Sjogren’s Disease and Elevated Cardiovascular Risk: Mechanisms and Treatment
Abstract
1. Introduction
2. Epidemiology
2.1. Relative Risk of CVD in Patients with SjD
2.2. Traditional Cardiovascular Risk Factors
2.3. Risk Factors Specific to SjD
3. Pathophysiology and Mechanism
3.1. Cytokine (Interleukin and Interferon)
3.2. Immune Dysregulation
3.3. Endothelial Activation
3.4. Lipid Abnormalities and Lipoproteins
3.5. Vessel Abnormalities
4. Surveillance and Diagnostics
4.1. Ultrasound Studies
4.2. Other Imaging
4.3. Blood Testing
4.4. Validity of Risk Assessment Tools
5. Approaches to Treatment
5.1. Diet
5.2. Statins—Pros and Cons
5.3. Hydroxychloroquine, Antiplatelet Therapy and Anti-Rheumatic Drugs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahtta, D.; Gupta, A.; Ramsey, D.J.; Rifai, M.A.; Mehta, A.; Krittanawong, C.; Lee, M.T.; Nasir, K.; Samad, Z.; Blumenthal, R.S.; et al. Autoimmune Rheumatic Diseases and Premature Atherosclerotic Cardiovascular Disease: An Analysis from the VITAL Registry. Am. J. Med. 2020, 133, 1424–1432.e1. [Google Scholar] [CrossRef]
- Weber, B.; Garshick, M.; Liao, K.P.; Di Carli, M. Sore, hot, and at risk: The emerging specialty of cardio-rheumatology. J. Am. Heart Assoc. 2023, 12, e027846. [Google Scholar] [CrossRef]
- Weber, B.N.; Paik, J.J.; Aghayev, A.; Klein, A.L.; Mavrogeni, S.I.; Yu, P.B.; Mukherjee, M. Novel Imaging Approaches to Cardiac Manifestations of Systemic Inflammatory Diseases: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 82, 2128–2151. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Emmi, G.; Greco, M.; Borro, M.; Sardanelli, F.; Murdaca, G.; Indiveri, F.; Puppo, F. Sjögren′s syndrome: A systemic autoimmune disease. Clin. Exp. Med. 2022, 22, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Criswell, L.A. Primary Sjögren’s syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef]
- Tromby, F.; Manfrè, V.; Chatzis, L.G.; Arends, S.; Tzioufas, A.G.; Bootsma, H.; Quartuccio, L.; Bartoloni, E. Clinical manifestations, imaging and treatment of Sjögren’s disease: One year in review 2024. Clin. Exp. Rheumatol. 2024, 42, 2322–2335. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Buyon, J.P.; Wan, I.; Belmont, H.M.; Sahl, S.; Salmon, J.E.; Askanase, A.; Bathon, J.M.; Geraldino-Pardilla, L.; Ali, Y.; et al. The Incidence and Prevalence of Adult Primary Sjögren’s Syndrome in New York County. Arthritis Care Res. 2019, 71, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Wang, J.; Yang, Z.; Yang, M.; Ma, N.; Huang, F.; Zhong, R. Epidemiology of Primary Sjögren’s Syndrome: A Systematic Review and Meta-Analysis. Ann. Rheum. Dis. 2015, 74, 1983–1989. [Google Scholar] [CrossRef]
- Patel, R.; Shahane, A. The Epidemiology of Sjögren’s Syndrome. Clin. Epidemiol. 2014, 6, 247–255. [Google Scholar]
- McCoy, S.S.; Hetzel, S.; VanWormer, J.J.; Bartels, C.M. Sex hormones, body mass index, and related comorbidities associated with developing Sjögren’s disease: A nested case-control study. Clin. Rheumatol. 2022, 41, 3065–3074. [Google Scholar] [CrossRef]
- Canto, J.G.; Kiefe, C.I.; Rogers, W.J.; Peterson, E.D.; Frederick, P.D.; French, W.J.; Gibson, C.M.; Pollack, C.V., Jr.; Ornato, J.P.; NRMI Investigators; et al. Atherosclerotic risk factors and their association with hospital mortality among patients with first myocardial infarction (from the National Registry of Myocardial Infarction). Am. J. Cardiol. 2012, 110, 1256–1261. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Gerli, R.; Doria, A.; Matsuura, E.; Cerinic, M.M.; Ronda, N.; Jara, L.J.; Abu-Shakra, M.; Meroni, P.L.; Sherer, Y. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation 2005, 112, 3337–3347. [Google Scholar] [CrossRef]
- Hong, J.; Maron, D.J.; Shirai, T.; Weyand, C.M. Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions. Int. J. Clin. Rheumatol. 2015, 10, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, M.F.; Toprak, G.; Taşçi, M. Investigation of the relationship between hypertension and asymptomatic organ damage in patients with Sjogren’s disease. Medicine 2024, 103, e41041. [Google Scholar] [CrossRef] [PubMed]
- Zehrfeld, N.; Abelmann, M.; Benz, S.; Zippel, C.L.; Beider, S.; Kramer, E.; Seeliger, T.; Sogkas, G.; Gödecke, V.; Ahrenstorf, G.; et al. Primary Sjögren’s syndrome independently promotes premature subclinical atherosclerosis. RMD Open 2024, 10, e003559. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Cisewski, J.A.; Xu, J.; Anderson, R.N. Provisional Mortality Data—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 488–492. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risks: A Compass for Global Action. J. Am. Coll. Cardiol. 2020, 76, 2980–2981. [Google Scholar] [CrossRef]
- WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health. 2019, 7, e1332–e1345. [Google Scholar] [CrossRef]
- Blachut, D.; Przywara-Chowaniec, B.; Mazurkiewicz, M.; Tomasik, A. Assessment of Arterial Stiffness and Biochemical Markers in Systemic Lupus Erythematosus in the Diagnosis of Subclinical Atherosclerosis. J. Pers. Med. 2024, 14, 289. [Google Scholar] [CrossRef]
- Halcox, J.P.; Donald, A.E.; Ellins, E.; Witte, D.R.; Shipley, M.J.; Brunner, E.J.; Marmot, M.G.; Deanfield, J.E. Endothelial function predicts progression of carotid intima-media thickness. Circulation 2009, 119, 1005–1012. [Google Scholar] [CrossRef]
- Little, P.J.; Askew, C.D.; Xu, S.; Kamato, D. Endothelial Dysfunction and Cardiovascular Disease: History and Analysis of the Clinical Utility of the Relationship. Biomedicines 2021, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Rheum. 2008, 59, 1690–1697. [Google Scholar] [CrossRef]
