Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate
Abstract
1. Introduction
2. Major Trials in T-TEER
3. Echocardiographic and Anatomic Selection of T-TEER
4. T-TEER and Chronic Kidney Disease
5. T-TEER and AFTR
6. T-TEER and CIED
7. T-TEER and Primary TR
8. Future Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambrosino, M.; Sangoi, M.; Monzer, N.; Irving, B.; Fiorilli, P.; Khazan, B.; Goldberg, S. Tricuspid Regurgitation: A Review of Current Interventional Management. J. Am. Heart Assoc. 2024, 13, e032999. [Google Scholar] [CrossRef]
- Suc, G.; Mesnier, J.; Cailliau, A.; Habib, M.; Delhomme, C.; Arangalage, D.; Himbert, D.; Ducrocq, G.; Brochet, E.; Vahanian, A.; et al. Survival Outcomes in Isolated Severe Tricuspid Regurgitation According to Therapeutic Modalities: A Systematic Review and Meta-Analysis. Open Heart 2025, 12, e002986. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef]
- Hahn, R.T. Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1876–1891. [Google Scholar] [CrossRef]
- Shaban, M.; El Roumi, J.; Malik, M.A.; Arockiam, A.D.; Haroun, E.; Wang, T.K.M. Isolated Tricuspid Regurgitation: Insights into Pathophysiology, Advanced Diagnostics, and Emerging Therapeutic Strategies. Surgeries 2025, 6, 39. [Google Scholar] [CrossRef]
- Kilic, A.; Saha-Chaudhuri, P.; Rankin, J.S.; Conte, J.V. Trends and Outcomes of Tricuspid Valve Surgery in North America: An Analysis of More than 50,000 Patients from The Society of Thoracic Surgeons Database. Ann. Thorac. Surg. 2013, 96, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, J.; Flagiello, M.; Bazire, B.; Eggenspieler, F.; Viau, F.; Riant, E.; Mbaki, Y.; Bohbot, Y.; Eyharts, D.; Senage, T.; et al. Isolated Tricuspid Valve Surgery: Impact of Aetiology and Clinical Presentation on Outcomes. Eur. Heart J. 2020, 41, 4304–4317. [Google Scholar] [CrossRef] [PubMed]
- Scotti, A.; Sturla, M.; Granada, J.F.; Kodali, S.K.; Coisne, A.; Mangieri, A.; Godino, C.; Ho, E.; Goldberg, Y.; Chau, M.; et al. Outcomes of Isolated Tricuspid Valve Replacement: A Systematic Review and Meta-Analysis of 5,316 Patients from 35 Studies. EuroIntervention 2022, 18, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, J.; Audureau, E.; Bohbot, Y.; Coisne, A.; Lavie-Badie, Y.; Bouchery, M.; Flagiello, M.; Bazire, B.; Eggenspieler, F.; Viau, F.; et al. TRI-SCORE: A New Risk Score for in-Hospital Mortality Prediction after Isolated Tricuspid Valve Surgery. Eur. Heart J. 2022, 43, 654–662. [Google Scholar] [CrossRef]
- Dreyfus, J.; Galloo, X.; Taramasso, M.; Heitzinger, G.; Benfari, G.; Kresoja, K.-P.; Juarez-Casso, F.; Omran, H.; Bohbot, Y.; Iliadis, C.; et al. TRI-SCORE and Benefit of Intervention in Patients with Severe Tricuspid Regurgitation. Eur. Heart J. 2024, 45, 586–597. [Google Scholar] [CrossRef]
- Dreyfus, J.; Juarez-Casso, F.; Sala, A.; Carnero-Alcazar, M.; Eixerés-Esteve, A.; Bohbot, Y.; Bazire, B.; Flagiello, M.; Riant, E.; Mbaki, Y.; et al. Benefit of Isolated Surgical Valve Repair or Replacement for Functional Tricuspid Regurgitation and Long-Term Outcomes Stratified by the TRI-SCORE. Eur. Heart J. 2024, 45, 4512–4522. [Google Scholar] [CrossRef]
- Patel, K.P.; Baumbach, A. Timing Treatment for Tricuspid Regurgitation. Eur. Heart J. 2024, 45, 598–600. [Google Scholar] [CrossRef]
