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Guven, G.; Brankovic, M.; Constantinescu, A.A.; Brugts, J.J.; Hesselink, D.A.; Akin, S.; Struijs, A.; Birim, O.; Ince, C.; Manintveld, O.C.; et al. Preoperative right heart hemodynamics predict postoperative acute kidney injury after heart transplantation. Intensiv. Care Med. 2018, 44, 588–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavasini, R.; Tebaldi, M.; Bugani, G.; Tonet, E.; Campana, R.; Cimaglia, P.; Maietti, E.; Grazzi, G.; Pompei, G.; Fabbri, G.; et al. Contrast Associated Acute Kidney Injury and Mortality in Older Adults with Acute Coronary Syndrome: A Pooled Analysis of the FRASER and HULK Studies. J. Clin. Med. 2021, 10, 2151. [Google Scholar] [CrossRef]
- Ohno, Y.; Maekawa, Y.; Miyata, H.; Inoue, S.; Ishikawa, S.; Sueyoshi, K.; Noma, S.; Kawamura, A.; Kohsaka, S.; Fukuda, K. Impact of Periprocedural Bleeding on Incidence of Contrast-Induced Acute Kidney Injury in Patients Treated With Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2013, 62, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Nyman, U.; Björk, J.; Aspelin, P.; Marenzi, G. Contrast medium dose-to-gfr ratio: A measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008, 49, 658–667. [Google Scholar] [CrossRef]
- Subramaniam, A.V.; Barsness, G.W.; Vallabhajosyula, S.; Vallabhajosyula, S. Complications of Temporary Percutaneous Mechanical Circulatory Support for Cardiogenic Shock: An Appraisal of Contemporary Literature. Cardiol. Ther. 2019, 8, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Vallabhajosyula, S.; Prasad, A.; Bell, M.R.; Sandhu, G.S.; Eleid, M.F.; Dunlay, S.M.; Schears, G.J.; Stulak, J.M.; Singh, M.; Gersh, B.J.; et al. Extracorporeal Membrane Oxygenation Use in Acute Myocardial Infarction in the United States, 2000 to 2014. Circ. Heart Fail. 2019, 12, e005929. [Google Scholar] [CrossRef] [PubMed]
- Askenazi, D.J.; Selewski, D.T.; Paden, M.L.; Cooper, D.; Bridges, B.C.; Zappitelli, M.; Fleming, G.M. Renal Replacement Therapy in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Clin. J. Am. Soc. Nephrol. 2012, 7, 1328–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of Extracorporeal Membrane Oxygenation for Treatment of Cardiogenic Shock and Cardiac Arrest: A Meta-Analysis of 1866 Adult Patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef]
- Margolis, G.; Kofman, N.; Gal-Oz, A.; Arbel, Y.; Khoury, S.; Keren, G.; Shacham, Y. Relation of positive fluid balance to the severity of renal impairment and recovery among ST elevation myocardial infarction complicated by cardiogenic shock. J. Crit. Care 2017, 40, 184–188. [Google Scholar] [CrossRef]
- Nakata, K.-I.; Shiono, M.; Orime, Y.; Hata, M.; Sezai, A.; Saitoh, T.; Sezai, Y. Effect of Pulsatile and Nonpulsatile Assist on Heart and Kidney Microcirculation with Cardiogenic Shock. Artif. Organs 1996, 20, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Keckler, S.J.; Laituri, C.A.; Ostlie, D.J.; Peter, S.D.S. A Review of Venovenous and Venoarterial Extracorporeal Membrane Oxygenation in Neonates and Children. Eur. J. Pediatr. Surg. 2009, 20, 1–4. [Google Scholar] [CrossRef]
- Köhne, I. Haemolysis induced by mechanical circulatory support devices: Unsolved problems. Perfusion 2020, 35, 474–483. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Subramaniam, A.V.; Jr, D.H.M.; Patlolla, S.H.; Ya’Qoub, L.; Kumar, V.; Verghese, D.; Cheungpasitporn, W.; Jentzer, J.C.; Sandhu, G.S.; et al. Complications from percutaneous-left ventricular assist devices versus intra-aortic balloon pump in acute myocardial infarction-cardiogenic shock. PLoS ONE 2020, 15, e0238046. [Google Scholar] [CrossRef] [PubMed]