- Urowitz, M.B.; Bookman, A.A.; Koehler, B.E.; Gordon, D.A.; Smythe, H.A.; Ogryzlo, M.A. The bimodal mortality pattern of systemic lupus erythematosus. Am. J. Med. 1976, 60, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Karlson, E.W.; Rimm, E.B.; Cannuscio, C.C.; Mandl, L.A.; Manson, J.E.; Stampfer, M.J.; Curhan, G.C. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 2003, 107, 1303–1307. [Google Scholar] [CrossRef]
- Yennemadi, A.S.; Jordan, N.; Diong, S.; Keane, J.; Leisching, G. The Link Between Dysregulated Immunometabolism and Vascular Damage: Implications for the Development of Atherosclerosis in Systemic Lupus Erythematosus and Other Rheumatic Diseases. J. Rheumatol. 2024, 51, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Sircana, M.C.; Erre, G.L.; Castagna, F.; Manetti, R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life 2024, 14, 716. [Google Scholar] [CrossRef]
- Valim, V.; Gerdts, E.; Jonsson, R.; Ferreira, G.A.; Brokstad, K.A.; Brun, J.G.; Midtbø, H.; Mydel, P.M. Atherosclerosis in Sjögren’s syndrome: Evidence, possible mechanisms and knowledge gaps. Clin. Exp. Rheumatol. 2016, 34, 133–142. [Google Scholar]
- Teixeira, V.; Tam, L.S. Novel Insights in Systemic Lupus Erythematosus and Atherosclerosis. Front. Med 2018, 4, 262. [Google Scholar] [CrossRef]
- Scilletta, S.; Di Marco, M.; Miano, N.; Capuccio, S.; Musmeci, M.; Bosco, G.; Di Giacomo Barbagallo, F.; Martedì, M.; La Rocca, F.; Vitale, A.; et al. Cardiovascular risk profile in subjects with diabetes: Is SCORE2-Diabetes reliable? Cardiovasc. Diabetol. 2025, 24, 222. [Google Scholar] [CrossRef]
- Kerola, A.M.; Rollefstad, S.; Semb, A.G. Atherosclerotic Cardiovascular Disease in Rheumatoid Arthritis: Impact of Inflammation and Antirheumatic Treatment. Eur. Cardiol. 2021, 16, e18. [Google Scholar] [CrossRef]
- Borchers, A.T.; Naguwa, S.M.; Keen, C.L.; Gershwin, M.E. Immunopathogenesis of Sjögren’s syndrome. Clin. Rev. Allergy Immunol. 2003, 25, 89–104. [Google Scholar]
- Theander, E.; Manthorpe, R.; Jacobsson, L.T. Mortality and causes of death in primary Sjögren’s syndrome: A prospective cohort study. Arthritis Rheumatol. 2004, 50, 1262–1269. [Google Scholar] [CrossRef]
- Rusinovich Lovgach, O.; Plaza, Z.; Fernández Castro, M.; Rosas, J.; Martínez-Taboada, V.; Olivé, A.; Menor Almagro, R.; Serrano Benavente, B.; Font-Urgelles, J.; Garcia-Aparicio, A.; et al. Mortality in Patients With Sjögren Disease: A Prospective Cohort Study Identifying Key Predictors. J. Rheumatol. 2025, 52, 257–262. [Google Scholar] [CrossRef]
- Bartoloni, E.; Baldini, C.; Schillaci, G.; Quartuccio, L.; Priori, R.; Carubbi, F.; Bini, V.; Alunno, A.; Bombardieri, S.; De Vita, S.; et al. Cardiovascular disease risk burden in primary Sjögren’s syndrome: Results of a population-based multicentre cohort study. J. Intern. Med. 2015, 278, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.H.; Liu, C.J.; Chen, P.J.; Leu, H.B.; Hsu, C.Y.; Huang, P.H.; Chen, T.J.; Lin, S.J.; Chen, J.W.; Chan, W.L. Primary Sjögren’s Syndrome and the Risk of Acute Myocardial Infarction: A Nationwide Study. Acta Cardiol. Sin. 2013, 29, 124–131. [Google Scholar] [PubMed]
- Sacks, D.; Bakal, C.W.; Beatty, P.T.; Becker, G.J.; Cardella, J.F.; Raabe, R.D.; Wiener, H.M.; Lewis, C.A. Position statement on the use of the ankle-brachial index in the evaluation of patients with peripheral vascular disease. A consensus statement developed by the standards division of the Society of Cardiovascular and Interventional Radiology. J. Vasc. Interv. Radiol. 2002, 13, 353. [Google Scholar] [CrossRef] [PubMed]
- Rachapalli, S.M.; Kiely, P.D.; Bourke, B.E. Prevalence of abnormal ankle brachial index in patients with primary Sjogren’s syndrome. Clin. Rheumatol. 2009, 28, 587–590. [Google Scholar] [CrossRef]
- Vaudo, G.; Bocci, E.B.; Shoenfeld, Y.; Schillaci, G.; Wu, R.; Del Papa, N.; Vitali, C.; Delle Monache, F.; Marchesi, S.; Mannarino, E.; et al. Precocious intima-media thickening in patients with primary Sjögren’s syndrome. Arthritis Rheumatol. 2005, 52, 3890–3897. [Google Scholar] [CrossRef]
- Berardicurti, O.; Ruscitti, P.; Cipriani, P.; Ciccia, F.; Liakouli, V.; Guggino, G.; Carubbi, F.; Di Benedetto, P.; Triolo, G.; Giacomelli, R. Cardiovascular disease in primary Sjögren’s syndrome. Rev. Recent Clin. Trials 2018, 13, 164–169. [Google Scholar] [CrossRef]
- Yi, X.; Liu, E.; Wang, Y. Post-genome-wide association study dissects genetic vulnerability and risk gene expression of Sjögren’s disease for cardiovascular disease. J. Transl. Med. 2025, 23, 531. [Google Scholar] [CrossRef]
- Loiseau, P.; Mailhac, A.; Duhaut, P.; Thomsen, R.W. Arterial cardiovascular outcomes and venous thromboembolism in patients with primary Sjögren’s syndrome: A Danish cohort study. Rheumatology 2025, 64, 4678–4686. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Jensen, J.M.; Rønnow Sand, N.P.; Kragholm, K.; Blaha, M.J.; Grove, E.L.; Sørensen, H.T.; Olesen, K.; Maeng, M.; Løgstrup, B.; et al. Association of Autoimmune Diseases with Coronary Atherosclerosis Severity and Ischemic Events. J. Am. Coll. Cardiol. 2024, 83, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Adult BMI Categories. Available online: https://www.cdc.gov/bmi/adult-calculator/bmi-categories.html (accessed on 28 July 2025).
- World Health Organization. Obesity and Overweight. Fact Sheet (2025). Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 June 2025).
