The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsimikas, S.; Fazio, S.; Ferdinand, K.C.; Ginsberg, H.N.; Koschinsky, M.L.; Marcovina, S.M.; Moriarty, P.M.; Rader, D.J.; Remaley, A.T.; Reyes-Soffer, G.; et al. NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 177–192. [Google Scholar] [CrossRef]
- Afanasieva, O.I.; Pokrovsky, S.N. Hyperlipoproteidemia(a) as a dangerous genetically determined disorder of lipid metabolism and risk factors for atherothrombosis and cardiovascular disease. Russ. J. Cardiol. 2019, 24, 101–108. [Google Scholar] [CrossRef]
- Sultan, S.M.; Schupf, N.; Dowling, M.M.; Deveber, G.A.; Kirton, A.; Elkind, M.S. Review of lipid and lipoprotein(a) abnormalities in childhood arterial ischemic stroke. Int. J. Stroke 2014, 9, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Kamstrup, P.R.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: The Copenhagen City Heart Study. Circulation 2008, 117, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Capoulade, R.; Yeang, C.; Chan, K.L.; Pibarot, P.; Tsimikas, S. Association of Mild to Moderate Aortic Valve Stenosis Progression With Higher Lipoprotein(a) and Oxidized Phospholipid Levels: Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 1212–1217. [Google Scholar] [CrossRef]
- Willeit, P.; Ridker, P.M.; Nestel, P.J.; Simes, J.; Tonkin, A.M.; Pedersen, T.R.; Schwartz, G.G.; Olsson, A.G.; Colhoun, H.M.; Kronenberg, F.; et al. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: Individual patient-data meta-analysis of statin outcome trials. Lancet 2018, 392, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, M.L.; Fazio, S.; Giugliano, R.P.; Stroes, E.S.G.; Kanevsky, E.; Gouni-Berthold, I.; Im, K.; Lira Pineda, A.; Wasserman, S.M.; Češka, R.; et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation 2019, 139, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Sourlas, A.; Mallarkey, G.; Silverio, D.; Ynoa, D.Y.; Montan, P.D.; Guzman, E.; Garcia, M.J. Therapeutic management of hyperlipoproteinemia(a). Drugs Context 2019, 8, 212609. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, S.N.; Afanasieva, O.I.; Ezhov, M.V. Lipoprotein(a) apheresis. Curr. Opin. Lipidol. 2016, 27, 351–358. [Google Scholar] [CrossRef]
- Schettler, V.J.J.; Neumann, C.L.; Peter, C.; Zimmermann, T.; Julius, U.; Hohenstein, B.; Roeseler, E.; Heigl, F.; Grützmacher, P.; Blume, H.; et al. Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels. Clin. Res. Cardiol. Suppl. 2019, 14, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Sager, H.B.; Nahrendorf, M. Inflammation: A trigger for acute coronary syndrome. Q. J. Nucl. Med. Mol. Imaging 2016, 60, 185–193. [Google Scholar]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyette, L.B.; Macedo, C.; Hadi, K.; Elinoff, B.D.; Walters, J.T.; Ramaswami, B.; Chalasani, G.; Taboas, J.M.; Lakkis, F.G.; Metes, D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 2017, 12, e0176460. [Google Scholar] [CrossRef] [PubMed]