- Nickenig, G.; Kowalski, M.; Hausleiter, J.; Braun, D.; Schofer, J.; Yzeiraj, E.; Rudolph, V.; Friedrichs, K.; Maisano, F.; Taramasso, M.; et al. Transcatheter Treatment of Severe Tricuspid Regurgitation with the Edge-to-Edge MitraClip Technique. Circulation 2017, 135, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Mehr, M.; Taramasso, M.; Besler, C.; Ruf, T.; Connelly, K.A.; Weber, M.; Yzeiraj, E.; Schiavi, D.; Mangieri, A.; Vaskelyte, L.; et al. 1-Year Outcomes After Edge-to-Edge Valve Repair for Symptomatic Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2019, 12, 1451–1461. [Google Scholar] [CrossRef]
- Lurz, P.; Stephan von Bardeleben, R.; Weber, M.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.-N.; Nabauer, M.; Tang, G.H.L.; et al. Transcatheter Edge-to-Edge Repair for Treatment of Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2021, 77, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Lurz, P.; Rommel, K.-P.; Schmitz, T.; Bekeredjian, R.; Nickenig, G.; Möllmann, H.; von Bardeleben, R.S.; Schmeisser, A.; Atmowihardjo, I.; Estevez-Loureiro, R.; et al. Real-World 1-Year Results of Tricuspid Edge-to-Edge Repair from the BRIGHT Study. J. Am. Coll. Cardiol. 2024, 84, 607–616. [Google Scholar] [CrossRef]
- Wild, M.G.; Stolz, L.; Rosch, S.; Rudolph, F.; Goebel, B.; Köll, B.; von Stein, P.; Rottbauer, W.; Rassaf, T.; Beucher, H.; et al. Transcatheter Valve Repair for Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2025, 85, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Kodali, S.K.; Hahn, R.T.; Davidson, C.J.; Narang, A.; Greenbaum, A.; Gleason, P.; Kapadia, S.; Miyasaka, R.; Zahr, F.; Chadderdon, S.; et al. 1-Year Outcomes of Transcatheter Tricuspid Valve Repair. J. Am. Coll. Cardiol. 2023, 81, 1766–1776. [Google Scholar] [CrossRef]
- Nickenig, G.; Lurz, P.; Sorajja, P.; von Bardeleben, R.S.; Sitges, M.; Tang, G.H.L.; Hausleiter, J.; Trochu, J.-N.; Näbauer, M.; Heitkemper, M.; et al. Percutaneous Edge-to-Edge Repair for Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2024, 17, 2113–2122. [Google Scholar] [CrossRef]
- Arteagoitia Bolumburu, A.; Monteagudo Ruiz, J.M.; Mahia, P.; Pérez David, E.; González, T.; Sitges, M.; Li, C.-H.; Alonso, D.; Carrasco, F.; Luna Morales, M.; et al. Determinants of Tricuspid Regurgitation Progression and Its Implications for Adequate Management. JACC Cardiovasc. Imaging 2024, 17, 579–591. [Google Scholar] [CrossRef]
- Sorajja, P.; Whisenant, B.; Hamid, N.; Naik, H.; Makkar, R.; Tadros, P.; Price, M.J.; Singh, G.; Fam, N.; Kar, S.; et al. Transcatheter Repair for Patients with Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Makkar, R.R.; Whisenant, B.K.; Hamid, N.; Naik, H.; Tadros, P.; Price, M.J.; Singh, G.; Schwartz, J.G.; Kapadia, S.; et al. Two-Year Outcomes of Transcatheter Edge-to-Edge Repair for Severe Tricuspid Regurgitation: The TRILUMINATE Pivotal Randomized Controlled Trial. Circulation 2025, 151, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Dreyfus, J.; Leurent, G.; Coisne, A.; Leroux, P.-Y.; Ganivet, A.; Sportouch, C.; Lavie-Badie, Y.; Guerin, P.; Rouleau, F.; et al. Transcatheter Edge-to-Edge Repair for Severe Isolated Tricuspid Regurgitation. JAMA 2025, 333, 124. [Google Scholar] [CrossRef]