- Vecchié, A.; Dallegri, F.; Carbone, F.; Bonaventura, A.; Liberale, L.; Portincasa, P.; Frühbeck, G.; Montecucco, F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018, 48, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Mezei, K.; Nagy, L.; Orosz, V.; Aradi, Z.; Bói, B.; Szántó, A. Obesity: Friend or Foe in Sjögren’s Syndrome Patients? Diagnostics 2024, 14, 2725. [Google Scholar] [CrossRef]
- Sabeel, S.; Motaung, B.; Nguyen, K.A.; Ozturk, M.; Mukasa, S.L.; Wolmarans, K.; Blom, D.J.; Sliwa, K.; Nepolo, E.; Günther, G.; et al. Impact of statins as immune-modulatory agents on inflammatory markers in adults with chronic diseases: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0323749. [Google Scholar] [CrossRef]
- Chaturvedi, S.; McCrae, K.R. Diagnosis and management of the antiphospholipid syndrome. Blood Rev. 2017, 31, 406–417. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A.L. Statins: Pros and cons. Med. Clin. 2018, 150, 398–402. [Google Scholar] [CrossRef]
- Dehnavi, S.; Sohrabi, N.; Sadeghi, M.; Lansberg, P.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Statins and autoimmunity: State-of-the-art. Pharmacol. Ther. 2020, 214, 107614. [Google Scholar] [CrossRef]
- Zeiser, R. Immune modulatory effects of statins. Immunology 2018, 154, 69–75. [Google Scholar] [CrossRef]
- Tonstad, S.; Després, J.P. Treatment of lipid disorders in obesity. Exp. Rev. Cardiovasc. Ther. 2011, 9, 1069–1080. [Google Scholar] [CrossRef]
- Gerasimova, E.V.; Popkova, T.V.; Kirillova, I.G.; Gerasimova, D.A.; Nasonov, E.L. Dynamics of Modified Cardiovascular Risk Factors in Patients with Rheumatoid Arthritis on the Background of 5-Year Therapy with an Interleukin 6 Receptor Inhibitor. Dokl. Biochem. Biophys. 2025, 522, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Costenbader, K.H.; Coblyn, J.S. Statin therapy in rheumatoid arthritis. South. Med. J. 2005, 98, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Murphy, M.J.; Macdonald, T.M.; Wei, L. Effectiveness of statins on total cholesterol and cardiovascular disease and all-cause mortality in osteoarthritis and rheumatoid arthritis. J. Rheumatol. 2012, 39, 32–40. [Google Scholar] [CrossRef]
- Chhibber, A.; Hansen, S.; Biskupiak, J. Statin use and mortality in rheumatoid arthritis: An incident user cohort study. J. Manag. Care Spec. Pharm. 2021, 27, 296–305. [Google Scholar] [CrossRef] [PubMed]
- De Vera, M.A.; Choi, H.; Abrahamowicz, M.; Kopec, J.; Lacaille, D. Impact of statin discontinuation on mortality in patients with rheumatoid arthritis: A population-based study. Arthritis Care Res. 2012, 64, 809–816. [Google Scholar] [CrossRef]
- Antony, M.; Thymalil, C.; Nagy, S.; Amini, K.; Kesselman, M.M. Prevalence of Antinuclear Antibodies in Patients with Coronary Artery Disease: A Scoping Review. Cureus 2025, 17, e78915. [Google Scholar] [CrossRef]
- Akhtari, S.; Harvey, P.J.; Eder, L. Cardio-Rheumatology Insights into Hypertension: Intersection of Inflammation, Arteries, and Heart. Am. J. Hypertens. 2024, 37, 933–942. [Google Scholar] [CrossRef]
- Jafri, S.; Ormiston, M.L. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: Shared disease mechanisms and translational opportunities. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R693–R705. [Google Scholar] [CrossRef]
- Yang, L.; Liang, Y.; Pu, J.; Cai, L.; Gao, R.; Han, F.; Chang, K.; Pan, S.; Wu, Z.; Zhang, Y.; et al. Dysregulated serum lipid profile is associated with inflammation and disease activity in primary Sjögren’s syndrome: A retrospective study in China. Immunol. Lett. 2024, 267, 106865. [Google Scholar] [CrossRef]
- Xu, X.; Shi, Y.; Yang, X.; Zhang, Y.; Qin, L.; Cai, L.; Wang, H. Risk factors for hypertension in primary Sjögren’s syndrome patients: A nomogram was constructed. J. Hum. Hypertens. 2022, 36, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, M.; Fisher, B.A. The effect of smoking on Sjögren’s disease development and severity: A comprehensive literature review. Clin. Exp. Rheumatol. 2024, 42, 2346–2356. [Google Scholar] [CrossRef]
- Manthorpe, R.; Benoni, C.; Jacobsson, L.; Kirtava, Z.; Larsson, A.; Liedholm, R.; Nyhagen, C.; Tabery, H.; Theander, E. Lower frequency of focal lip sialadenitis (focus score) in smoking patients. Can tobacco diminish the salivary gland involvement as judged by histological examination and anti-SSA/Ro and anti-SSB/La antibodies in Sjögren’s syndrome? Ann. Rheum. Dis. 2000, 59, 54–60. [Google Scholar] [CrossRef]
- Bartoloni, E.; Alunno, A.; Valentini, V.; Valentini, E.; La Paglia, G.M.C.; Leone, M.C.; Cafaro, G.; Marcucci, E.; Bonifacio, A.F.; Luccioli, F.; et al. The prevalence and relevance of traditional cardiovascular risk factors in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2018, 36, S113–S120. [Google Scholar]
- Crowson, C.S.; Rollefstad, S.; Ikdahl, E.; Kitas, G.D.; van Riel, P.L.C.M.; Gabriel, S.E.; Matteson, E.L.; Kvien, T.K.; Douglas, K.; Sandoo, A.; et al. A Trans-Atlantic Cardiovascular Consortium for Rheumatoid Arthritis (ATACC-RA). Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 48–54. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and the pathogenesis of atherosclerosis. Vascul. Pharmacol. 2024, 154, 107255. [Google Scholar] [CrossRef]
- Enocsson, H.; Karlsson, J.; Li, H.-Y.; Wu, Y.; Kushner, I.; Wetterö, J.; Sjöwall, C. The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J. Clin. Med. 2021, 10, 5837. [Google Scholar] [CrossRef]
- Bekbossynova, M.; Saliev, T.; Ivanova-Razumova, T.; Andossova, S.; Kali, A.; Myrzakhmetova, G. Beyond Cholesterol: Emerging Risk Factors in Atherosclerosis. J. Clin. Med. 2025, 14, 2352. [Google Scholar] [CrossRef]