- Abadeer, A.I.; Kurlansky, P.; Chiuzan, C.; Truby, L.; Radhakrishnan, J.; Garan, R.; Topkara, V.; Yuzefpolskaya, M.; Colombo, P.; Takeda, K.; et al. Importance of stratifying acute kidney injury in cardiogenic shock resuscitated with mechanical circulatory support therapy. J. Thorac. Cardiovasc. Surg. 2017, 154, 856–864.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegbala, O.; Inampudi, C.; Adejumo, A.; Otuonye, G.; Akintoye, E.; Elsayed, R.; Williams, K.; Alvarez, P.; Afonso, L.; Briasoulis, A. Characteristics and Outcomes of Patients with Cardiogenic Shock Utilizing Hemodialysis for Acute Kidney Injury. Am. J. Cardiol. 2019, 123, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Cosentino, N.; Marinetti, A.; Leone, A.M.; Milazzo, V.; Rubino, M.; De Metrio, M.; Cabiati, A.; Campodonico, J.; Moltrasio, M.; et al. Renal replacement therapy in patients with acute myocardial infarction: Rate of use, clinical predictors and relationship with in-hospital mortality. Int. J. Cardiol. 2017, 230, 255–261. [Google Scholar] [CrossRef]
- Lauridsen, M.D.; Gammelager, H.; Schmidt, M.; Rasmussen, T.B.; Shaw, R.E.; Bøtker, H.E.; Sørensen, H.T.; Christiansen, C.F. Acute kidney injury treated with renal replacement therapy and 5-year mortality after myocardial infarction-related cardiogenic shock: A nationwide population-based cohort study. Crit. Care 2015, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vallabhajosyula, S.; Verghese, D.; Desai, V.K.; Sundaragiri, P.R.; Miller, V.M. Sex differences in acute cardiovascular care: A review and needs assessment. Cardiovasc. Res. 2021. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Ya’Qoub, L.; Singh, M.; Bell, M.R.; Gulati, R.; Cheungpasitporn, W.; Sundaragiri, P.R.; Miller, V.M.; Jaffe, A.S.; Gersh, B.J.; et al. Sex Disparities in the Management and Outcomes of Cardiogenic Shock Complicating Acute Myocardial Infarction in the Young. Circ. Heart Fail. 2020, 13. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Vallabhajosyula, S.; Dunlay, S.M.; Hayes, S.N.; Best, P.J.; Brenes-Salazar, J.A.; Lerman, A.; Gersh, B.J.; Jaffe, A.S.; Bell, M.R.; et al. Sex and Gender Disparities in the Management and Outcomes of Acute Myocardial Infarction–Cardiogenic Shock in Older Adults. Mayo Clin. Proc. 2020, 95, 1916–1927. [Google Scholar] [CrossRef]
- Bărcan, A.; Chițu, M.; Benedek, E.; Rat, N.; Korodi, S.; Morariu, M.; Kovacs, I. Predictors of Mortality In Patients With ST-Segment Elevation Acute Myocardial Infarction And Resuscitated Out-Of-Hospital Cardiac Arrest. J. Crit. Care Med. 2016, 2, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Kouraki, K.; Schneider, S.; Uebis, R.; Tebbe, U.; Klein, H.H.; Janssens, U.; Zahn, R.; Senges, J.; Zeymer, U. Characteristics and clinical outcome of 458 patients with acute myocardial infarction requiring mechanical ventilation. Results of the BEAT registry of the ALKK-study group. Clin. Res. Cardiol. 2010, 100, 235–239. [Google Scholar] [CrossRef]
- Pickering, J.W.; Blunt, I.R.H.; Than, M.P. Acute Kidney Injury and mortality prognosis in Acute Coronary Syndrome patients: A meta-analysis. Nephrol Carlton Vic. 2018, 23, 237–246. [Google Scholar] [CrossRef]
- Hayıroğlu, M.İ. Pehlivano Effect of Acute Kidney Injury on Long-Term Mortality in Patients with ST-Segment Elevation Myocardial Infarction Complicated with Cardiogenic Shock and Underwent Primary Percutaneous Coronary Intervention in a High-Volume Tertiary Center. Turk Kardiyol. Dernegi Arsivi-Arch. Turk. Soc. Cardiol. 2019, 47, 1. [Google Scholar] [CrossRef]
- Patlolla, S.H.; Kanwar, A.; Cheungpasitporn, W.; Doshi, R.P.; Stulak, J.M.; HolmesJr, D.R.; Bell, M.R.; Singh, M.; Vallabhajosyula, S. Temporal Trends, Clinical Characteristics and Outcomes of Emergent Coronary Artery Bypass Grafting for Acute Myocardial Infarction in the United States. J. Am. Heart Assoc. 2021, e020517. [Google Scholar] [CrossRef]