- Löw, K.; Orban, M.; Stocker, T.; Mehr, M.; Deseive, S.; Gmeiner, J.; Hagl, C.; Massberg, S.; Näbauer, M.; Hausleiter, J.; et al. Acute and Short-Term Results of MitraClip XTR vs. PASCAL Transcatheter Valve Repair System for Edge-to-Edge Repair of Severe Tricuspid Regurgitation. Struct. Heart 2021, 5, 510–517. [Google Scholar] [CrossRef]
- Adams, D.H.; Tang, G.H.L.; Whisenant, B.K.; Kodali, S.K.; Singh, G.D.; Fam, N.P.; Kar, S.; Price, M.J.; Spies, C.; Schwartz, J.G.; et al. Transcatheter Edge-to-Edge Repair in Patients with Complex Tricuspid Valve Anatomy. JACC Cardiovasc. Interv. 2024, 17, 2749–2760. [Google Scholar] [CrossRef]
- Praz, F.; Muraru, D.; Kreidel, F.; Lurz, P.; Hahn, R.T.; Delgado, V.; Senni, M.; von Bardeleben, R.S.; Nickenig, G.; Hausleiter, J.; et al. Transcatheter Treatment for Tricuspid Valve Disease. EuroIntervention 2021, 17, 791–808. [Google Scholar] [CrossRef] [PubMed]
- Hausleiter, J.; Stolz, L.; Lurz, P.; Rudolph, V.; Hahn, R.; Estévez-Loureiro, R.; Davidson, C.; Zahr, F.; Kodali, S.; Makkar, R.; et al. Transcatheter Tricuspid Valve Replacement. J. Am. Coll. Cardiol. 2025, 85, 265–291. [Google Scholar] [CrossRef]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; La Canna, G.; Pepi, M.; Dulgheru, R.; Dweck, M.; Delgado, V.; Garbi, M.; Vannan, M.A.; et al. Multi-Modality Imaging Assessment of Native Valvular Regurgitation: An EACVI and ESC Council of Valvular Heart Disease Position Paper. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e171–e232. [Google Scholar] [CrossRef]
- Stankovic, I.; Daraban, A.M.; Jasaityte, R.; Neskovic, A.N.; Claus, P.; Voigt, J.-U. Incremental Value of the En Face View of the Tricuspid Valve by Two-Dimensional and Three-Dimensional Echocardiography for Accurate Identification of Tricuspid Valve Leaflets. J. Am. Soc. Echocardiogr. 2014, 27, 376–384. [Google Scholar] [CrossRef]
- Badano, L.P.; Tomaselli, M.; Muraru, D.; Galloo, X.; Li, C.H.P.; Ajmone Marsan, N. Advances in the Assessment of Patients with Tricuspid Regurgitation: A State-of-the-Art Review on the Echocardiographic Evaluation Before and After Tricuspid Valve Interventions. J. Am. Soc. Echocardiogr. 2024, 37, 1083–1102. [Google Scholar] [CrossRef]
- Mazzola, M.; Giannini, C.; Sticchi, A.; Spontoni, P.; Pugliese, N.R.; Gargani, L.; De Carlo, M. Transthoracic and Transoesophageal Echocardiography for Tricuspid Transcatheter Edge-to-Edge Repair: A Step-by-Step Protocol. Eur. Heart J.—Imaging Methods Pract. 2024, 2, qyae017. [Google Scholar] [CrossRef]
- Hahn, R.T.; Saric, M.; Faletra, F.F.; Garg, R.; Gillam, L.D.; Horton, K.; Khalique, O.K.; Little, S.H.; Mackensen, G.B.; Oh, J.; et al. Recommended Standards for the Performance of Transesophageal Echocardiographic Screening for Structural Heart Intervention: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2022, 35, 1–76. [Google Scholar] [CrossRef]
- Hausleiter, J.; Braun, D.; Orban, M.; Latib, A.; Lurz, P.; Boekstegers, P.; von Bardeleben, R.S.; Kowalski, M.; Hahn, R.T.; Maisano, F.; et al. Patient Selection, Echocardiographic Screening and Treatment Strategies for Interventional Tricuspid Repair Using the Edge-to-Edge Repair Technique. EuroIntervention 2018, 14, 645–653. [Google Scholar] [CrossRef]