- Cignarella, A.; Tedesco, S.; Cappellari, R.; Fadini, G.P. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. J. Leukoc. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.F.; Wang, H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2014, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Rogacev, K.S.; Cremers, B.; Zawada, A.M.; Seiler, S.; Binder, N.; Ege, P.; Große-Dunker, G.; Heisel, I.; Hornof, F.; Jeken, J.; et al. CD14++CD16+ monocytes independently predict cardiovascular events: A cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 2012, 60, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Afanasieva, O.I.; Pylaeva, E.A.; Klesareva, E.A.; Potakhina, A.V.; Provatorov, S.I.; Afanasieva, M.I.; Krasnikova, T.L.; Masenko, V.P.; Arefieva, T.I.; Pokrovsky, S.N. Lipoprotein(a), its autoantibodies, and circulating T lymphocyte subpopulations as independent risk factors for coronary artery atherosclerosis. Terapevticheskii Arkhiv 2016, 88, 31–38. [Google Scholar] [CrossRef]
- Dahlen, G.H. Incidence of Lp(a) among populations. In Lipoprotein(a); Scanu, A.M., Ed.; Academic Press: New York, NY, USA, 1990; pp. 151–173. [Google Scholar]
- Afanas’eva, O.I.; Adamova, I.Y..; Benevolenskaya, G.F.; Pokrovskii, S.N. Enzyme immunoassay of lipoprotein(a). Bull. Exp. Biol. Med. 1995, 120, 1030–1033. [Google Scholar] [CrossRef]
- Afanas’eva, O.I.; Klesareva, E.A.; Levashev, P.A.; Berestetskaia, I.V.; Ezhov, M.V.; Artem’eva, N.V.; Pokrovskiĭ, S.N. Autoantibodies against lipoprotein(a) in patients with coronary heart disease. Kardiologiia 2014, 54, 4–8. [Google Scholar] [CrossRef]
- Ziegler-Heitbrock, L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front. Immunol. 2015, 6, 423. [Google Scholar] [CrossRef]
- Klesareva, E.A.; Afanas’eva, O.I.; Donskikh, V.V.; Adamova, I.Y.; Pokrovskii, S.N. Characteristics of Lipoprotein(a)-Containing Circulating Immune Complexes as Markers of Coronary Heart Disease. Bull. Exp. Biol. Med. 2016, 162, 231–236. [Google Scholar] [CrossRef]
- Sabarinath, P.S.; Appukuttan, P.S. Immunopathology of desialylation: Human plasma lipoprotein(a) and circulating anti-carbohydrate antibodies form immune complexes that recognize host cells. Mol. Cell. Biochem. 2015, 403, 13–23. [Google Scholar] [CrossRef]
- Libby, P.; Nahrendorf, M.; Swirski, F.K. Monocyte heterogeneity in cardiovascular disease. Semin. Immunopathol. 2013, 35, 553–562. [Google Scholar] [CrossRef]
- Kashiwagi, M.; Imanishi, T.; Tsujioka, H.; Ikejima, H.; Kuroi, A.; Ozaki, Y.; Ishibashi, K.; Komukai, K.; Tanimoto, T.; Ino, Y.; et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis 2010, 212, 171–176. [Google Scholar] [CrossRef]
- Rogacev, K.S.; Seiler, S.; Zawada, A.M.; Reichart, B.; Herath, E.; Roth, D.; Ulrich, C.; Fliser, D.; Heine, G.H. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011, 32, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Wrigley, B.J.; Shantsila, E.; Tapp, L.D.; Lip, G.Y. CD14++CD16+ monocytes in patients with acute ischaemic heart failure. Eur J. Clin. Investig. 2013, 43, 121–130. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Kastl, S.P.; Pfaffenberger, S.; Lenz, M.; Hofbauer, S.L.; Wonnerth, A.; Koller, L.; Katsaros, K.M.; Pongratz, T.; Goliasch, G.; et al. Association of small dense LDL serum levels and circulating monocyte subsets in stable coronary artery disease. PLoS ONE 2015, 10, e0123367. [Google Scholar] [CrossRef] [Green Version]
