Targeting Telomere Shortening in Vascular Aging and Atherosclerosis: Therapeutic Promise of Astragalus membranaceus
Abstract
1. Introduction
2. Overview of Telomere Biology
3. Astragalus membranaceus and Its Active Compounds
4. Anti-Senescence Mechanisms and Anti-Aging-Related Effects of Astragalus and Its Chemical Constituents
4.1. Preclinical and Animal Evidence
4.2. Human Investigation Studies
5. Astragalus in Vascular Cells and Atherosclerosis
5.1. Effects on HUVEC
5.2. Effects on VSMCs
5.3. In Vivo Effects on Atherosclerosis and Plaque
5.4. Human Clinical Studies
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA1 | ATP-Binding Cassette Transporter A1 |
Akt | Protein Kinase B pathway |
AM | Astragalus membranaceus |
APS | Astragalus Polysaccharide |
AS IV | Astragaloside IV |
ATP | Adenosine Triphosphate |
CAG | Cycloastragenol |
CDK2 | Cyclin-Dependent Kinase 2 |
CLIC4 | Chloride Intracellular Channel 4 |
COPD | Chronic Obstructive Pulmonary Disease |
CREB | cAMP Response Element-Binding Protein |
CXCR4 | CXC Chemokine Receptor 4 |
DUSP5 | Dual Specificity Phosphatase 5 |
eNOS | Endothelial Nitric Oxide Synthase |
ERK | Regulated Protein Kinase |
HCY | Homocysteine |
HDAC9 | Histone Deacetylase 9 |
HDL | High-Density Lipoprotein |
HEK293 | Human Embryonic Kidney 293 Cells |
HFD | High-Fat Diet |
HIF-1α | Hypoxia-Inducible Factor 1-alpha |
HO-1 | Heme Oxygenase-1 |
HUVECs | Human Umbilical Vein Endothelial Cells |
IL-6 /IL-18/IL-1β | Interleukin-6/-18/-1 beta |
iNOS | inducible Nitric Oxide Synthase |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
LDL | Low Density Lipoprotein |
lncRNA H19 | Long non-coding RNA H19 |
MAPK | Mitogen-Activated Protein Kinase |
MEFs | Mouse Embryonic Fibroblasts |
MEK | Mitogen-Activated Protein Kinase Kinase |
MMP-9 | Matrix Metalloproteinase-9 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NO | Nitric Oxide |
NOX | NADPH Oxidase |
NRF2 | Nuclear factor erythroid 2-Related Factor 2 |
PI3K | Phosphoinositide 3-Kinase |
POT1 | Telomere Protection 1 |
PPAR-γ | Peroxisome Proliferator-Activated Receptor gamma |
PTEN | Phosphatase and Tensin Homolog |
RAP1 | Repressor Activator Protein 1 |
ROS | Reactive Oxygen Species |
SASP | Senescence-Associated Secretory Phenotype |
SDF-1 | Stromal cell-Derived Factor-1 |
SOD | Superoxide Dismutase |
Src | Proto-oncogene tyrosine-protein kinase Src |
TA-65 | Telomerase Activator-65 |
TERC | Telomerase RNA Component |
TERRA | Telomeric Repeat-Containing RNA |
TERT | Telomerase Reverse Transcriptase |
TGF-β1 | Transforming Growth Factor Beta 1 |
TIN2 | TRF1-Interacting Nuclear Protein 2 |
TLR4 | Toll-Like Receptor 4 |
TNF-α | Tumor Necrosis Factor-alpha |
TPP1 | Telomere Protection Protein 1 |
TRF1 | Telomere Repeat Binding Factors 1 |
TRF2 | Telomere Repeat Binding Factors 1 |
VCAM-1 | Vascular Cell Adhesion Molecule 1 |
VSMCs | Vascular Smooth Muscle Cells |
References
- Andreassi, M.G. DNA damage, vascular senescence and atherosclerosis. J. Mol. Med. 2008, 86, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Minamino, T.; Komuro, I. Role of telomeres in vascular senescence. Front. Biosci. 2008, 13, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Sorond, F.; Merkely, B.; Csiszar, A. Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 3, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.; Herrmann, M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J. Cardiovasc. Dev. Dis. 2020, 7, 29. [Google Scholar] [CrossRef]
- Yin, H.; Pickering, J.G. Telomere Length: Implications for Atherogenesis. Curr. Atheroscler. Rep. 2023, 25, 95–103. [Google Scholar] [CrossRef]