- Grapsa, J.; Praz, F.; Sorajja, P.; Cavalcante, J.L.; Sitges, M.; Taramasso, M.; Piazza, N.; Messika-Zeitoun, D.; Michelena, H.I.; Hamid, N.; et al. Tricuspid Regurgitation. JACC Cardiovasc. Imaging 2024, 17, 79–95. [Google Scholar] [CrossRef]
- Dreyfus, J.; Taramasso, M.; Kresoja, K.-P.; Omran, H.; Iliadis, C.; Russo, G.; Weber, M.; Nombela-Franco, L.; Estevez Loureiro, R.; Hausleiter, J.; et al. Prognostic Implications of Residual Tricuspid Regurgitation Grading After Transcatheter Tricuspid Valve Repair. JACC Cardiovasc. Interv. 2024, 17, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Sugiura, A.; Kavsur, R.; Vogelhuber, J.; Öztürk, C.; Becher, M.U.; Zimmer, S.; Nickenig, G.; Weber, M. Leaflet-to-Annulus Index and Residual Tricuspid Regurgitation Following Tricuspid Transcatheter Edge-to-Edge Repair. EuroIntervention 2022, 18, e169–e178. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, F.; Trimarchi, G.; D’Agostino, A.; Bonanni, M.; Benedetti, G.; Paradossi, U.; Manzo, R.; Capasso, R.; Di Bella, G.; Zito, C.; et al. Impact of Leaflet-to-Annulus Index on Residual Regurgitation Following Transcatheter Edge-to-Edge Repair of the Tricuspid Valve. J. Clin. Med. 2024, 13, 4176. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Thompson, S.; James, M.; Wiebe, N.; Hemmelgarn, B.; Manns, B.; Klarenbach, S.; Tonelli, M.; Alberta Kidney Disease Network. Cause of Death in Patients with Reduced Kidney Function. J. Am. Soc. Nephrol. 2015, 26, 2504–2511. [Google Scholar] [CrossRef]
- Benfari, G.; Antoine, C.; Miller, W.L.; Thapa, P.; Topilsky, Y.; Rossi, A.; Michelena, H.I.; Pislaru, S.; Enriquez-Sarano, M. Excess Mortality Associated with Functional Tricuspid Regurgitation Complicating Heart Failure with Reduced Ejection Fraction. Circulation 2019, 140, 196–206. [Google Scholar] [CrossRef]
- Butcher, S.C.; Fortuni, F.; Dietz, M.F.; Prihadi, E.A.; van der Bijl, P.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Renal Function in Patients with Significant Tricuspid Regurgitation: Pathophysiological Mechanisms and Prognostic Implications. J. Intern. Med. 2021, 290, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Agricola, E.; Marini, C.; Stella, S.; Monello, A.; Fisicaro, A.; Tufaro, V.; Slavich, M.; Oppizzi, M.; Castiglioni, A.; Cappelletti, A.; et al. Effects of Functional Tricuspid Regurgitation on Renal Function and Long-Term Prognosis in Patients with Heart Failure. J. Cardiovasc. Med. 2017, 18, 60–68. [Google Scholar] [CrossRef]
- Schipmann, F.; Bannehr, M.; Hähnel, V.; Dworok, V.; Nübel, J.; Edlinger, C.; Lichtenauer, M.; Haase, M.; Zänker, M.; Butter, C.; et al. Progression of Chronic Kidney Disease and All-Cause Mortality in Patients with Tricuspid Regurgitation. Diseases 2022, 10, 16. [Google Scholar] [CrossRef]
- Jorde, U.P.; Benza, R.; McCarthy, P.M.; Ailawadi, G.; Whisenant, B.; Makkar, R.; Tadros, P.; Naik, H.; Fam, N.; Sauer, A.J.; et al. Impact of Renal and Liver Function on Clinical Outcomes Following Tricuspid Valve Transcatheter Edge-to-Edge Repair. J. Am. Coll. Cardiol. 2024, 84, 2446–2456. [Google Scholar] [CrossRef]