- Krychtiuk, K.A.; Kastl, S.P.; Pfaffenberger, S.; Pongratz, T.; Hofbauer, S.L.; Wonnerth, A.; Katsaros, K.M.; Goliasch, G.; Gaspar, L.; Huber, K.; et al. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease. Atherosclerosis 2014, 237, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Krychtiuk, K.A.; Kastl, S.P.; Hofbauer, S.L.; Wonnerth, A.; Goliasch, G.; Ozsvar-Kozma, M.; Katsaros, K.M.; Maurer, G.; Huber, K.; Dostal, E.; et al. Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J. Clin. Lipidol. 2015, 9, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Misharin, A.V.; Cuda, C.M.; Saber, R.; Turner, J.D.; Gierut, A.K.; Haines, G.K., 3rd; Berdnikovs, S.; Filer, A.; Clark, A.R.; Buckley, C.D.; et al. Nonclassical Ly6C(-) monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 2014, 9, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Puchner, A.; Saferding, V.; Bonelli, M.; Mikami, Y.; Hofmann, M.; Brunner, J.S.; Caldera, M.; Goncalves-Alves, E.; Binder, N.B.; Fischer, A.; et al. Non-classical monocytes as mediators of tissue destruction in arthritis. Ann. Rheum. Dis. 2018, 77, 1490–1497. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Lin, Q.; Ohtsuji, M.; Nishimura, H.; Verbeek, J.S. Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int. Immunol. 2019, 31, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Randolph, G.J.; Sanchez-Schmitz, G.; Liebman, R.M.; Schäkel, K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 2002, 196, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Cros, J.; Cagnard, N.; Woollard, K.; Patey, N.; Zhang, S.Y.; Senechal, B.; Puel, A.; Biswas, S.K.; Moshous, D.; Picard, C.; et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Ożańska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar] [CrossRef]
- Urbanski, K.; Ludew, D.; Filip, G.; Filip, M.; Sagan, A.; Szczepaniak, P.; Grudzien, G.; Sadowski, J.; Jasiewicz-Honkisz, B.; Sliwa, T.; et al. CD14+CD16++ “nonclassical” monocytes are associated with endothelial dysfunction in patients with coronary artery disease. Thromb. Haemost. 2017, 117, 971–980. [Google Scholar] [CrossRef]
- Kral, B.G.; Kalyani, R.R.; Yanek, L.R.; Vaidya, D.; Fishman, E.K.; Becker, D.M.; Becker, L.C. Relation of Plasma Lipoprotein(a) to Subclinical Coronary Plaque Volumes, Triple-vessel and Left Main Coronary Disease, and Severe Coronary Stenoses in Apparently Healthy African-Americans With a Family History of Early-Onset Coronary Artery Disease. Am. J. Cardiol. 2016, 118, 656–661. [Google Scholar] [CrossRef] [Green Version]
- Pirro, M.; Bianconi, V.; Paciullo, F.; Mannarino, M.R.; Bagaglia, F.; Sahebkar, A. Lipoprotein(a) and inflammation: A dangerous duet leading to endothelial loss of integrity. Pharmacol. Res. 2017, 119, 178–187. [Google Scholar] [CrossRef]