- Homorodean, C.; Iancu, A.C.; Dregoesc, I.M.; Spînu, M.; Ober, M.C.; Tãtaru, D.; Leucuţa, D.; Olinic, M.; Olinic, D.M. Renal Failure Impact on the Outcomes of ST-Segment Elevation Myocardial Infarction Patients Due to a Left Main Coronary Culprit Lesion Treated Using a Primary Percutaneous Coronary Intervention. J. Clin. Med. 2019, 8, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backhaus, T.; Fach, A.; Schmucker, J.; Fiehn, E.; Garstka, D.; Stehmeier, J.; Hambrecht, R.; Wienbergen, H. Management and predictors of outcome in unselected patients with cardiogenic shock complicating acute ST-segment elevation myocardial infarction: Results from the Bremen STEMI Registry. Clin. Res. Cardiol. 2017, 107, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Kanic, V.; Kompara, G.; Suran, D.; Ekart, R.; Bevc, S.; Hojs, R. Impact of KDIGO-Defined Acute Kidney Injury on Mortality after Percutaneous Coronary Intervention for Acute Myocardial Infarction. Cardiorenal Med. 2018, 8, 332–339. [Google Scholar] [CrossRef]
- Koreny, M.; Karth, G.D.; Geppert, A.; Neunteufl, T.; Priglinger, U.; Heinz, G.; Siostrzonek, P. Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am. J. Med. 2002, 112, 115–119. [Google Scholar] [CrossRef]
- AlFaleh, H.F.; Alsuwaida, A.O.; Ullah, A.; Hersi, A.; Alhabib, K.F.; AlNemer, K.; AlSaif, S.; Taraben, A.; Kashour, T.; Balghith, M.A.; et al. The prognostic impact of in-hospital worsening of renal function in patients with acute coronary syndrome. Int. J. Cardiol. 2013, 167, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Henry, T.D.; Tomey, M.I.; Tamis-Holland, J.E.; Thiele, H.; Rao, S.V.; Menon, V.; Klein, D.G.; Naka, Y.; Piña, I.L.; Kapur, N.K.; et al. Invasive Management of Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Scientific Statement from the American Heart Association. Circulation 2021, 143. [Google Scholar] [CrossRef]
- Van Diepen, S.; Katz, J.N.; Albert, N.M.; Henry, T.D.; Jacobs, A.K.; Kapur, N.K.; Kilic, A.; Menon, V.; Ohman, E.M.; Sweitzer, N.K.; et al. Contemporary Management of Cardiogenic Shock: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e232–e268. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; De Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [Green Version]
- Procyrion. An Evaluation of the Safety and Performance of the Aortix System for Intra-Aortic Mechanical Circulatory Support in Patients with Cardiorenal Syndrome. clinicaltrials.gov. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04145635 (accessed on 7 July 2021).
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.-L. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, B.; Clere-Jehl, R.; Legras, A.; Morichau-Beauchant, T.; Leone, M.; Frederique, G.; Quenot, J.-P.; Kimmoun, A.; Cariou, A.; Lassus, J.; et al. Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 173–182. [Google Scholar] [CrossRef]
- Wigger, O.; Bloechlinger, S.; Berger, D.; Häner, J.; Zanchin, T.; Windecker, S.; Räber, L.; Schefold, J.C. Baseline serum bicarbonate levels independently predict short-term mortality in critically ill patients with ischaemic cardiogenic shock. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Zante, B.; Reichenspurner, H.; Kubik, M.; Kluge, S.; Schefold, J.C.; Pfortmueller, C. Base excess is superior to lactate-levels in prediction of ICU mortality after cardiac surgery. PLoS ONE 2018, 13, e0205309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prowle, J.; Bellomo, R. Fluid administration and the kidney. Curr. Opin. Crit. Care 2010, 16, 332–336. [Google Scholar] [CrossRef]
- Adler, C.; Reuter, H.; Seck, C.; Hellmich, M.; Zobel, C. Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest. Resuscitation 2013, 84, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.; Calderon, J.; Tafer, N.; Pouquet, O.; Fournet, N.; Richebé, P.; Barandon, L.; Janvier, G. Evaluation of continuous veno-venous hemofiltration for the treatment of cardiogenic shock in conjunction with acute renal failure after cardiac surgery? Eur. J. Cardio-Thorac. Surg. 2009, 36, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-Y.; Yang, W.-C.; Chuang, C.-L. Effect of early and intensive continuous venovenous hemofiltration on patients with cardiogenic shock and acute kidney injury after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2014, 148, 1628–1633. [Google Scholar] [CrossRef] [Green Version]