- Haycock, P.C.; Heydon, E.E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2014, 349, g4227. [Google Scholar] [CrossRef]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Paré, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef]
- Emami, M.; Agbaedeng, T.A.; Thomas, G.; Middeldorp, M.E.; Thiyagarajah, A.; Wong, C.X.; Elliott, A.D.; Gallagher, C.; Hendriks, J.M.L.; Lau, D.H.; et al. Accelerated Biological Aging Secondary to Cardiometabolic Risk Factors Is a Predictor of Cardiovascular Mortality: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2022, 38, 365–375. [Google Scholar] [CrossRef]
- Li, C.; Stoma, S.; Lotta, L.A.; Warner, S.; Albrecht, E.; Allione, A.; Arp, P.P.; Broer, L.; Buxton, J.L.; Alves, A.D.S.C.; et al. Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. Am. J. Hum. Genet. 2020, 106, 389–404. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Q.; Zhou, F.; Li, G.; Liu, J.; Lv, J.; Li, L.; Chang, D. Telomere length and the risk of cardiovascular diseases: A Mendelian randomization study. Front. Cardiovasc. Med. 2022, 9, 1012615. [Google Scholar] [CrossRef]
- Qin, S.; Sheng, Z.; Chen, C.; Cao, Y. Genetic relationship between ageing and coronary heart disease: A Mendelian randomization study. Eur. Geriatr. Med. 2024, 15, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.K.; Lin, M.H.; Wang, C.Y. Telomeres as Therapeutic Targets in Heart Disease. JACC Basic. Transl. Sci. 2019, 4, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, K.; Tousoulis, D. Telomere Length: A Cardiovascular Biomarker and a Novel Therapeutic Target. Int. J. Mol. Sci. 2022, 23, 16010. [Google Scholar] [CrossRef]
- Liu, Y.X.; Song, X.; Dan, L.W.; Tang, J.M.; Jiang, Y.; Deng, C.; Zhang, D.D.; Li, Y.Z.; Wang, W. Astragali Radix: Comprehensive review of its botany, phytochemistry, pharmacology and clinical application. Arch. Pharm. Res. 2024, 47, 165–218. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Q.; Chen, H.W.; Li, J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug. Des. Devel. Ther. 2020, 14, 3731–3746. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, H.; Zhang, Y.; Cheng, Z.; Wan, M.; Qin, W.; Li, P.; Feng, J.; Shao, S.; Xue, W.; et al. Recent pharmacological advances in the treatment of cardiovascular events with Astragaloside IV. Biomed. Pharmacother. 2023, 168, 115752. [Google Scholar] [CrossRef]
- Li, M.; Han, B.; Zhao, H.; Xu, C.; Xu, D.; Sieniawska, E.; Lin, X.; Kai, G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine 2022, 98, 153918. [Google Scholar] [CrossRef]
- Yang, C.; Pan, Q.; Ji, K.; Tian, Z.; Zhou, H.; Li, S.; Luo, C.; Li, J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front. Pharmacol. 2023, 14, 1187910. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef]
- Blasco, M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007, 3, 640–649. [Google Scholar] [CrossRef]
- Li, X.; Qu, L.; Dong, Y.; Han, L.; Liu, E.; Fang, S.; Zhang, Y.; Wang, T. A review of recent research progress on the astragalus genus. Molecules 2014, 19, 18850–18880. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Li, C.; Lu, L.; Zhang, Q.; Zhu, R.; Wang, W. A Review of Chinese Herbal Medicine for the Treatment of Chronic Heart Failure. Curr. Pharm. Des. 2017, 23, 5115–5124. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Xiao, J.; Guo, Q.; Du, J.; Jiang, Z.; Lu, S.; Zhang, H.; Zhang, X.; Wang, X. Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis. Exp. Ther. Med. 2021, 22, 1326. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhou, L.; Yang, Y.; Liu, Y. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp. Ther. Med. 2018, 16, 2175–2182. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Wang, G.; Gu, W.; Zhao, S.; Hu, X.; Liu, W.; Cai, Y.; Ma, Z.; Gautam, R.K.; et al. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem. Biol. Interact. 2023, 382, 110631. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother. 2020, 121, 109570. [Google Scholar] [CrossRef]