- Ozisler, C.; Kaplanoglu, H. Evaluation of subclinical atherosclerosis by ultrasound radiofrequency data technology in patients with primary Sjögren’s syndrome. Clin. Rheumatol. 2019, 38, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Pérez-De-Lis, M.; Akasbi, M.; Sisó, A.; Diez-Cascon, P.; Brito-Zerón, P.; Diaz-Lagares, C.; Ortiz, J.; Perez-Alvarez, R.; Ramos-Casals, M.; Coca, A. Cardiovascular Risk Factors in Primary Sjögren’s Syndrome: A Case-Control Study in 624 Patients. Lupus 2010, 19, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.E.; Tseng, C.E.; Rashbaum, W.; Ochs, R.L.; Casiano, C.A.; di Donato, F.; Chan, E.K.; Buyon, J.P. Accessibility of SSA/Ro and SSB/La antigens to maternal autoantibodies in apoptotic human fetal cardiac myocytes. J. Immunol. 1998, 161, 5061–5069. [Google Scholar] [CrossRef] [PubMed]
- Wigren, M.; Svenungsson, E.; Mattisson, I.Y.; Gustafsson, J.T.; Gunnarsson, I.; Zickert, A.; Elvin, K.; Jensen-Urstad, K.; Bengtsson, A.; Gullstrand, B.; et al. Cardiovascular disease in systemic lupus erythematosus is associated with increased levels of biomarkers reflecting receptor-activated apoptosis. Atherosclerosis 2018, 270, 1–7. [Google Scholar] [CrossRef]
- Edsfeldt, A.; Stenström, K.E.; Sun, J.; Dias, N.; Skog, G.; Singh, P.; Mattsson, S.; Nilsson, J.; Gonçalves, I. Human Atherosclerotic Plaque Progression Is Dependent on Apoptosis According to Bomb-Pulse 14C Dating. JACC Basic Transl. Sci. 2021, 6, 734–745. [Google Scholar] [CrossRef]
- Arnaud, L.; Chasset, F.; Martin, T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun, Rev. 2024, 23, 103648. [Google Scholar] [CrossRef]
- Wei, J.; Wang, A.; Li, B.; Li, X.; Yu, R.; Li, H.; Wang, X.; Wang, Y.; Zhu, M. Pathological mechanisms and crosstalk among various cell death pathways in cardiac involvement of systemic lupus erythematosus. Front. Immunol. 2024, 15, 1452678. [Google Scholar] [CrossRef]
- Florezi, G.P.; Barone, F.P.; Pelissari, C.; Soyfoo, M.S.; Delporte, C.; Lourenço, S.V. Salivary Th17-associated cytokines as potential biomarkers in primary Sjögren’s Disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2025, 140, 428–435. [Google Scholar] [CrossRef]
- Zhang, L.W.; Zhou, P.R.; Wei, P.; Cong, X.; Wu, L.L.; Hua, H. Expression of interleukin-17 in primary Sjögren’s syndrome and the correlation with disease severity: A systematic review and meta-analysis. Scand. J. Immunol. 2018, 87, e12649. [Google Scholar] [CrossRef]
- Katsifis, G.E.; Rekka, S.; Moutsopoulos, N.M.; Pillemer, S.; Wahl, S.M. Systemic and local interleukin-17 and linked cytokines associated with Sjögren’s syndrome immunopathogenesis. Am. J. Pathol. 2009, 175, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Del Papa, N.; Minniti, A.; Lorini, M.; Carbonelli, V.; Maglione, W.; Pignataro, F.; Montano, N.; Caporali, R.; Vitali, C. The Role of Interferons in the Pathogenesis of Sjögren’s Syndrome and Future Therapeutic Perspectives. Biomolecules 2021, 11, 251. [Google Scholar] [CrossRef]
- Nicaise, C.; Weichselbaum, L.; Schandene, L.; Gangji, V.; Dehavay, F.; Bouchat, J.; Balau, B.; Vogl, T.; Soyfoo, M.S. Phagocyte-specific S100A8/A9 is upregulated in primary Sjögren’s syndrome and triggers the secretion of pro-inflammatory cytokines in vitro. Clin. Exp. Rheumatol. 2017, 35, 129–136. [Google Scholar]
- Bartoloni, E.; Alunno, A.; Cafaro, G.; Valentini, V.; Bistoni, O.; Bonifacio, A.F.; Gerli, R. Subclinical Atherosclerosis in Primary Sjögren’s Syndrome: Does Inflammation Matter? Front. Immunol. 2019, 10, 817. [Google Scholar] [CrossRef]
- Łuczak, A.; Małecki, R.; Kulus, M.; Madej, M.; Szahidewicz-Krupska, E.; Doroszko, A. Cardiovascular Risk and Endothelial Dysfunction in Primary Sjogren Syndrome Is Related to the Disease Activity. Nutrients 2021, 13, 2072. [Google Scholar] [CrossRef]
- Yong, W.C.; Sanguankeo, A.; Upala, S. Association between primary Sjogren’s syndrome, arterial stiffness, and subclinical atherosclerosis: A systematic review and meta-analysis. Clin. Rheumatol. 2019, 38, 447–455. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Yang, Q.; Wang, N.; Xu, J.; Li, L.; Guo, Y. Association between atherosclerosis and primary Sjogren’s syndrome: A cross-sectional study. Health Sci. Rep. 2023, 6, e1638. [Google Scholar] [CrossRef]
- Karvonen, J.; Päivänsalo, M.; Kesäniemi, Y.A.; Hörkkö, S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 2003, 108, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Miossec, P. Effects of interleukin 17 on the cardiovascular system. Autoimmun. Rev. 2017, 16, 984–991. [Google Scholar] [CrossRef]
- Singh, V.; Kaur, R.; Kumari, P.; Pasricha, C.; Singh, R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023, 548, 117487. [Google Scholar] [CrossRef] [PubMed]
- Błochowiak, K.J.; Olewicz-Gawlik, A.; Trzybulska, D.; Nowak-Gabryel, M.; Kocięcki, J.; Witmanowski, H.; Sokalski, J. Serum ICAM-1, VCAM-1 and E-selectin levels in patients with primary and secondary Sjögren’s syndrome. Adv. Clin. Exp. Med. 2017, 26, 835–842. [Google Scholar] [CrossRef] [PubMed]
- La Chica Lhoëst, M.T.; Martinez, A.; Claudi, L.; Garcia, E.; Benitez-Amaro, A.; Polishchuk, A.; Piñero, J.; Vilades, D.; Guerra, J.M.; Sanz, F.; et al. Mechanisms modulating foam cell formation in the arterial intima: Exploring new therapeutic opportunities in atherosclerosis. Front. Cardiovasc. Med. 2024, 11, 1381520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, Z.; Yu, C.; Tu, L.; Zhong, L.; Yang, C. Association between IFN-alpha and primary Sjogren’s syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2009, 107, e12–e18. [Google Scholar]
- Bartoloni, E.; Alunno, A.; Bistoni, O.; Caterbi, S.; Luccioli, F.; Santoboni, G.; Mirabelli, G.; Cannarile, F.; Gerli, R. Characterization of circulating endothelial microparticles and endothelial progenitor cells in primary Sjögren’s syndrome: New markers of chronic endothelial damage? Rheumatology 2015, 54, 536–544. [Google Scholar] [CrossRef]
