Early and 3-Year Outcomes of Frozen Elephant Trunk Procedure with Evolving E-vita Hybrid Grafts: A Retrospective Single-Centre Cohort Study over 11 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design and Patient Population
- Extensive aortic disease involving both the arch and proximal descending aorta (>5 cm from the left subclavian artery);
- Chronic dissection with false lumen patency extending into the descending aorta;
- Aneurysmal disease with diameter > 4.5 cm in the proximal descending aorta;
- Unsuitable anatomy for pure endovascular approaches due to inadequate landing zones.
- Reoperative cases where conventional approaches would be technically challenging;
- Younger patients (<70 years) requiring long-term durability;
- Emergency presentations requiring immediate definitive treatment;
- Planned staged approach with anticipated future endovascular interventions.
- Severe peripheral vascular disease precluding femoral access for stent graft deployment;
- Extensive calcification of the descending aorta;
- Previous extensive descending aortic surgery;
- Prohibitive operative risk for prolonged procedures.
2.3. Analyzed Parameters
2.4. Preoperative Management
2.5. Surgical Technique
2.6. Study Endpoints and Follow-Up
2.7. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCP | Antegrade Selective Cerebral Perfusion |
BEVAR | Branched Endovascular Aortic Repair |
COPD | Chronic Obstructive Pulmonary Disease |
CPB | Cardiopulmonary Bypass |
CS | Carotid-Subclavian |
CSF | Cerebrospinal Fluid |
CT | Computed Tomography |
FET | Frozen Elephant Trunk |
FFP | Fresh Frozen Plasma |
GFR | Glomerular Filtration Rate |
ICU | Intensive Care Unit |
IQR | Interquartile Range |
MRI | Magnetic Resonance Imaging |
NIRS | Near-Infrared Spectroscopy |
OAD | Oral Antidiabetic Drugs |
PCC | Prothrombin Complex Concentrate |
RBCs | Red Blood Cells |
SD | Standard Deviation |
TAR | Total Arch Replacement |
TEVAR | Thoracic Endovascular Aortic Repair |
References
- Di Marco, L.; Pantaleo, A.; Leone, A.; Murana, G.; Di Bartolomeo, R.; Pacini, D. The Frozen Elephant Trunk Technique: European Association for Cardio-Thoracic Surgery Position and Bologna Experience. Korean J. Thorac. Cardiovasc. Surg. 2017, 50, 1–7. [Google Scholar] [CrossRef]
- Roselli, E.E.; Isabella, M.A. Frozen Elephant Trunk Procedure. Oper. Tech. Thorac. Cardiovasc. Surg. 2013, 18, 87–100. [Google Scholar][Green Version]
- Jakob, H.; Mourad, F. NEO E-vita–NEO era! Indian J. Thorac. Cardiovasc. Surg. 2022, 38, 83–90. [Google Scholar] [CrossRef]
- Shrestha, M.; Bachet, J.; Bavaria, J.; Carrel, T.P.; De Paulis, R.; Di Bartolomeo, R.; Etz, C.D.; Grabenwöger, M.; Grimm, M.; Haverich, A.; et al. Current status and recommendations for use of the frozen elephant trunk technique: A position paper by the Vascular Domain of EACTS. Eur. J. Cardio-Thorac. Surg. 2015, 47, 759–769. [Google Scholar] [CrossRef]