- Yung, L.Y.; Lam, W.S.; Ho, M.K.; Hu, Y.; Ip, F.C.; Pang, H.; Chin, A.C.; Harley, C.B.; Ip, N.Y.; Wong, Y.H. Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types. Planta Med. 2012, 78, 115–121. [Google Scholar] [CrossRef]
- Ip, F.C.; Ng, Y.P.; An, H.J.; Dai, Y.; Pang, H.H.; Hu, Y.Q.; Chin, A.C.; Harley, C.B.; Wong, Y.H.; Ip, N.Y. Cycloastragenol is a potent telomerase activator in neuronal cells: Implications for depression management. Neurosignals 2014, 22, 52–63. [Google Scholar] [CrossRef]
- Hemann, M.T.; Strong, M.A.; Hao, L.Y.; Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001, 107, 67–77. [Google Scholar] [CrossRef]
- Bernardes de Jesus, B.; Schneeberger, K.; Vera, E.; Tejera, A.; Harley, C.B.; Blasco, M.A. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 2011, 10, 604–621. [Google Scholar] [CrossRef]
- Le Saux, C.J.; Davy, P.; Brampton, C.; Ahuja, S.S.; Fauce, S.; Shivshankar, P.; Nguyen, H.; Ramaseshan, M.; Tressler, R.; Pirot, Z.; et al. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS ONE 2013, 8, 58423. [Google Scholar] [CrossRef]
- Breitschopf, A.M.; Zeiher, S.; Dimmeler, S. Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett. 2001, 493, 21–25. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, H.; Luo, Y. Anti-aging implications of Astragalus membranaceus (Huangqi): A well-known Chinese tonic. Aging Dis. 2017, 8, 868. [Google Scholar] [CrossRef] [PubMed]
- Tiendrébéogo, A.J.F.; Soumagne, T.; Pellegrin, F.; Dagouassat, M.; Tran Van Nhieu, J.; Caramelle, P.; Paul, E.N.; Even, B.; Zysman, M.; Julé, Y.; et al. The telomerase activator TA-65 protects from cigarette smoke-induced small airway remodeling in mice through extra-telomeric effects. Sci. Rep. 2023, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Salvador, L.; Singaravelu, G.; Harley, C.B.; Flom, P.; Suram, A.; Raffaele, J.M. A Natural Product Telomerase Activator Lengthens Telomeres in Humans: A Randomized, Double Blind, and Placebo Controlled Study. Rejuvenation Res. 2016, 19, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Singaravelu, G.; Harley, C.B.; Raffaele, J.M.; Sudhakaran, P.; Suram, A. Double-blind, placebo-controlled, randomized clinical trial demonstrates telomerase activator TA-65 decreases immunosenescent CD8+ CD28− T cells in humans. OBM Geriatr. 2021, 5, 1–26. [Google Scholar] [CrossRef]
- De Jaeger, C.; Kruiskamp, S.; Voronska, E.; Lamberti, C.; Baramki, H.; Beaudeux, J.L.; Cherin, P. A Natural Astragalus-Based Nutritional Supplement Lengthens Telomeres in a Middle-Aged Population: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024, 16, 2963. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III-27–III-32. [Google Scholar] [CrossRef]
- Leng, B.; Tang, F.; Lu, M.; Zhang, Z.; Wang, H.; Zhang, Y. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci. 2018, 209, 111–121. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, X.; Feng, Q.; Chen, J.; Shen, L.; Yu, P.; Yang, L.; Chen, D.; Zhang, H.; Sun, W.; et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 2019, 227, 82–93. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Lu, L.; Zhao, X.; Gao, X.; Wang, Y. Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1α accumulation via phosphatidylinositol 3-kinase/Akt pathway. J. Pharmacol. Exp. Ther. 2011, 338, 485–491. [Google Scholar] [CrossRef]