- Nik Ibrahim, N.N.I.; Abdul Rahman, R.; Azlan, M.; Abd Aziz, A.; Ghulam Rasool, A.H. Endothelial Microparticles as Potential Biomarkers in the Assessment of Endothelial Dysfunction in Hypercholesterolemia. Medicina 2022, 58, 824. [Google Scholar] [CrossRef]
- Xia, T.; Yu, J.; Du, M.; Chen, X.; Wang, C.; Li, R. Vascular endothelial cell injury: Causes, molecular mechanisms, and treatments. MedComm 2025, 6, e70057. [Google Scholar] [CrossRef]
- Caraba, A.; Iurciuc, S.; Nicolin, M.; Iurciuc, M. Endothelial dysfunction in primary Sjögren’s syndrome: Correlation with serum biomarkers of disease activity. Int. J. Mol. Sci. 2023, 24, 13918. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zerón, P.; Sisó, A.; Vargas, A.; Ros, E.; Bove, A.; Belenguer, R.; Plaza, J.; Benavent, J.; Font, J. High Prevalence of Serum Metabolic Alterations in Primary Sjögren’s Syndrome: Influence on Clinical and Immunological Expression. J. Rheumatol. 2007, 34, 754–761. [Google Scholar] [PubMed]
- Li, N.; Li, Y.; Hu, J.; Wu, Y.; Yang, J.; Fan, H.; Li, L.; Luo, D.; Ye, Y.; Gao, Y.; et al. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren’s Syndrome. Front. Immunol. 2022, 13, 845209. [Google Scholar] [CrossRef]
- Chang, K.; Luo, P.; Guo, Z.; Yang, L.; Pu, J.; Han, F.; Cai, F.; Tang, J.; Wang, X. Lipid Metabolism: An Emerging Player in Sjögren’s Syndrome. Clin. Rev. Allergy Immunol. 2025, 68, 15. [Google Scholar] [CrossRef] [PubMed]
- Augusto, K.L.; Bonfa, E.; Pereira, R.M.; Bueno, C.; Leon, E.P.; Viana, V.S.; Pasoto, S.G. Metabolic syndrome in Sjögren’s syndrome patients: A relevant concern for clinical monitoring. Clin. Rheumatol. 2016, 35, 639–647. [Google Scholar] [CrossRef]
- Hu, D.; Yin, C.; Luo, S.; Habenicht, A.J.R.; Mohanta, S.K. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Front. Immunol. 2019, 10, 1101. [Google Scholar] [CrossRef] [PubMed]
- Cinoku, I.; Mavragani, C.P.; Tellis, C.C.; Nezos, A.; Tselepis, A.D.; Moutsopoulos, H.M. Autoantibodies to ox-LDL in Sjögren’s syndrome: Are they atheroprotective? Clin. Exp. Rheumatol. 2018, 36 Suppl 112, 61–67. [Google Scholar]
- Karakasis, P.; Patoulias, D.; Pamporis, K.; Stachteas, P.; Lefkou, E.; Bougioukas, K.I.; Dimitroulas, T.; Fragakis, N. Risk of subclinical atherosclerosis in primary Sjogren’s syndrome: A systematic review and meta-analysis. Eur. J. Intern. Med. 2024, 122, 93–101. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen., C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Zippel, C.L.; Beider, S.; Kramer, E.; Konen, F.F.; Seeliger, T.; Skripuletz, T.; Hirsch, S.; Jablonka, A.; Witte, T.; Sonnenschein, K.; et al. Premature stroke and cardiovascular risk in primary Sjögren’s syndrome. Front. Cardiovasc. Med. 2022, 9, 1048684. [Google Scholar] [CrossRef]
- Chiang, C.H.; Liu, C.J.; Chen, P.J.; Huang, C.C.; Hsu, C.Y.; Chan, W.L.; Huang, P.H.; Chen, T.J.; Lin, S.J.; Chen, J.W.; et al. Primary Sjögren’s syndrome and risk of ischemic stroke: A nationwide study. Clin. Rheumatol. 2014, 33, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chen, H.A.; Chang, T.W.; Hsu, T.C.; Hsu, C.Y.; Su, Y.J. Association of primary Sjögren’s syndrome with incident heart failure: A secondary analysis of health claims data in Taiwan. Ther. Adv. Chronic Dis. 2022, 13, 20406223221078083. [Google Scholar] [CrossRef]
- Luni, F.K.; Malik, S.A.; Khan, A.R.; Riaz, H.; Singh, H.; Federman, D.; Kanjwal, Y.; Dasa, O.; Khuder, S.; Kabour, A. Risk of Ischemic Heart Disease in Patients With Sjögren’s Syndrome. Am. J. Med. Sci. 2017, 354, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Cindil, E.; Oktar, S.O.; Akkan, K.; Sendur, H.N.; Mercan, R.; Tufan, A.; Ozturk, M.A. Ultrasound elastography in assessment of salivary glands involvement in primary Sjögren’s syndrome. Clin. Imaging 2018, 50, 229–234. [Google Scholar] [CrossRef]
- Wernicke, D.; Hess, H.; Gromnica-Ihle, E.; Krause, A.; Schmidt, W.A. Ultrasonography of salivary glands -- a highly specific imaging procedure for diagnosis of Sjögren’s syndrome. J. Rheumatol. 2008, 35, 285–293. [Google Scholar] [PubMed]
- Fana, V.; Terslev, L. Lacrimal and salivary gland ultrasound - how and when to use in patients with primary Sjögren’s syndrome. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101837. [Google Scholar] [CrossRef]
- Vassiliou, V.A.; Moyssakis, I.; Boki, K.A.; Moutsopoulos, H.M. Is the heart affected in primary Sjögren’s syndrome? An echocardiographic study. Clin. Exp. Rheumatol. 2008, 26, 109–112. [Google Scholar]
- Ye, Y.C.; Zeng, Y.; Zhu, W.L.; Zhao, Y.; Zeng, X.F.; Zhang, S.Y.; Fang, Q.; Li, X.M. Cardiac manifestations in Sjogren syndrome. Zhonghua Xin Xue Guan Bing Za Zhi 2008, 36, 327–331. (In Chinese) [Google Scholar] [PubMed]
- Salerno, M.; Sharif, B.; Arheden, H.; Kumar, A.; Axel, L.; Li, D.; Neubauer, S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ. Cardiovasc. Imaging 2017, 10, e003951. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Yang, K.; Wen, Y.; Wang, P.; Hu, Y.; Lai, Y.; Wang, Y.; Zhao, K.; Tang, S.; Zhang, A.; et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 2024, 30, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Kolovou, G. Clinical Use of Cardiac Magnetic Resonance in Systemic Heart Disease. Eur. Cardiol. 2014, 9, 21–27. [Google Scholar] [CrossRef]
- Nishiwaki, A.; Kobayashi, H.; Ikumi, N.; Kobayashi, Y.; Yokoe, I.; Sugiyama, K.; Matsukawa, Y.; Takei, M.; Kitamura, N. Salivary Gland Focus Score Is Associated with Myocardial Fibrosis in Primary Sjögren Syndrome Assessed by a Cardiac Magnetic Resonance Approach. J. Rheumatol. 2021, 48, 859–866. [Google Scholar] [CrossRef]