- Hashizume, K.; Matsuoka, T.; Mori, M.; Takaki, H.; Koizumi, K.; Kaneyama, H.; Funaishi, K.; Kuroo, K.; Shimizu, H. Total arch replacement with extended branched stented anastomosis frozen elephant trunk repair for type A dissection improves operative outcome. JTCVS Tech. 2022, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Kooperkamp, H.; Lofftus, S.; McGrath, D.; Kawabori, M.; Chen, F.Y. Conventional open versus hybrid aortic arch repair: A meta-analysis of propensity-matched studies. J. Thorac. Dis. 2021, 13, 4714–4722. [Google Scholar] [CrossRef] [PubMed]
- Capitain, A.N.; Rylski, B.; Berger, T.; Kondov, S.; Discher, P.; Walter, T.; Batinkov, N.; Bork, M.; D’inka, M.; Czerny, M.; et al. Thoracic endovascular aortic repair completion following frozen elephant trunk: How it’s done and device selection. Expert Rev. Med. Devices 2024, 21, 671–677. [Google Scholar] [CrossRef]
- Moula, A.I.; Romeo, J.L.R.; Parise, G.; Parise, O.; Maessen, J.G.; Natour, E.; Bidar, E.; Gelsomino, S. The evolution of arch surgery: Frozen elephant trunk or conventional elephant trunk? Front. Cardiovasc. Med. 2022, 9, 999314. [Google Scholar] [CrossRef] [PubMed]
- Chakos, A.; Jbara, D.; Yan, T.D.; Tian, D.H. Long-term survival and related outcomes for hybrid versus traditional arch repair—a meta-analysis. Ann. Cardiothorac. Surg. 2018, 7, 319–327. [Google Scholar] [CrossRef]
- Sá, M.P.; Iyanna, N.; Jacquemyn, X.; Brown, J.A.; Yousef, S.; Ahmad, D.; Singh, M.J.; Serna-Gallegos, D.; Sultan, I. Six-Year Outcomes of Total Arch Replacement vs Debranching with TEVAR for Aortic Arch Pathologies: Meta-Analysis of Kaplan-Meier–Derived Data From Propensity Score–Matched Studies. J. Endovasc. Ther. 2024. [Google Scholar] [CrossRef]
- Squiers, J.J.; DiMaio, J.M.; Schaffer, J.M.; Baxter, R.D.; Gable, C.E.; Shinn, K.V.; Harrington, K.; Moore, D.O.; Shutze, W.P.; Brinkman, W.T.; et al. Surgical debranching versus branched endografting in zone 2 thoracic endovascular aortic repair. J. Vasc. Surg. 2022, 75, 1829–1836.e3. [Google Scholar] [CrossRef]
- Jakob, H.; Dohle, D.S.; Piotrowski, J.; Benedik, J.; Thielmann, M.; Marggraf, G.; Erbel, R.; Tsagakis, K. Six-year experience with a hybrid stent graft prosthesis for extensive thoracic aortic disease: An interim balance. Eur. J. Cardio-Thorac. Surg. 2012, 42, 1018–1025. [Google Scholar] [CrossRef]
- Jakob, H.; Tsagakis, K.; Pacini, D.; Di Bartolomeo, R.; Mestres, C.; Mohr, F.; Bonser, R.; Cerny, S.; Oberwalder, P.; Grabenwoger, M. The International E-vita Open Registry: Data sets of 274 patients. J. Cardiovasc. Surg. 2011, 52, 717–723. [Google Scholar]
- Tsagakis, K.; Pacini, D.; Di Bartolomeo, R.; Benedik, J.; Cerny, S.; Gorlitzer, M.; Grabenwoger, M.; Mestres, C.A.; Jakob, H. Arch replacement and downstream stent grafting in complex aortic dissection: First results of an international registry. Eur. J. Cardio-Thorac. Surg. 2011, 39, 87–94. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jakob, H.; Tsagakis, K.; Leyh, R.; Buck, T.; Herold, U. Development of an Integrated Stent Graft-Dacron Prosthesis for Intended One-Stage Repair in Complex Thoracic Aortic Disease. Herz 2005, 30, 766–768. [Google Scholar] [CrossRef]
- E-vita Open Neo Hybrid Stent Graft System. Available online: https://artivion.com/product/e-vita-open-neo/ (accessed on 18 May 2025).