- Wong, K.L.; Tai, J.J.; Wong, W.C.; Han, H.; Sem, X.; Yeap, W.H.; Kourilsky, P.; Wong, S.C. Gene expression profiling reveals the defining features of the classical.; intermediate, and nonclassical human monocyte subsets. Blood 2011, 118, e16–e31. [Google Scholar] [CrossRef] [Green Version]
- Zawada, A.M.; Rogacev, K.S.; Rotter, B.; Winter, P.; Marell, R.R.; Fliser, D.; Heine, G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011, 118, e50–e61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afanasieva, O.I.; Utkina, E.A.; Artemieva, N.V.; Ezhov, M.V.; Adamova, I.Y.; Pokrovsky, S.N. [Elevated Lipoprotein(a) Cncentration and Presence of Subfractions of Small Dense Low Density Lipoproteins as Independent Factors of Risk of Ischemic Heart Disease]. Kardiologiia 2016, 56, 5–11. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Yoshida, N.; Shinke, T.; Otake, H.; Kuroda, M.; Sakaguchi, K.; Hirota, Y.; Toba, T.; Takahashi, H.; Terashita, D.; et al. Impact of CD14++CD16+ monocytes on coronary plaque vulnerability assessed by optical coherence tomography in coronary artery disease patients. Atherosclerosis 2018, 269, 245–251. [Google Scholar] [CrossRef] [PubMed]
Lp(a) < 30 mg/dL n = 82 | Lp(a) ≥ 30 mg/dL n = 68 | p | |
---|---|---|---|
Males | 67 (81%) | 47 (69%) | 0.17 |
Age, years | 61 (56; 64) | 58 (52; 65) | 0.23 |
Body mass index, kg/m2 | 29 (26; 32) | 28 (26; 33) | 0.94 |
Type 2 diabetes | 14 (17%) | 10 (15%) | 0.76 |
Glucose, mM/L | 5.6 (5.3; 6.0) | 5.7 (5.3; 6.5) | 0.25 |
Smoking | 28 (34%) | 20 (29%) | 0.62 |
Family history of CHD | 7 (9%) | 6 (9%) | 0.89 |
Stenotic atherosclerosis of coronary arteries | 51 (62%) | 40 (59%) | 0.96 |
Lp(a), mg/dL | 8.2 (3.6; 13.4) | 73.6 (42.0; 107.1) | <0.0001 |
TC, mM/L | 4.3 (3.4; 5.6) | 4.5 (3.8; 5.5) | 0.52 |
TG, mM/L | 1.5 (1.2; 2.1) | 1.2 (0.9; 1.8) | 0.03 |
HDL-C, mM/L | 1.0 (0.9; 1.3) | 1.1 (0.9; 1.3) | 0.30 |
LDL-C, mM/L | 2.5 (1.7; 3.9) | 2.7 (2.2; 4.0) | 0.25 |
LDL-Ccorr, mM/L | 2.3 (1.6; 3.8) | 2.2 (1.6; 3.5) | 0.36 |
Lp(a) < 30 mg/dL | Lp(a) ≥ 30 mg/dL | |||
---|---|---|---|---|
Median | IQR | Median | IQR | |
Leukocytes, 106/mL | 7.2 | 5.9–8.4 | 7.4 | 5.0–8.6 |
Lymphocytes, 106/mL | 2.0 | 1.4–2.5 | 2.1 | 1.67–2.58 |
Monocytes, 106/mL | 0.42 | 0.34–0.56 | 0.47 | 0.35–0.62 |
Monocyte-lymphocyte index | 0.23 | 0.18–0.31 | 0.23 | 0.17–0.27 |
hsCRP, mg/L | 1.2 | 0.80–2.20 | 3.6 | 1.48–4.10 |
Circulating immune complex, lab. unit | 82.8 | 64.7–119.3 | 85.0 | 66.7–107.7 |
IgG autoAbs against, lab. unit. | ||||
LDL | 20.5 | 12.0–38.0 | 26.0 | 12.3–46.4 |
oxLDL | 28.0 | 15.5–40.7 | 29.7 | 17.2–50.6 |
Lp(a) | 27.4 | 21.1–33.4 | 27.5 | 21.3–30.5 |
oxLp(a) | 46.2 | 36.3–55.2 | 42.6 | 28.7–50.5 |
IgM autoAbs against lab. unit. | ||||
LDL | 12.2 | 8.6–19.5 | 16.3 | 9.6–43.1 |
oxLDL | 22.2 | 18.2–26.4 | 26.6 | 19.6–51.6 |
Lp(a) | 17.4 | 11.7–22.7 | 17.5 | 12.6–30.3 |
oxLp(a) | 27.6 | 13.8–43.2 | 29.9 | 15.9–43.0 |
Parameter | OR | 95% CI |
---|---|---|
Adjusted for gender and age | ||
Lp(a) ≥ 30 mg/dL | 2.28 * | 1.13–4.61 |
Classical CD14++CD16− Mn ≥ 73.6 (% from monocytes) | 0.41 * | 0.20–0.82 |