- Wang, S.G.; Xu, Y.; Chen, J.D.; Yang, C.H. Astragaloside IV stimulates angiogenesis and increases nitric oxide accumulation via JAK2/STAT3 and ERK1/2 pathway. Molecules 2013, 18, 12809–12819. [Google Scholar] [CrossRef]
- Xu, C.; Tang, F.; Lu, M.; Yang, J.; Han, R.; Mei, M.; Hu, J.; Wang, H. Pretreatment with Astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase–ROS–NF-κB pathway. Can. J. Physiol. Pharmacol. 2016, 94, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, J.; Zhang, X. Astragaloside IV protects against oxidized low- density lipoprotein (ox-LDL)-Induced endothelial cell injury by reducing oxidative stress and inflammation. Med. Sci. Monit. 2019, 25, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.H.; Xie, X.J.; Zhang, B.Q. Astragaloside IV improves homocysteine-induced acute phase endothelial dysfunction via antioxidation. Biol. Pharm. Bull. 2010, 33, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Liu, Z.; Liu, S.; Lin, N.; Deng, Y. Astragaloside IV alleviates atherosclerosis through targeting circ_0000231/miR-135a-5p/CLIC4 axis in AS cell model in vitro. Mol. Cell. Biochem. 2021, 476, 1783–1795. [Google Scholar] [CrossRef]
- Chen, D.; Du, Y.; Ye, S.; Yu, J. Astragaloside IV protects against oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells via the histone deacetylase 9 (HDAC9)/NF-κB axis. Environ. Toxicol. 2023, 38, 534–544. [Google Scholar] [CrossRef]
- Doran, A.C.; Meller, N.; McNamara, C.A. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 812–819. [Google Scholar] [CrossRef]
- Zhang, Y.; Rong, H.; Zhang, F.X.; Wu, K.; Mu, L.; Meng, J.; Xiao, B.; Zamponi, G.W.; Shi, Y. A Membrane Potential- and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome. Cell Rep. 2018, 24, 2356–2369.e5. [Google Scholar] [CrossRef]
- De Boer, L.; Oakes, V.; Beamish, H.; Giles, N.; Stevens, F.; Somodevilla-Torres, M.; Desouza, C.; Gabrielli, B. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 2008, 27, 4261–4268. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Wu, H.; Bian, Z.; Xu, J.; Gu, C.; Chen, X.; Yang, D. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int. J. Mol. Med. 2015, 36, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, J.; Zhang, Y.; Hong, L.; He, Z.; Zeng, Z.; Zhang, L. Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy. Hum. Cell 2022, 35, 1684–1696. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wei, D.; Chen, Y.; Chen, L.; Bian, Y.; Shen, Y.; Chen, J.; Pan, Y. Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol. Appl. Pharmacol. 2019, 364, 45–54. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ma, Z.; Niu, J.; Ma, S.; Wenjie, W.; Chen, J. Combination of tanshinone IIA and astragaloside IV attenuate atherosclerotic plaque vulnerability in ApoE−/− mice by activating PI3K/AKT signaling and suppressing TRL4/NF-κB signaling. Biomed. Pharmacother. 2020, 123, 109729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, M.; Wang, J.; Liu, P. Astragaloside IV Relieves Atherosclerosis and Hepatic Steatosis viaMAPK/NF-κB Signaling Pathway in LDLR-/- Mice. Front Pharmacol. 2022, 13, 828161. [Google Scholar] [CrossRef]
- Sun, B.; Rui, R.; Pan, H.; Zhang, L.; Wang, X. Effect of combined use of astragaloside IV (asIV) and atorvastatin (AV) on expression of PPAR-γ and inflammation-associated cytokines in atherosclerosis rats. Med. Sci. Monit. 2018, 24, 6229–6236. [Google Scholar] [CrossRef]