- Shrestha, M.; Kaufeld, T.; Beckmann, E.; Fleissner, F.; Umminger, J.; Alhadi, F.A.; Boethig, D.; Krueger, H.; Haverich, A.; Martens, A. Total aortic arch replacement with a novel 4-branched frozen elephant trunk prosthesis: Single-center results of the first 100 patients. J. Thorac. Cardiovasc. Surg. 2016, 152, 148–159.e1. [Google Scholar] [CrossRef] [PubMed]
- Pacini, D.; Tsagakis, K.; Jakob, H.; Mestres, C.A.; Armaro, A.; Weiss, G.; Grabenwoger, M.; Borger, M.A.; Mohr, F.W.; Bonser, R.S.; et al. The Frozen Elephant Trunk for the Treatment of Chronic Dissection of the Thoracic Aorta: A Multicenter Experience. Ann. Thorac. Surg. 2011, 92, 1663–1670. [Google Scholar] [CrossRef]
- Tsagakis, K.; Pacini, D.; Grabenwöger, M.; Borger, M.A.; Goebel, N.; Hemmer, W.; Santos, A.L.; Sioris, T.; Widenka, K.; Risteski, P.; et al. Results of frozen elephant trunk from the international E-vita Open registry. Ann. Cardiothorac. Surg. 2020, 9, 178–188. [Google Scholar] [CrossRef]
- Acharya, M.; Sherzad, H.; Bashir, M.; Mariscalco, G. The frozen elephant trunk procedure: Indications, outcomes and future directions. Cardiovasc. Diagn. Ther. 2022, 12, 708–721. [Google Scholar] [CrossRef]
- Song, S.W.; Lee, H.; Kim, M.S.; Wong, R.H.L.; Ho, J.Y.K.; Szeto, W.Y.; Jakob, H. Next-Generation Frozen Elephant Trunk Technique in the Era of Precision Medicine. J. Chest Surg. 2024, 57, 419–429. [Google Scholar] [CrossRef]
- Ahmad, A.E.S.; Silaschi, M.; Borger, M.; Seidiramool, V.; Hamiko, M.; Leontyev, S.; Zierer, A.; Doss, M.; Etz, C.D.; Benedikt, P.; et al. The Frozen Elephant Technique Using a Novel Hybrid Prosthesis for Extensive Aortic Arch Disease: A Multicentre Study. Adv. Ther. 2023, 40, 1104–1113. [Google Scholar] [CrossRef]
- Sanphasitvong, V.; Wongkornrat, W.; Jantarawan, T.; Khongchu, N.; Slisatkorn, W. Mortality and complications following total aortic arch replacement: 14 years’ experience. Asian Cardiovasc. Thorac. Ann. 2022, 30, 679–687. [Google Scholar] [CrossRef]
- Di Eusanio, M.; Berretta, P.; Cefarelli, M.; Castrovinci, S.; Folesani, G.; Alfonsi, J.; Pantaleo, A.; Murana, G.; Di Bartolomeo, R. Long-term outcomes after aortic arch surgery: Results of a study involving 623 patients. Eur. J. Cardio-Thorac. Surg. 2015, 48, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Vernice, N.A.; Wingo, M.E.; Walker, P.B.; Demetres, M.; Stalter, L.N.; Yang, Q.; de Biasi, A.R. The great vessel freeze-out: A meta-analysis of conventional versus frozen elephant trunks in aortic arch surgery. J. Card. Surg. 2022, 37, 2397–2407. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, N.; Kölbel, T.; Debus, E.S.; Rohlffs, F.; Tsilimparis, N. Fenestrated versus debranching thoracic endovascular aortic repair for endovascular treatment of distal aortic arch and descending aortic lesions. J. Vasc. Surg. 2021, 73, 1915–1924. [Google Scholar] [CrossRef]