- Karam, N.; Braun, D.; Mehr, M.; Orban, M.; Stocker, T.J.; Deseive, S.; Orban, M.; Hagl, C.; Näbauer, M.; Massberg, S.; et al. Impact of Transcatheter Tricuspid Valve Repair for Severe Tricuspid Regurgitation on Kidney and Liver Function. JACC Cardiovasc. Interv. 2019, 12, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Felbel, D.; von Winkler, J.; Paukovitsch, M.; Gröger, M.; Walther, E.; Andreß, S.; Schneider, L.; Markovic, S.; Rottbauer, W.; Keßler, M. Effective Tricuspid Regurgitation Reduction Is Associated with Renal Improvement and Reduced Heart Failure Hospitalization. Front. Cardiovasc. Med. 2024, 11, 1452446. [Google Scholar] [CrossRef]
- Muraru, D.; Guta, A.-C.; Ochoa-Jimenez, R.C.; Bartos, D.; Aruta, P.; Mihaila, S.; Popescu, B.A.; Iliceto, S.; Basso, C.; Badano, L.P. Functional Regurgitation of Atrioventricular Valves and Atrial Fibrillation: An Elusive Pathophysiological Link Deserving Further Attention. J. Am. Soc. Echocardiogr. 2020, 33, 42–53. [Google Scholar] [CrossRef]
- Fortmeier, V.; Lachmann, M.; Körber, M.I.; Unterhuber, M.; Schöber, A.R.; Stolz, L.; Stocker, T.J.; Kassar, M.; Gerçek, M.; Rudolph, T.K.; et al. Sex-Related Differences in Clinical Characteristics and Outcome Prediction Among Patients Undergoing Transcatheter Tricuspid Valve Intervention. JACC Cardiovasc. Interv. 2023, 16, 909–923. [Google Scholar] [CrossRef]
- Patlolla, S.H.; Schaff, H.V.; Nishimura, R.A.; Stulak, J.M.; Chamberlain, A.M.; Pislaru, S.V.; Nkomo, V.T. Incidence and Burden of Tricuspid Regurgitation in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 80, 2289–2298. [Google Scholar] [CrossRef]
- Muraru, D.; Badano, L.P.; Hahn, R.T.; Lang, R.M.; Delgado, V.; Wunderlich, N.C.; Donal, E.; Taramasso, M.; Duncan, A.; Lurz, P.; et al. Atrial Secondary Tricuspid Regurgitation: Pathophysiology, Definition, Diagnosis, and Treatment. Eur. Heart J. 2024, 45, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Galloo, X.; Dietz, M.F.; Fortuni, F.; Prihadi, E.A.; Cosyns, B.; Delgado, V.; Bax, J.J.; Ajmone Marsan, N. Prognostic Implications of Atrial vs. Ventricular Functional Tricuspid Regurgitation. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 733–741. [Google Scholar] [CrossRef]
- Schlotter, F.; Dietz, M.F.; Stolz, L.; Kresoja, K.-P.; Besler, C.; Sannino, A.; Rommel, K.-P.; Unterhuber, M.; von Roeder, M.; Delgado, V.; et al. Atrial Functional Tricuspid Regurgitation: Novel Definition and Impact on Prognosis. Circ. Cardiovasc. Interv. 2022, 15, e011958. [Google Scholar] [CrossRef] [PubMed]
- Vîjan, A.E.; Daha, I.C.; Delcea, C.; Bădilă, E.; Dan, G.-A. Prognostic Impact of Severe Atrial Functional Tricuspid Regurgitation in Atrial Fibrillation Patients. J. Clin. Med. 2022, 11, 7145. [Google Scholar] [CrossRef]
- Topilsky, Y.; Maltais, S.; Medina Inojosa, J.; Oguz, D.; Michelena, H.; Maalouf, J.; Mahoney, D.W.; Enriquez-Sarano, M. Burden of Tricuspid Regurgitation in Patients Diagnosed in the Community Setting. JACC Cardiovasc. Imaging 2019, 12, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Fava, A.M.; Nakhla, M.; Hajj Ali, A.; Akintoye, E.; Akyuz, K.; Arockiam, A.D.; Haroun, E.; El Dahdah, J.; Liao, Y.-W.B.; Popovic, Z.; et al. Atrial Functional Tricuspid Regurgitation. JACC Adv. 2025, 4, 101623. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, J.K.; Ott, J.-P.; Landes, M.; Felbel, D.; Gröger, M.; Kessler, M.; Mörike, J.; Krohn-Grimberghe, M.; Schneider, L.M.; Rottbauer, W.; et al. Atrial Functional Tricuspid Regurgitation (AFTR) Is Associated with Better Outcome After Tricuspid Transcatheter Edge-to-Edge Repair (T-TEER) Compared to Ventricular FTR (VFTR). J. Clin. Med. 2025, 14, 794. [Google Scholar] [CrossRef]