- Qin, H.; Liu, P.; Lin, S. Effects of astragaloside IV on the SDF-1/CXCR4 expression in atherosclerosis of ApoE−/− mice induced by hyperlipaemia. Evid. Based Complement. Altern. Med. 2015, 2015, 385154. [Google Scholar]
- Zheng, Q.; Zhu, J.Z.; Bao, X.Y.; Zhu, P.C.; Tong, Q.; Huang, Y.Y.; Zhang, Q.H.; Zhang, K.J.; Zheng, G.Q.; Wang, Y. A Preclinical Systematic Review and Meta-Analysis of Astragaloside IV for Myocardial Ischemia/Reperfusion Injury. Front Physiol. 2018, 9, 795. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, K.; Wu, S.; Liu, L.; Qiang, C.; Lin, X.; Liu, B. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins. PLoS ONE 2011, 6, e27437. [Google Scholar] [CrossRef]
- Mei, C.L.; Chen, Z.J.; Liao, Y.H.; Wang, Y.F.; Peng, H.Y.; Chen, Y. Interleukin-10 inhibits the down-regulation of ATP binding cassette transporter A1 by tumour necrosis factor-alpha in THP-1 macrophage-derived foam cells. Cell Biol. Int. 2007, 31, 1456–1461. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.F.; Yang, X.F.; Wang, Z.H.; Lian, Y.T.; Yang, Y.; Li, X.W.; Gao, X.; Chen, J.; Shu, Y.W.; et al. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J. Lipid Res. 2013, 54, 34–43. [Google Scholar] [CrossRef]
- Li, S.Q.; Yuan, R.X.; Gao, H. Clinical observation on the treatment of ischemic heart disease with Astragalus membranaceus. Chin. J. Integr. Med. 1995, 15, 77–80. [Google Scholar]
- Lei, Z.Y.; Qin, H.; Liao, J.Z. Action of Astragalus membranaceus on left ventricular function of angina pectoris. Chin. J. Integr. Med. 1994, 14, 199–202. [Google Scholar]
- Fernandez, M.L.; Thomas, M.S.; Lemos, B.S.; DiMarco, D.M.; Missimer, A.; Melough, M.; Chun, O.K.; Murillo, A.G.; Alyousef, H.M.; Medina-Vera, I. TA-65, A Telomerase Activator improves Cardiovascular Markers in Patients with Metabolic Syndrome. Curr. Pharm. Des. 2018, 24, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Bawamia, B.; Spray, L.; Wangsaputra, V.K.; Bennaceur, K.; Vahabi, S.; Stellos, K.; Kharatikoopaei, E.; Ogundimu, E.; Gale, C.P.; Keavney, B.; et al. Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. GeroScience 2023, 45, 2689–2705. [Google Scholar] [CrossRef]
- Mir, S.M.; Samavarchi Tehrani, S.; Goodarzi, G.; Jamalpoor, Z.; Asadi, J.; Khelghati, N.; Qujeq, D.; Maniati, M. Shelterin Complex at Telomeres: Implications in Ageing. Clin. Interv. Aging 2020, 15, 827–839. [Google Scholar] [CrossRef]
- Canale, P.; Campolo, J.; Borghini, A.; Andreassi, M.G. Long Telomeric Repeat-Containing RNA (TERRA): Biological Functions and Challenges in Vascular Aging and Disease. Biomedicines 2023, 11, 3211. [Google Scholar] [CrossRef]
- Aschacher, T.; Wolf, B.; Enzmann, F.; Kienzl, P.; Messner, B.; Sampl, S.; Svoboda, M.; Mechtcheriakova, D.; Holzmann, K.; Bergmann, M. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene 2016, 35, 94–104. [Google Scholar] [CrossRef]
Author | Cell Type | Models | Observed Effects | Proposed Mechanism |
---|---|---|---|---|
Cheng et al. [40] | HUVECs | — | Promotes proliferation and angiogenic activity | Suppression of PTEN expression and activation of the PI3K/Akt pathway |
Zhang et al. [41] | HUVECs | Hypoxia exposure | Stimulated angiogenic activity | Activation of PI3K/Akt pathway and upregulation of HIF-1α |
Wang et al. [42] | HUVECs | — | Enhanced endothelial cell proliferation, migration, and tube formation | Activation of ERK1/2 and JAK2/STAT3 pathways |