- De Rango, P.; Cao, P.; Ferrer, C.; Simonte, G.; Coscarella, C.; Cieri, E.; Pogany, G.; Verzini, F. Aortic arch debranching and thoracic endovascular repair. J. Vasc. Surg. 2014, 59, 107–114. [Google Scholar] [CrossRef]
- Alhussaini, M.; Abdelwahab, A.; Arnaoutakis, G.J.; Martin, T.; Ayyad, M.A.S.; Ismail, A.I.; Aalaei-Andabili, S.H.; Beaver, T.M. Neurologic Outcomes in Aortic Arch Repair with Frozen Elephant Trunk Versus 2-Stage Hybrid Repair. Ann. Thorac. Surg. 2018, 107, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Sazzad, F.; Ahmed, M.U.; Sule, J.A.; Mohamed, M.H.; Farid, S.; Vitaly, S. Frozen Elephant Trunk Technique to Minimize Circulatory Arrest and Aortic Cross-Clamp Time. Ann. Thorac. Surg. Short Rep. 2025, 3, 385–389. [Google Scholar] [CrossRef]
- Bojko, M.M.; Oslund, W.; Kirsch, M.J.; Carroll, A.M.; Longo, E.; Clothier, J.S.; Okonkwo, K.; Rajeev, N.; Dhanekula, A.; McCarthy, F.; et al. Commercial hybrid graft versus traditional arch replacement with frozen elephant trunk: A multi-institutional comparison. JTCVS Open 2024, 23, 19–33. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, B.; Chen, X.; Liu, Y.; Yu, C.; Sun, X. Aortic diameter remodeling after frozen elephant trunk as a predictor of early outcomes in thoracoabdominal aortic repair. J. Thorac. Cardiovasc. Surg. 2024, 169, 1663–1674. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Z.; Li, Y.; Li, J.; Guo, H.; Liang, S.; Sun, X. Improvement of Clinical Outcomes of Total Aortic Arch Replacement and Frozen Elephant Trunk Surgery with Aortic Balloon Occlusion. Front. Cardiovasc. Med. 2021, 8, 691615. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Aljadayel, H.A.; Mousavizadeh, M.; Daliri, M.; Rezaei, Y.; Tan, S.Z.; Mohammed, I.; Hosseini, S. Correlation of coagulopathy and frozen elephant trunk use in aortic arch surgery: A systematic review and meta-analysis. J. Card. Surg. 2021, 36, 4699–4714. [Google Scholar] [CrossRef] [PubMed]
- Murana, G.; Gliozzi, G.; Di Marco, L.; Campanini, F.; Snaidero, S.; Nocera, C.; Rucci, P.; Barberio, G.; Leone, A.; Lovato, L.; et al. Frozen elephant trunk technique using hybrid grafts: 15-year outcomes from a single-centre experience. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad364. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Cohort (n = 51) |
---|---|
Age (years) | 61.55 ± 10.51 |
Gender (male) | 27 (52.9%) |