- Ntusi, N.A.B.; Francis, J.M.; Sever, E.; Liu, A.; Piechnik, S.K.; Ferreira, V.M.; Matthews, P.M.; Robson, M.D.; Wordsworth, P.B.; Neubauer, S.; et al. Anti-TNF modulation reduces myocardial inflammation and improves cardiovascular function in systemic rheumatic diseases. Int. J. Cardiol. 2018, 270, 253–259. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kobayashi, H.; Kobayashi, Y.; Nagasawa, N.; Ikumi, T.; Nozaki, H.; Inomata, H.; Shiraiwa, H.; Karasawa, M.; Iwata, N.; et al. THU0337 Raynaud Phenomenon Is Associated with Myocardial Fibrosis in Primary Sjögren Syndrome, Assessed by A Cardiac Magnetic Resonance Approach: A Prospective Pilot Study at A Single Center. Ann. Rheum. Dis. 2016, 75, 309. [Google Scholar] [CrossRef]
- Al Turk, Y.; Lemor, A.; Fayed, M.; Kim, H. Sjögren-related cardiomyopathy presenting with cardiogenic shock. BMJ Case Rep. 2021, 14, e244451. [Google Scholar] [CrossRef]
- Yokoe, I.; Kobayashi, H.; Nishiwaki, A.; Nagasawa, Y.; Kitamura, N.; Haraoka, M.; Kobayashi, Y.; Takei, M.; Nakamura, H. Asymptomatic myocardial dysfunction was revealed by feature tracking cardiac magnetic resonance imaging in patients with primary Sjögren’s syndrome. Int. J. Rheum. Dis. 2021, 24, 1482–1490. [Google Scholar] [CrossRef]
- Llanos-Chea, F.; Velasquez, A.; De Cicco, I.; Balan, P. Acute heart failure due to anti-RO/SSA and anti-La/SSB myocarditis in primary Sjogren syndrome. J. Am. Coll. Cardiol. 2016, 67, 1025. [Google Scholar] [CrossRef]
- Duarte, F.; Oliveira, L.; Fontes, T.; Ramos, S.; Dourado, R.; Martins, D. Chronic constrictive pericarditis: A rare cardiac involvement in primary Sjögren’s syndrome. BMC Cardiovasc. Disord. 2023, 23, 471. [Google Scholar] [CrossRef] [PubMed]
- Kundi, M.; Assad, S.; Babar, S.; Ghani, U.; Hammad, S.; Sheikh, A.G.; Kundi, A.K.; Sheikh, A. Mixed Connective Tissue Disorder Complicated by Polymyositis, Sjogren’s Syndrome, Pleural Effusion and Pericarditis. Cureus 2016, 8, e906. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.D.; Chien, W.C.; Tsai, S.H.; Chung, C.H.; Chu, S.J.; Chen, S.J.; Liao, W.I.; Yang, C.J.; Liao, M.T.; Wang, J.C. Increased risk of aortic aneurysm and dissection in patients with Sjögren’s syndrome: A nationwide population-based cohort study in Taiwan. BMJ Open 2018, 8, e022326. [Google Scholar] [CrossRef]
- Juarez, M.; Toms, T.E.; de Pablo, P.; Mitchell, S.; Bowman, S.; Nightingale, P.; Price, E.J.; Griffiths, B.; Hunter, J.; Gupta, M.; et al. Primary Sjögren’s Syndrome Registry. Cardiovascular risk factors in women with primary Sjögren’s syndrome: United Kingdom primary Sjögren’s syndrome registry results. Arthritis Care Res. 2014, 66, 757–764. [Google Scholar] [CrossRef]
- Santos, C.S.; Salgueiro, R.R.; Morales, C.M.; Castro, C.Á.; Álvarez, E.D. Risk factors for cardiovascular disease in primary Sjögren’s syndrome (SjD): A 20-year follow-up study. Clin. Rheumatol. 2023, 42, 3021–3031. [Google Scholar] [CrossRef]
- Yang, D.H.; Wang, Y.H.; Pan, L.F.; Wei, J.C. Cardiovascular Protection of Hydroxychloroquine in Patients with Sjögren’s Syndrome. J. Clin. Med. 2020, 9, 3469. [Google Scholar] [CrossRef]
- Balarini, G.M.; Zandonade, E.; Tanure, L.; Ferreira, G.A.; Sardenberg, W.M.; Serrano, É.V.; Dias, C.C.; Navarro, T.P.; Nordal, H.H.; Mydel, P.M.; et al. Serum calprotectin is a biomarker of carotid atherosclerosis in patients with primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2016, 34, 1006–1012. [Google Scholar]
- Hou, Q.; Jiang, J.; Na, K.; Zhang, X.; Liu, D.; Jing, Q.; Yan, C.; Han, Y. Bioinformatics analyses of potentially common pathogenic networks for primary Sjögren’s syndrome complicated with acute myocardial infarction. Sci. Rep. 2023, 13, 19276. [Google Scholar] [CrossRef]
- Bianconi, V.; Cafaro, G.; Mannarino, M.R.; Perricone, C.; Cosentini, E.; Bistoni, O.; Paltriccia, R.; Lombardini, R.; Gerli, R.; Pirro, M.; et al. Exploring the Link between Plasma Levels of PCSK9, Immune Dysregulation and Atherosclerosis in Patients with Primary Sjögren’s Syndrome. Biomolecules 2023, 13, 1384. [Google Scholar] [CrossRef]
- Drosos, G.C.; Konstantonis, G.; Sfikakis, P.P.; Tektonidou, M.G. Underperformance of clinical risk scores in identifying vascular ultrasound-based high cardiovascular risk in systemic lupus erythematosus. Eur. J. Prev. Cardiol. 2021, 28, 346–352. [Google Scholar] [CrossRef]
- Colaco, K.; Ocampo, V.; Ayala, A.P.; Harvey, P.; Gladman, D.D.; Piguet, V.; Eder, L. Predictive utility of cardiovascular risk prediction algorithms in inflammatory rheumatic diseases: A systematic review. J. Rheumatol. 2020, 47, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Dijkshoorn, B.; Raadsen, R.; Nurmohamed, M.T. Cardiovascular Disease Risk in Rheumatoid Arthritis Anno 2022. J. Clin. Med. 2022, 11, 2704. [Google Scholar] [CrossRef] [PubMed]
- Semalulu, T.; Tago, A.; Zhao, K.; Tselios, K. Managing Cardiovascular Risk in Systemic Lupus Erythematosus: Considerations for the Clinician. Immunotargets Ther. 2023, 12, 175–186. [Google Scholar] [CrossRef]
- Urowitz, M.B.; Ibañez, D.; Su, J.; Gladman, D.D. Modified Framingham risk factor score for systemic lupus erythematosus. J. Rheumatol. 2016, 43, 875–879. [Google Scholar] [CrossRef]
- Wahlin, B.; Innala, L.; Magnusson, S.; Möller, B.; Smedby, T.; Rantapää-Dahlqvist, S.; Wållberg-Jonsson, S. Performance of the Expanded Cardiovascular Risk Prediction Score for Rheumatoid Arthritis Is Not Superior to the ACC/AHA Risk Calculator. J. Rheumatol. 2019, 46, 130–137. [Google Scholar] [CrossRef]
- Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.Á.; et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Hu, B.; Yang, B.; Wei, R.; Rong, S.; Li, B. Establishment and evaluation of a risk prediction model for coronary heart disease in primary Sjögren’s syndrome based on peripheral blood IL-6 and Treg percentages. Front. Immunol. 2024, 15, 1440370. [Google Scholar] [CrossRef] [PubMed]