Classical CD14++CD16− Mn ≥ 327.4 (103/mL) | 0.95 | 0.46–1.99 |
Intermediate CD14++CD16+ Mn ≥ 7.3 (% from monocytes) | 2.99 * | 1.46–6.13 |
Intermediate CD14++CD16+ Mn ≥ 32.5 (103/mL) | 1.38 | 0.69–2.76 |
Non-classical CD14+CD16++ Mn ≥ 16.4 (% from monocytes) | 1.75 | 0.88–3.48 |
Non-classical CD14+CD16++ Mn ≥ 70.2 (103/mL) | 1.20 | 0.60–2.40 |
Adjusted for gender, age, Lp(a) ^ | ||
Lp(a) ≥ 30 mg/dL | 2.05 * | 1.00–4.20 |
Classical CD14++CD16− Mn ≥ 73.6 (% from monocytes) | 0.45 * | 0.22–0.92 |
Lp(a) ≥ 30 mg/dL | 2.35 * | 1.15–4.81 |
Classical CD14++CD16− Mn ≥ 327.4 (103/mL) | 0.86 | 0.41–1.79 |
Lp(a) ≥ 30 mg/dL | 2.34 * | 1.15–4.77 |
Intermediate CD14++CD16+ Mn ≥ 32.5 (103/mL) | 1.42 | 0.69–2.89 |
Lp(a) ≥ 30 mg/dL | 2.51 * | 1.20–5.22 |
Intermediate CD14++CD16+ Mn ≥ 7.3 (% from monocytes) | 3.23 * | 1.54–6.79 |
Lp(a) ≥ 30 mg/dL | 2.31 * | 1.12–4.75 |
Non-classical CD14+CD16++ Mn ≥ 16.4 (% from monocytes) | 1.03 | 0.50–2.11 |
Lp(a) ≥ 30 mg/dL | 2.14 * | 1.05–4.36 |
Non-classical CD14+CD16++ Mn ≥ 70.2 (103/mL) | 1.58 | 0.78–3.18 |
Adjusted for gender, age, Lp(a) ^, smoking, diabetes mellitus, arterial hypertension | ||
Lp(a) ≥ 30 mg/dL | 2.49 * | 1.17–5.31 |
Classical CD14++CD16− Mn ≥ 327.4 (103/mL) | 0.98 | 0.45–2.15 |
Lp(a) ≥ 30 mg/dL | 2.26 * | 1.06–4.83 |
Classical CD14++CD16− Mn ≥ 73.6 (% from monocytes) | 0.54 | 0.25–1.14 |
Lp(a) ≥ 30 mg/dL | 2.64 * | 1.22–5.69 |
Intermediate CD14++CD16+ Mn ≥ 7.3 (% from monocytes) | 2.88 * | 1.33–6.24 |
Lp(a) ≥ 30 mg/dL | 2.47 * | 1.17–5.22 |
Intermediate CD14++CD16+ Mn ≥ 32.5 (103/mL) | 1.30 | 0.62–2.75 |
Lp(a) ≥ 30 mg/dL | 2.39 * | 1.12–5.07 |
Non-classical CD14+CD16++ Mn ≥ 16,4 (% from monocytes) | 1.41 | 0.68–2.95 |
Lp(a) ≥ 30 mg/dL | 2.43 * | 1.14–5.20 |
Non-classical CD14+CD16++ Mn ≥ 70.2 (103/mL) | 1.12 | 0.53–2.38 |
Lp(a) < 30 mg/dL Mn < Me | Lp(a) < 30 mg/dL Mn ≥ Me | Lp(a) ≥ 30 mg/dL Mn < Me | Lp(a) ≥ 30 mg/dL Mn ≥ Me | |
---|---|---|---|---|
CD14++CD16− (% from Mn) | 1 | 0.45 (0.15–1.37) | 3.45 (0.90–13.24) | 0.42 (0.13–1.36) |
CD14++CD16+ (% from Mn) | 1 | 4.25 (1.33–13.56) * | 1.45 (0.45–4.60) | 8.69 (2.46–30.63) * |
CD14+CD16++ (% from Mn) | 1 | 1.39 (0.46–4.18) | 0.97 (0.32–3.00) | 3.50 (1.15–10.75) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afanasieva, O.I.; Filatova, A.Y.; Arefieva, T.I.; Klesareva, E.A.; Tyurina, A.V.; Radyukhina, N.V.; Ezhov, M.V.; Pokrovsky, S.N. The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 63. https://doi.org/10.3390/jcdd8060063
Afanasieva OI, Filatova AY, Arefieva TI, Klesareva EA, Tyurina AV, Radyukhina NV, Ezhov MV, Pokrovsky SN. The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. Journal of Cardiovascular Development and Disease. 2021; 8(6):63. https://doi.org/10.3390/jcdd8060063
Chicago/Turabian StyleAfanasieva, Olga I., Anastasya Yu. Filatova, Tatiana I. Arefieva, Elena A. Klesareva, Alexandra V. Tyurina, Natalia V. Radyukhina, Marat V. Ezhov, and Sergei N. Pokrovsky. 2021. "The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis" Journal of Cardiovascular Development and Disease 8, no. 6: 63. https://doi.org/10.3390/jcdd8060063