Height (cm) | 170.00 (163.0–176.0) |
Weight (kg) | 82.00 (71.0–96.0) |
Diabetes OAD Insulin-dependent Unmedicated | 3 (5.9%) 4 (7.8%) 4 (7.8%) |
Hypertension | 46 (90.2%) |
Hyperlipidemia | 29 (56.9%) |
COPD | 3 (5.9%) |
Smoking history | 17 (33.3%) |
Stroke | 5 (9.8%) |
Renal insufficiency 0: none 1: GFR > 89 (mL/min) 2: GFR 60–89 (mL/min) 3: GFR 30–59 (mL/min) 4: GFR 15–29 (mL/min) 5: GFR < 15 (mL/min) Dialysis | 13 (25.5%) 4 (7.8%) 23 (45.1%) 10 (19.6%) 0 (0.0%) 1 (2.0%) 0 (0.0%) |
EuroSCORE II | 3.65 (1.85–5.45) |
Aortic pathology Dissection Aneurysm Combination | 10 (19.6%) 19 (37.3%) 22 (43.1%) |
Type of surgery Elective Urgent Emergent | 41 (80.4%) 7 (13.7%) 3 (5.9%) |
CS-Bypass before FET | 16 (31.4%) |
Previous Cardiac Surgery Type A Dissection Ascendens Replacement Other | 27 (52.9%) 15 (29.4%) 5 (9.8%) 7 (13.7%) |
Variable | Total Cohort (n = 51) |
---|---|
CSF drainage | 39 (76.5%) |
Duration of surgery (min) | 480.36 ± 126.43 |
CPB-time (min) | 241.67 ± 55.93 |
Cross-clamp-time (min) | 114.06 ± 39.55 |
Reperfusion (min) | 79.16 ± 32.84 |
Circulatory arrest (min) | 74.20 ± 33.66 (n = 30) |
Cerebral perfusion (min) | 76.85 ± 29.91 |
Lowest temperature (°C) | 27.9 (26.0–28.0) |
Perfusion strategy Unilateral Bilateral Trilateral | 36 (70.6%) 7 (13.7%) 8 (15.7%) |
Prosthesis type Open Open Plus Open Neo | 23 (45.1%) 11 (21.6%) 17 (33.3%) |
Ishimaru zone of distal anastomosis 0 2 3 | 14 (27.5%) 14 (27.5%) 17 (33.3%) |
Arch vessel reimplantation Truncus, carotid, subclavia Truncus, carotid | 24 (47.1%) 26 (51.0%) |
Concomitant procedure ACB Valve Both ASD-closure | 5 (9.8%) 3 5.9%) 1 (2.0%) 1 (2.0%) |
Max. Lactate (mmol/L) | 6.8 (4.6–8.6) |
Variable | Total Cohort (n = 51) |
---|---|
RBCs (mL) | 1500 (900–2550) (n = 45) |
Platelets (mL) | 900 (600–1612.5) (n = 44) |
FFP (mL) | 1500 (900–3000) (n = 29) |
PCC (I.U.) | 5000 (4000–8000) (n = 47) |
Fibrinogen (g) | 6 (4–8) (n = 46) |
NovoSeven (mg) | 8 (6.3–12) (n = 7) |
Haemate (I.U.) | 3000 (2000–4500) (n = 13) |
Fibrogammin (I.U.) | 1250 (1250–2500) (n = 7) |
Variable | Total Cohort (n = 51) |
---|---|
LOS ICU (d) | 6 (4–11) |
Time to discharge (d) | 20 (16–30) |
Re-sternotomy | 10 (19.6%) |
Stroke | 9 (17.6%) |
Renal insufficiency 0: none 1: GFR > 89 (mL/min) 2: GFR 60–89 (mL/min) 3: GFR 30–59 (mL/min) 4: GFR 15–29 (mL/min) 5: GFR < 15 (mL/min) Dialysis | 2 (3.9%) 2 (3.9%) 8 (15.7%) 15 (29.4%) 7 (13.7%) 3 (5.9%) 14 (27.5%) |
Delirium | 11 (21.6%) |
Multiorgan failure | 4 (7.8%) |
Paraplegia | 4 (7.8%) |
Survival 30 d 1 y 2 y 3 y | 47 (92.2%) 37 (72.5%) 31 (60.8%) 28 (54.9%) |
In-hospital mortality | 4 (7.8%) |