- Russo, G.; Badano, L.P.; Adamo, M.; Alessandrini, H.; Andreas, M.; Braun, D.; Connelly, K.A.; Denti, P.; Estevez-Loureiro, R.; Fam, N.; et al. Characteristics and Outcomes of Patients with Atrial versus Ventricular Secondary Tricuspid Regurgitation Undergoing Tricuspid Transcatheter Edge-to-edge Repair—Results from the TriValve Registry. Eur. J. Heart Fail. 2023, 25, 2243–2251. [Google Scholar] [CrossRef]
- Stolz, L.; Kresoja, K.-P.; von Stein, J.; Fortmeier, V.; Koell, B.; Rottbauer, W.; Kassar, M.; Goebel, B.; Denti, P.; Achouh, P.; et al. Atrial Secondary Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2024, 17, 2781–2791. [Google Scholar] [CrossRef]
- von Stein, J.; von Stein, P.; Gietzen, T.; Althoff, J.; Hasse, C.; Metze, C.; Iliadis, C.; Gerçek, M.; Kalbacher, D.; Kirchner, J.; et al. Performance of Transcatheter Direct Annuloplasty in Patients with Atrial and Nonatrial Functional Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2024, 17, 1470–1481. [Google Scholar] [CrossRef]
- Basman, C.; Jamal, S.; Yoon, S.; Dudiy, Y.; Anderson, M.; Landers, D.; Kaple, R. Transcatheter Tricuspid Valve Intervention in the Presence of a Cardiac Implantable Electronic Device; State of the Art Review. Catheter. Cardiovasc. Interv. 2024, 104, 790–799. [Google Scholar] [CrossRef]
- Andreas, M.; Burri, H.; Praz, F.; Soliman, O.; Badano, L.; Barreiro, M.; Cavalcante, J.L.; de Potter, T.; Doenst, T.; Friedrichs, K.; et al. Tricuspid Valve Disease and Cardiac Implantable Electronic Devices. Eur. Heart J. 2024, 45, 346–365. [Google Scholar] [CrossRef]
- Gabriels, J.K.; Schaller, R.D.; Koss, E.; Rutkin, B.J.; Carrillo, R.G.; Epstein, L.M. Lead Management in Patients Undergoing Percutaneous Tricuspid Valve Replacement or Repair: A ‘Heart Team’ Approach. Europace 2023, 25, euad300. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Wilkoff, B.L.; Kodali, S.; Birgersdotter-Green, U.M.; Ailawadi, G.; Addetia, K.; Andreas, M.; Auricchio, A.; Ehlert, F.; George, I.; et al. Managing Implanted Cardiac Electronic Devices in Patients with Severe Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2024, 83, 2002–2014. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Orban, M.; Nabauer, M.; Orban, M.; Gross, L.; Englmaier, A.; Rösler, D.; Mehilli, J.; Bauer, A.; Hagl, C.; et al. Transcatheter Treatment of Severe Tricuspid Regurgitation Using the Edge-to-Edge Repair Technique in the Presence and Absence of Pacemaker Leads. JACC Cardiovasc. Interv. 2017, 10, 2014–2016. [Google Scholar] [CrossRef]
- Lurz, J.; Rommel, K.-P.; Unterhuber, M.; Besler, C.; Noack, T.; Borger, M.; Richter, S.; Hindricks, G.; Thiele, H.; Lurz, P. Safety and Efficacy of Transcatheter Edge-to-Edge Repair of the Tricuspid Valve in Patients with Cardiac Implantable Electronic Device Leads. JACC Cardiovasc. Interv. 2019, 12, 2114–2116. [Google Scholar] [CrossRef]