- Kintrilis, N.; Gravani, F.; Rapti, A.; Papaioannou, M.; Flessa, C.M.; Nezos, A.; Antypa, E.; Papadaki, I.; Karageorgas, Τ.; Moutsopoulos, H.M.; et al. Subclinical atherosclerosis profiles in rheumatoid arthritis and primary Sjögren’s syndrome: The impact of BAFF genetic variations. Rheumatology 2023, 62, 958–968. [Google Scholar] [CrossRef]
- Pu, J.; Song, J.; Pan, S.; Zhuang, S.; Gao, R.; Liang, Y.; Wu, Z.; Wang, Y.; Zhang, Y.; Yang, L.; et al. Predicting cardiovascular risk in a Chinese primary Sjögren’s syndrome population: Development and assessment of a predictive nomogram. Ther. Adv. Chronic Dis. 2023, 14, 20406223231181490. [Google Scholar] [CrossRef]
- Carubbi, F.; Alunno, A.; Mai, F.; Mercuri, A.; Centorame, D.; Cipollone, J.; Mariani, F.M.; Rossi, M.; Bartoloni, E.; Grassi, D.; et al. Adherence to the Mediterranean diet and the impact on clinical features in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2021, 39, 190–196. [Google Scholar] [CrossRef]
- Alunno, A.; Carubbi, F.; Mariani, F.M.; Martini, C.; Campanozzi, E.; Ferri, C. The Interplay between Cardiovascular Risk, Cardiovascular Events, and Disease Activity in Primary Sjögren’s Syndrome: Is Uric Acid the Missing Link? Nutrients 2023, 15, 1563. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Qin, L.; Zhang, Y.; Yang, X.; Wang, H. Relationship between serum uric acid and hypertension in patients with primary Sjögren’s syndrome: A retrospective cohort study. J. Clin. Hypertens 2022, 24, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Cleveland, J.D. The risk of Sjogren’s syndrome in the older adults with gout: A medicare claims study. Jt. Bone Spine 2019, 86, 615–619. [Google Scholar] [CrossRef]
- Chaaya, C.; Raad, E.; Kahale, F.; Chelala, E.; Ziade, N.; Maalouly, G. Adherence to Mediterranean Diet and Ocular Dryness Severity in Sjögren’s Syndrome: A Cross-Sectional Study. Med. Sci. 2025, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Karataş, E.; Taştekin, F.; Yargucu Zihni, F.; Barutçuoğlu, B.; Karabulut, G. Association of the energy-adjusted dietary inflammatory index and Sjögren’s syndrome: A cross-sectional study. Br. J. Nutr. 2025, 133, 1422–1430. [Google Scholar] [CrossRef]
- Chang, S.H.; Choi, Y. Gut dysbiosis in autoimmune diseases: Association with mortality. Front. Cell Infect. Microbiol. 2023, 13, 1157918. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Sniffen, S.; McGill Percy, K.C.; Pallaval, V.B.; Chidipi, B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022, 10, 108. [Google Scholar] [CrossRef]
- Dicks, L.M.T. Butyrate Produced by Gut Microbiota Regulates Atherosclerosis: A Narrative Review of the Latest Findings. Int. J. Mol. Sci. 2025, 26, 6744. [Google Scholar] [CrossRef]
- Szymula, A.; Rosenthal, J.; Szczerba, B.M.; Bagavant, H.; Fu, S.M.; Deshmukh, U.S. T cell epitope mimicry between Sjögren’s syndrome antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin. Immunol. 2014, 152, 1–9. [Google Scholar] [CrossRef]
- Belvoncikova, P.; Maronek, M.; Gardlik, R. Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 10729. [Google Scholar] [CrossRef]
- Freguia, C.F.; Pascual, D.W.; Fanger, G.R. Sjögren’s Syndrome Treatments in the Microbiome Era. Adv. Geriatr. Med. Res. 2023, 5, e230004. [Google Scholar] [CrossRef] [PubMed]
- Muttiah, B.; Hanafiah, A. Gut Microbiota and Cardiovascular Diseases: Unraveling the Role of Dysbiosis and Microbial Metabolites. Int. J. Mol. Sci. 2025, 26, 4264. [Google Scholar] [CrossRef]
- Tsigalou, C.; Stavropoulou, E.; Bezirtzoglou, E. Current Insights in Microbiome Shifts in Sjogren’s Syndrome and Possible Therapeutic Interventions. Front. Immunol. 2018, 9, 1106. [Google Scholar] [CrossRef]
- Ferro, M.; Charneca, S.; Dourado, E.; Guerreiro, C.S.; Fonseca, J.E. Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front. Pharmacol. 2021, 12, 711788. [Google Scholar] [CrossRef]
- Salehin, S.; Rasmussen, P.; Mai, S.; Mushtaq, M.; Agarwal, M.; Hasan, S.M.; Salehin, S.; Raja, M.; Gilani, S.; Khalife, W.I. Plant Based Diet and Its Effect on Cardiovascular Disease. Int. J. Environ. Res. Public Health 2023, 20, 3337. [Google Scholar] [CrossRef]
- Raj, S.; Guest, N.S.; Landry, M.J.; Mangels, A.R.; Pawlak, R.; Rozga, M. Vegetarian Dietary Patterns for Adults: A Position Paper of the Academy of Nutrition and Dietetics. J. Acad. Nutr. Diet 2025, 125, 831–846.e2. [Google Scholar] [CrossRef]
- Goldner, B.; Staffier, K.L. Case series: Raw, whole, plant-based nutrition protocol rapidly reverses symptoms in three women with systemic lupus erythematosus and Sjögren’s syndrome. Front. Nutr. 2024, 11, 1208074. [Google Scholar] [CrossRef] [PubMed]
- Kibret, K.T.; Peeters, A.; Tegegne, T.K.; Mesfin, Y.M.; Nichols, M. Intermittent Fasting for the Prevention of Cardiovascular Disease Risks: Systematic Review and Network Meta-Analysis. Curr. Nutr. Rep. 2025, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Onodera, S.; Deng, S.; Alnujaydi, B.; Yu, Q.; Zhou, J. Alternate-Day Fasting Ameliorates Newly Established Sjögren’s Syndrome-like Sialadenitis in Non-Obese Diabetic Mice. Int. J. Mol. Sci. 2022, 23, 13791. [Google Scholar] [CrossRef]
- Li, D.; Onodera, S.; Yu, Q.; Zhou, J. The impact of alternate-day fasting on the salivary gland stem cell compartments in non-obese diabetic mice with newly established Sjögren’s syndrome. Biochim. Biophys. Acta Mol Cell Res. 2024, 1871, 119817. [Google Scholar] [CrossRef]
- Barati, M.; Ghahremani, A.; Namdar Ahmadabad, H. Intermittent fasting: A promising dietary intervention for autoimmune diseases. Autoimmun. Rev. 2023, 22, 103408. [Google Scholar] [CrossRef]
- Askarizadeh, F.; Karav, S.; Jamialahmadi, T.; Sahebkar, A. Impact of statin therapy on CD40:CD40L signaling: Mechanistic insights and therapeutic opportunities. Pharmacol. Rep. 2025, 77, 43–71. [Google Scholar] [CrossRef]