In-hospital mortality in re-operations | 1 (3.7%) |
Subsequent endovascular procedure (TEVAR/BEVAR) | 25 (49.0%) |
Variable | Dissection (n = 10) | Aneurysm (n = 19) | Combined (n = 22) |
---|---|---|---|
In-hospital mortality | 1 (10.0%) | 2 (10.5%) | 1 (4.5%) |
EuroSCORE II | 2.14 (1.85–3.55) | 3.65 (1.75–5.98) | 3.91 (2.21–6.59) |
Stroke | 0 (0.0%) | 6 (31.6%) | 3 (13.6%) |
Paraplegia | 1 (10.0%) | 1 (5.3%) | 2 (9.1%) |
Postoperative dialysis | 1 (10.0%) | 6 (31.6%) | 7 (31.8%) |
Re-sternotomy | 2 (20.0%) | 4 (21.1%) | 4 (18.2%) |
Duration of surgery (min) | 425.90 ± 86.46 | 452.32 ± 108.00 | 531.67 ± 142.52 |
CPB-time (min) | 242.20 ± 65.57 | 234.58 ± 54.90 | 247.55 |
Cross-clamp-time (min) | 120.80 ± 38.67 | 112.74 ± 44.96 | 112.14 ± 36.39 |
Cerebral perfusion (min) | 68.50 ± 37.30 | 70.50 ± 27.10 | 85.27 ± 27.25 |
Subsequent endovascular procedure (TEVAR/BEVAR) | 3 (30.0%) | 10 (52.6%) | 12 (54.5%) |
Survival 1 y 2 y 3 y | 7 (70.0%) 6 (60.0%) 6 (60.0%) | 13 (68.4%) 10 (52.6%) 8 (42.1%) | 17 (77.3%) 15 (68.2%) 14 (63.6%) |
Variable | E-vita Open (n = 23) | E-vita Open Plus (n = 11) | E-vita Open Neo (n = 17) |
---|---|---|---|
In-hospital mortality | 0 (0.0%) | 0 (0.0%) | 4 (23.5%) |
EuroSCORE II | 4.82 (1.92–6.13) | 3.56 (1.75–4.24) | 3.32 (1.74–4.66) |
Stroke | 5 (21.7%) | 0 (0.0%) | 4 (23.5%) |
Paraplegia | 1 (4.3%) | 1 (9.1%) | 2 (11.8%) |
Postoperative dialysis | 5 (21.7%) | 2 (18.2%) | 7 (41.2%) |
Re-sternotomy | 3 (13.0%) | 2 (18.2%) | 5 (29.4%) |
Duration of surgery (min) | 538.00 ± 100.58 | 370.36 ± 71.43 | 476.94 ± 139.98 |
CPB-time (min) | 265.57 ± 49.42 | 204.64 ± 37.73 | 233.29 ± 60.73 |
Cross-clamp-time (min) | 130.52 ± 40.89 | 88.18 ± 33.04 | 108.53 ± 32.02 |
Cerebral perfusion (min) | 94.43 ± 25.32 | 57.09 ± 28.46 | 67.38 ± 24.34 |
Subsequent endovascular procedure (TEVAR/BEVAR) | 10 (43.5%) | 8 (72.7%) | 7 (41.2%) |
Survival 1 y 2 y 3 y | 18 (78.3%) 17 (73.9%) 15 (65.2%) | 10 (90.9%) 10 (90.9%) 9 (81.8%) | 9 (52.9%) 4 (23.5%) 4 (23.5%) |
Variable | Stroke Group (n = 9) | No Stroke Group (n = 42) |
---|---|---|
Age | 61.44 ± 14.77 | 61.57 ± 9.60 |
Re-operation | 6 (66.7%) | 21 (50.0%) |
Previous stroke | 1 (11.1%) | 4 (9.5%) |
CPB-time (min) | 244.67 ± 64.44 | 241.02 ± 54.79 |
Cross-clamp time (min) | 112.11 ± 30.63 | 114.48 ± 41.52 |
Cerebral perfusion (min) | 90.33 ± 19.91 | 73.74 ± 31.14 |
Circulatory arrest (min) | 86.67 ± 35.30 (n = 3) | 72.81 ± 33.88 (n = 27) |
Perfusion strategy Unilateral Bilateral Trilateral | 7 (77.8%) 1 (11.1%) 1 (11.1%) | 29 (69.0%) 6 (14.3%) 7 (16.7%) |
Prosthesis type Open Open Plus Open Neo | 5 (55.6%) 0 (0.0%) 4 (44.4%) | 18 (42.9%) 11 (26.2%) 13 (31.0%) |