- Taramasso, M.; Gavazzoni, M.; Pozzoli, A.; Alessandrini, H.; Latib, A.; Attinger-Toller, A.; Biasco, L.; Braun, D.; Brochet, E.; Connelly, K.A.; et al. Outcomes of TTVI in Patients with Pacemaker or Defibrillator Leads. JACC Cardiovasc. Interv. 2020, 13, 554–564. [Google Scholar] [CrossRef]
- Goebel, B.; Lurz, P.; Schmitz, T.; Bekeredjian, R.; Nickenig, G.; Mollmann, H.; von Bardeleben, R.S.; Schmeisser, A.; Heitkemper, M.; Atmowihardjo, I.; et al. Outcomes of Tricuspid Transcatheter Edge-to-Edge Repair in Subjects with Endocardial Leads. EuroIntervention 2025, 21, e253–e261. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.; Price, M.J.; Kapadia, S.; Whisenant, B.K.; Tadros, P.; Makkar, R.; Asgar, A.W.; Fam, N.; Tang, G.H.L.; Mehta, S.R.; et al. Tricuspid Transcatheter Edge-to-Edge Repair in Patients with Transvalvular CIED Leads. JACC Clin. Electrophysiol. 2025, 11, 1012–1020. [Google Scholar] [CrossRef]
- Prihadi, E.A.; Delgado, V.; Leon, M.B.; Enriquez-Sarano, M.; Topilsky, Y.; Bax, J.J. Morphologic Types of Tricuspid Regurgitation. JACC Cardiovasc. Imaging 2019, 12, 491–499. [Google Scholar] [CrossRef]
- Sisinni, A.; Barreiro-Perez, M.; Freixa, X.; Arzamendi, D.; Moñivas, V.; Carrasco-Chinchilla, F.; Pan, M.; Nombela-Franco, L.; Pascual, I.; Benito-González, T.; et al. Real-World Experience in Tricuspid Transcatheter Edge-to-Edge Repair: Transcatheter Tricuspid Valve Repair in Spain Registry. J. Am. Heart Assoc. 2025, 14, e037070. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Dannenberg, V.; Bartko, P.E.; Andreas, M.; Bartunek, A.; Goncharov, A.; Gerçek, M.; Friedrichs, K.; Hengstenberg, C.; Rudolph, V.; Ivannikova, M. Tricuspid Edge-to-Edge Repair for Tricuspid Valve Prolapse and Flail Leaflet: Feasibility in Comparison to Patients with Secondary Tricuspid Regurgitation. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 365–372. [Google Scholar] [CrossRef]
- Rudolph, F.; Gerçek, M.; Kirchner, J.; Ivannikova, M.; Friedrichs, K.P.; Rudolph, T.K.; Rudolph, V.; Andreas, M.; Bartunek, A.; Bartko, P.E.; et al. Robustness of Tricuspid Regurgitation Reduction at 1 Year Following Edge-to-Edge Repair for Primary Tricuspid Regurgitation. Clin. Res. Cardiol. 2025, 114, 251–260. [Google Scholar] [CrossRef]
- Sugiura, A.; Dreyfus, J.; Bombace, S.; Ivannikova, M.; Bartkowiak, J.; Haussig, S.; Schneider, L.M.; Kassar, M.; Horn, P.; Taramasso, M.; et al. Transcatheter Edge-to-Edge Repair in Patients with Primary Tricuspid Regurgitation. JACC Cardiovasc. Interv. 2025, 18, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Schlotter, F.; Stolz, L.; Kresoja, K.-P.; von Stein, J.; Fortmeier, V.; Koell, B.; Rottbauer, W.; Kassar, M.; Schöber, A.; Goebel, B.; et al. Tricuspid Regurgitation Disease Stages and Treatment Outcomes After Transcatheter Tricuspid Valve Repair. JACC Cardiovasc. Interv. 2025, 18, 339–348. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Pyrpyris, N.; Aznaouridis, K.; Iliakis, P.; Valatsou, A.; Tsioufis, P.; Beneki, E.; Mantzouranis, E.; Aggeli, K.; Tsiamis, E.; et al. Transcatheter Tricuspid Valve Interventions: A Triumph for Transcatheter Procedures? Life 2023, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Nickenig, G.; Weber, M.; Schüler, R.; Hausleiter, J.; Nabauer, M.; von Bardeleben, R.S.; Sotiriou, E.; Schäfer, U.; Deuschl, F.; Alessandrini, H.; et al. Tricuspid Valve Repair with the Cardioband System: Two-Year Outcomes of the Multicentre, Prospective TRI-REPAIR Study. EuroIntervention 2021, 16, e1264–e1271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jin, Q.; Li, W.; Pan, C.; Guo, K.; Yang, X.; Li, W.; Song, G.; Luo, J.; Li, J.; et al. Transcatheter Annuloplasty with the K-Clip System for Tricuspid Regurgitation: One-Year Results from the TriStar Study. EuroIntervention 2025, 21, e262–e271. [Google Scholar] [CrossRef]