Xu et al. [43] | HUVECs | H2O2-induced oxidative injury | Enhanced NO availability through inhibition of eNOS uncoupling | Inhibition of ROS/NF-κB pathway |
Zhu et al. [44] | HUVECs | ox-LDL exposure | Promoted cell migration and motility; decreased ROS and NOX | Activation of Nrf2/HO-1 axis |
Qiu et al. [45] | HUVECs | Homocysteine-induced endothelial injury | Reduced ROS, increased SOD activity, and improved cellular redox balance | Antioxidant activity and redox homeostasis restoration |
Shao et al. [46] | HUVECs | ox-LDL exposure | Decreased apoptosis, oxidative stress, and pro-inflammatory cytokine | Modulation of circ_0000231/miR-135a-5p/CLIC4 axis |
Chen et al. [47] | HUVECs | ox-LDL stimulation | Reduced apoptosis and oxidative stress | Inactivation of the NF-κB pathway through the regulation of HDAC9 |
Zhang et al. [49] | Rat VSMCs | Angiotensin II stimulation | Arresting cell cycle progression | Downregulation of CDK2 activity |
Lu et al. [51] | Rat VSMCs | Angiotensin II stimulation | Enhanced mitochondrial function and biogenesis | Increased SOD activity and reduction in ROS |
Li et al. [52] | VSMCs | Bleomycin-induced senescence | Restored mitochondrial integrity, promoted mitophagy | Parkin-mediated mitophagy |
Song et al. [53] | VSMCs | Calcification model | Inhibited mineralization and autophagy | Upregulation of lncRNA H19 and inhibition of DUSP5 expression |
Author | Animal Model | Observed Effects | Proposed Mechanism |
---|---|---|---|
Song et al. [53] | ApoE−/− mice + HFD | Reduced autophagy and mineralization in the thoracic aorta | Protective effect against VSMCs dysfunction |
Wang et al. [54] | ApoE−/− mice + HFD | Decreased lipid-rich plaque areas; increased collagen content and fibrous cap thickness | Regulation of PI3K/Akt and TLR4/NF-κB pathways; inhibition of MMP-9; anti-inflammatory activity |
Zhang et al. [55] | LDLR−/− mice + HFD | Reduced NF-κB p65 expression and serum/aortic/liver cytokine levels | Inhibition of MAPK/NF-κB pathway and reduced iNOS, VCAM-1, and IL-6 phosphorylation |
Sun et al. [56] | Rats + HFD | Decreased serum ox-LDL, TNF-α, IL-6, and IL-18; suppressed plaque progression | NF-κB inhibition; upregulation of PPAR-γ |
Qin et al. [57] | ApoE−/− mice + HFD | Reduced severity of atherosclerosis | Modulation of the SDF-1/CXCR4 pathway |
Zheng et al. [58] | Multiple preclinical models | Anti-inflammatory and antioxidant actions in myocardial I/R injury | Multiple mechanisms (regulation of inflammation and oxidative stress) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canale, P.; Andreassi, M.G. Targeting Telomere Shortening in Vascular Aging and Atherosclerosis: Therapeutic Promise of Astragalus membranaceus. J. Cardiovasc. Dev. Dis. 2025, 12, 341. https://doi.org/10.3390/jcdd12090341
Canale P, Andreassi MG. Targeting Telomere Shortening in Vascular Aging and Atherosclerosis: Therapeutic Promise of Astragalus membranaceus. Journal of Cardiovascular Development and Disease. 2025; 12(9):341. https://doi.org/10.3390/jcdd12090341
Chicago/Turabian StyleCanale, Paola, and Maria Grazia Andreassi. 2025. "Targeting Telomere Shortening in Vascular Aging and Atherosclerosis: Therapeutic Promise of Astragalus membranaceus" Journal of Cardiovascular Development and Disease 12, no. 9: 341. https://doi.org/10.3390/jcdd12090341
APA StyleCanale, P., & Andreassi, M. G. (2025). Targeting Telomere Shortening in Vascular Aging and Atherosclerosis: Therapeutic Promise of Astragalus membranaceus. Journal of Cardiovascular Development and Disease, 12(9), 341. https://doi.org/10.3390/jcdd12090341