Max. Lactate (mmol/L) | 8.5 (4.55–9.5) | 6.75 (4.55–8.6) |
Variable | Dialysis Group (n = 14) | No Dialysis Group (n = 37) |
---|---|---|
Age | 64.21 ± 9.39 | 60.47 ± 11.0 |
Re-operation | 12 (85.7%) | 15 (40.5%) |
Preoperative GFR < 60 (mL/min) | 4 (28.6%) | 4 (10.8%) |
CPB-time (min) | 251.00 ± 64.92 | 235.64 ± 51.16 |
Cross-clamp-time (min) | 114.57 ± 49.34 | 113.00 ± 36.09 |
Cerebral perfusion (min) | 80.25 ± 27.0 | 74.74 ± 30.98 |
Circulatory arrest (min) | 68.43 ± 33.59 (n = 7) | 75.96 ± 34.34 (n = 23) |
RBCs (mL) | 1650 (1425–3375) (n = 14) | 1500 (712.5–2100) (n = 30) |
Platelets (mL) | 900 (600–2100) (n = 14) | 900 (675–1225) (n = 29) |
FFP (mL) | 2600 (975–4500) n = 8) | 1350 (900–2700) (n = 20) |
PCC (I.U.) | 6000 (4375–8000) (n = 14) | 4750 (4000–6000) (n = 32) |
Fibrinogen (g) | 6 (4.5–10) (n = 13) | 5 (4–8) (n = 32) |
Stroke | 5 (35.7%) | 4 (10.8%) |
Re-sternotomy | 5 (35.7%) | 5 (13.5%) |
Max. Lactate (mmol/L) | 6.7 (4.55–10.38) | 6.75 (4.53–8.5) |
LOS ICU (d) | 21 (9.75–28) | 5 (3–7.75) |
Time to discharge (d) | 35 (27.75–40.75) | 18.5 (14.75–22.25) |
In-hospital mortality | 2 (14.3%) | 2 (5.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doll, I.; Salewski, C.; Vöhringer, L.; Baumgaertner, M.; Nemeth, A.; Schlensak, C.; Radwan, M. Early and 3-Year Outcomes of Frozen Elephant Trunk Procedure with Evolving E-vita Hybrid Grafts: A Retrospective Single-Centre Cohort Study over 11 Years. J. Cardiovasc. Dev. Dis. 2025, 12, 368. https://doi.org/10.3390/jcdd12090368
Doll I, Salewski C, Vöhringer L, Baumgaertner M, Nemeth A, Schlensak C, Radwan M. Early and 3-Year Outcomes of Frozen Elephant Trunk Procedure with Evolving E-vita Hybrid Grafts: A Retrospective Single-Centre Cohort Study over 11 Years. Journal of Cardiovascular Development and Disease. 2025; 12(9):368. https://doi.org/10.3390/jcdd12090368
Chicago/Turabian StyleDoll, Isabelle, Christoph Salewski, Luise Vöhringer, Michael Baumgaertner, Attila Nemeth, Christian Schlensak, and Medhat Radwan. 2025. "Early and 3-Year Outcomes of Frozen Elephant Trunk Procedure with Evolving E-vita Hybrid Grafts: A Retrospective Single-Centre Cohort Study over 11 Years" Journal of Cardiovascular Development and Disease 12, no. 9: 368. https://doi.org/10.3390/jcdd12090368
APA StyleDoll, I., Salewski, C., Vöhringer, L., Baumgaertner, M., Nemeth, A., Schlensak, C., & Radwan, M. (2025). Early and 3-Year Outcomes of Frozen Elephant Trunk Procedure with Evolving E-vita Hybrid Grafts: A Retrospective Single-Centre Cohort Study over 11 Years. Journal of Cardiovascular Development and Disease, 12(9), 368. https://doi.org/10.3390/jcdd12090368