- Chamani, S.; Kooshkaki, O.; Moossavi, M.; Rastegar, M.; Soflaei, S.S.; McCloskey, A.P.; Banach, M.; Sahebkar, A. The effects of statins on the function and differentiation of blood cells. Arch. Med. Sci. 2022, 19, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Aminifar, E.; Tavakkol Afshari, H.S.; Sathyapalan, T.; Abbasifard, M.; Sahebkar, A. The pleiotropic effects of statins in rheumatoid arthritis. J. Pharm. Pharmacol. 2023, 75, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, S.; Maric, G.; Cvetinovic, N.; Lepojevic-Stefanovic, D.; Bozic Cvijan, B. Anti-Inflammatory Effects of Lipid-Lowering Drugs and Supplements-A Narrative Review. Nutrients 2023, 15, 1517. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nat. Rev. Immunol. 2006, 6, 358–370. [Google Scholar] [CrossRef]
- Weber, B.; Liao, K.P.; DiCarli, M.; Blankstein, R. Cardiovascular disease prevention in individuals with underlying chronic inflammatory disease. Curr. Opin. Cardiol. 2021, 36, 549–555. [Google Scholar] [CrossRef]
- Jorge, A.M.; Lu, N.; Keller, S.F.; Rai, S.K.; Zhang, Y.; Choi, H.K. The Effect of Statin Use on Mortality in Systemic Autoimmune Rheumatic Diseases. J. Rheumatol. 2018, 45, 1689–1695. [Google Scholar] [CrossRef]
- Petri, M.A.; Kiani, A.N.; Post, W.; Christopher-Stine, L.; Magder, L.S. Lupus Atherosclerosis Prevention Study (LAPS). Ann. Rheum. Dis. 2011, 70, 760–765. [Google Scholar] [CrossRef]
- Lu, Y.W.; Wang, J.Y.; Lin, H.J.; Chung, W.S. Increased risk of rhabdomyolysis in patients using statins: A population-based case-control study. Ther. Adv. Drug. Saf. 2025, 16, 20420986251365746. [Google Scholar] [CrossRef]
- Shi, Z.; Han, S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025, 11, e41629. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jimenez, L.; Morales-Palomo, F.; Moreno-Cabañas, A.; Ortega, J.F.; Mora-Rodríguez, R. Effects of Statin Therapy on Glycemic Control and Insulin Resistance: A Systematic Review and Meta-Analysis. Eur. J. Pharmacol. 2023, 947, 175672. [Google Scholar] [CrossRef]
- Singh, H.; Sikarwar, P.; Khurana, S.; Sharma, J. Assessing the incidence of new-onset diabetes mellitus with statin use: A systematic review of the systematic reviews and meta-analyses. touchREV. Endocrinol. 2022, 18, 96–101. [Google Scholar] [CrossRef]
- Safarova, M.S.; Weintraub, S.; Sadaniantz, K.; Kovell, L.; Warden, B.A.; Garshick, M.S.; Duell, P.B.; Gianos, E. Statin Use in Special Populations for the Prevention of Cardiovascular Disease in Adults. Curr. Atheroscler. Rep. 2025, 27, 54. [Google Scholar] [CrossRef] [PubMed]
- Sandino-Bermúdez, M.J.; Hernández-Molina, G. Hydroxychloroquine and Sjögren’s disease: Current evidences for its use. Jt. Bone Spine 2025, 92, 105799. [Google Scholar] [CrossRef]
- Rekedal, L.R.; Massarotti, E.; Garg, R.; Bhatia, R.; Gleeson, T.; Lu, B.; Solomon, D.H. Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum. 2010, 62, 3569–3573. [Google Scholar] [CrossRef]
- Restrepo, J.F.; Del Rincon, I.; Molina, E.; Battafarano, D.F.; Escalante, A. Use of Hydroxychloroquine Is Associated with Improved Lipid Profile in Rheumatoid Arthritis Patients. J. Clin. Rheumatol. 2017, 23, 144–148. [Google Scholar] [CrossRef]
- Casian, M.; Jurcut, C.; Dima, A.; Mihai, A.; Stanciu, S.; Jurcut, R. Cardiovascular Disease in Primary Sjögren’s Syndrome: Raising Clinicians’ Awareness. Front. Immunol. 2022, 13, 865373. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, G.; Perricone, C.; Riccucci, I.; Bursi, R.; Calvacchi, S.; Alunno, A.; Carubbi, F.; Gerli, R.; Bartoloni, E. Traditional and disease-related non-computed variables affect algorithms for cardiovascular risk estimation in Sjögren’s syndrome and rheumatoid arthritis. Clin. Exp. Rheumatol. 2021, 39, 107–113. [Google Scholar] [CrossRef]
- Atzeni, F.; Gozza, F.; Cafaro, G.; Perricone, C.; Bartoloni, E. Cardiovascular Involvement in Sjögren’s Syndrome. Front. Immunol. 2022, 13, 879516. [Google Scholar] [CrossRef] [PubMed]
Risk Factors | Findings in the Literature | References |
---|---|---|
Relative risk of CVD in SjD patients |
| [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] |
Traditional CVD risk factors |
| [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] |
Risk factors specific to SjD |
| [38,39,69,70,71,72,73,74,75,76,77,78] |
Surveillance and Diagnostic Tool | Application | References |
---|---|---|
Ultrasound |
| [110,111,112,113,114] |
Echocardiogram and cardiac magnetic resonance imaging |
| [115,116,117,118,119,120,121,122,123] |
Lipid profile and blood biomarkers |
| [63,73,130,132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behbodikhah, J.; Ding, B.; Jacob, B.; Batool, N.; Belilos, E.; De Leon, J.; Carsons, S.E.; Reiss, A.B. Sjogren’s Disease and Elevated Cardiovascular Risk: Mechanisms and Treatment. J. Cardiovasc. Dev. Dis. 2025, 12, 367. https://doi.org/10.3390/jcdd12090367
Behbodikhah J, Ding B, Jacob B, Batool N, Belilos E, De Leon J, Carsons SE, Reiss AB. Sjogren’s Disease and Elevated Cardiovascular Risk: Mechanisms and Treatment. Journal of Cardiovascular Development and Disease. 2025; 12(9):367. https://doi.org/10.3390/jcdd12090367
Chicago/Turabian StyleBehbodikhah, Jennifer, Billy Ding, Belin Jacob, Nuzhat Batool, Elise Belilos, Joshua De Leon, Steven E. Carsons, and Allison B. Reiss. 2025. "Sjogren’s Disease and Elevated Cardiovascular Risk: Mechanisms and Treatment" Journal of Cardiovascular Development and Disease 12, no. 9: 367. https://doi.org/10.3390/jcdd12090367
APA StyleBehbodikhah, J., Ding, B., Jacob, B., Batool, N., Belilos, E., De Leon, J., Carsons, S. E., & Reiss, A. B. (2025). Sjogren’s Disease and Elevated Cardiovascular Risk: Mechanisms and Treatment. Journal of Cardiovascular Development and Disease, 12(9), 367. https://doi.org/10.3390/jcdd12090367