- Rude, R.E. Pharmacologic support in cardiogenic shock. Adv. Shock. Res. 1983, 10, 35–49. [Google Scholar] [PubMed]
- Verma, A.; Solomon, S.D. Optimizing care of heart failure after acute MI with an aldosterone receptor antagonist. Curr. Heart Fail. Rep. 2007, 4, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghionzoli, N.; Sciaccaluga, C.; Mandoli, G.; Vergaro, G.; Gentile, F.; D’Ascenzi, F.; Mondillo, S.; Emdin, M.; Valente, S.; Cameli, M. Cardiogenic shock and acute kidney injury: The rule rather than the exception. Heart Fail. Rev. 2020, 26, 487–496. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Sakhuja, A.; Geske, J.B.; Kumar, M.; Kashyap, R.; Kashani, K.; Jentzer, J.C. Clinical profile and outcomes of acute cardiorenal syndrome type-5 in sepsis: An eight-year cohort study. PLoS ONE 2018, 13, e0190965. [Google Scholar] [CrossRef] [Green Version]
- Kotecha, A.; Vallabhajosyula, S.; Coville, H.H.; Kashani, K. Cardiorenal syndrome in sepsis: A narrative review. J. Crit. Care 2018, 43, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Bihorac, A.; Brusca, S.B.; Del Rio-Pertuz, G.; Kashani, K.; Kazory, A.; Kellum, J.A.; Mao, M.; Moriyama, B.; Morrow, D.A.; et al. Contemporary Management of Severe Acute Kidney Injury and Refractory Cardiorenal Syndrome: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 76, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Shankar, A.; Patlolla, S.H.; Prasad, A.; Bell, M.R.; Jentzer, J.C.; Arora, S.; Vallabhajosyula, S.; Gersh, B.J.; Jaffe, A.S.; et al. Pulmonary artery catheter use in acute myocardial infarction-cardiogenic shock. ESC Heart Fail. 2020, 7, 1234–1245. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Barsness, G.W.; Vallabhajosyula, S. Multidisciplinary teams for cardiogenic shock. Aging 2019, 11, 4774–4776. [Google Scholar] [CrossRef]
Mechanism | Markers | Pathogenesis |
---|---|---|
Inflammation | hs-CRP, IL-6, angiopoietin-2, nitric oxide | MAPK → impairs tubular epithelial cell regeneration → impairs tubular epithelial cell regeneration pathway Capillary leakage |
Right ventricular failure | Central venous pressure | Renal vein congestion → neurohormonal feedback → tubular cell injury → inflammation Cardio-renal syndrome |
Mechanical circulatory support | NT-ProBNP | Loss of pulsatile flow → shear stress Fluid overload → renal vein congestion Hemolysis in extracorporeal circuit Impella (intracorporeal motor)-related hemolysis |
Decreased cardiac index | Serum bicarbonate, lactate | Organ hypoperfusion leading to ischemic injury |
Thromboembolism/contrast-induced nephropathy | Contrast medium dose-to-eGFR ratio | Cell-mediated injury Thromboembolic shower during PCI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Kanwar, A.; Sundaragiri, P.R.; Cheungpasitporn, W.; Truesdell, A.G.; Rab, S.T.; Singh, M.; Vallabhajosyula, S. Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review. J. Cardiovasc. Dev. Dis. 2021, 8, 88. https://doi.org/10.3390/jcdd8080088
Singh S, Kanwar A, Sundaragiri PR, Cheungpasitporn W, Truesdell AG, Rab ST, Singh M, Vallabhajosyula S. Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review. Journal of Cardiovascular Development and Disease. 2021; 8(8):88. https://doi.org/10.3390/jcdd8080088
Chicago/Turabian StyleSingh, Sohrab, Ardaas Kanwar, Pranathi R. Sundaragiri, Wisit Cheungpasitporn, Alexander G. Truesdell, Syed Tanveer Rab, Mandeep Singh, and Saraschandra Vallabhajosyula. 2021. "Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review" Journal of Cardiovascular Development and Disease 8, no. 8: 88. https://doi.org/10.3390/jcdd8080088
APA StyleSingh, S., Kanwar, A., Sundaragiri, P. R., Cheungpasitporn, W., Truesdell, A. G., Rab, S. T., Singh, M., & Vallabhajosyula, S. (2021). Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review. Journal of Cardiovascular Development and Disease, 8(8), 88. https://doi.org/10.3390/jcdd8080088