- Gray, W.A.; Abramson, S.V.; Lim, S.; Fowler, D.; Smith, R.L.; Grayburn, P.A.; Kodali, S.K.; Hahn, R.T.; Kipperman, R.M.; Koulogiannis, K.P.; et al. 1-Year Outcomes of Cardioband Tricuspid Valve Reconstruction System Early Feasibility Study. JACC Cardiovasc. Interv. 2022, 15, 1921–1932. [Google Scholar] [CrossRef]
- Wrobel, J.M.; Kirchner, J.; Friedrichs, K.; Gietzen, T.; Althoff, J.; Hasse, C.; von Stein, P.; Wörmann, J.; von Stein, J.; Curio, J.; et al. Cardiac Implantable Electronic Device Carriers Undergoing Transcatheter Tricuspid Valve Annuloplasty: Real-World Insights. Clin. Res. Cardiol. 2025, 114, 878–891. [Google Scholar] [CrossRef]
- Hahn, R.T.; Makkar, R.; Thourani, V.H.; Makar, M.; Sharma, R.P.; Haeffele, C.; Davidson, C.J.; Narang, A.; O’Neill, B.; Lee, J.; et al. Transcatheter Valve Replacement in Severe Tricuspid Regurgitation. N. Engl. J. Med. 2025, 392, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Lu, F.; Wang, Y.; Guo, Y.; Chen, M.; Meng, X.; Zhang, H.; Dong, N.; Shang, X.; Yang, J.; et al. Transcatheter Tricuspid Valve Replacement with the Novel System. JACC Cardiovasc. Interv. 2025, 18, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, M.; Guarracini, S.; Mazzocchetti, L.; Capuzzi, D.; Salute, L.; Di Marco, M.; Lorusso, R.; Calafiore, A.M. Transcatheter Bicaval Valve System for the Treatment of Severe Isolated Tricuspid Regurgitation. Features from a Single-Centre Experience. Int. J. Cardiol. 2024, 402, 131864. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Patients (n) | Device Included | TR Less than Moderate or 2+ | NYHA Class I/II | KCCQ Improvement | 6MWT Distance Improvement |
---|---|---|---|---|---|---|---|
TRILUMINATE single-arm [15] | Observational, single-arm | 85 | TriClip | 71% (vs. 8% at baseline, p < 0.0001) | 83% (vs. 31% at baseline, p < 0.0001) | 20 ± 2.61 points (p < 0.0001 from baseline) | 303.2 ± 15.6 m (vs. 272.3 ± 15.6 m at baseline, p = 0.0023) |
bRIGHT [16] | Observational, registry analysis | 511 | TriClip | 81% (vs. 2% at baseline, p < 0.001) | 75% (vs. 21% at baseline, p < 0.0001) | 19 ± 26 points (p < 0.0001 from baseline) | - |
PASTE [17] | Observational, registry analysis | 1059 | Pascal | 83% (vs. 4% at baseline, p < 0.001) | 66% (vs. 17% at baseline, p < 0.001) | - | 40 ± 86 m (p < 0.001 from baseline) |
CLASP TR EFS [18] | Observational, single-arm | 65 | Pascal | 86% (vs. 3% at baseline, p < 0.001) | 92% (vs. 29.2% at baseline, p < 0.001) | 18 points (p < 0.001 from baseline) | 311 ± 218 m (vs. 208 ± 107 m at baseline, p = 0.014) |
Study | Year | Number of Participants | Intervention | Device Used | CKD Definition | Follow-Up | Improvement in eGFR | Predictors of Renal Improvement | Clinical Outcomes |
---|---|---|---|---|---|---|---|---|---|
Karam et al. [45] | 2019 | 126 | T-TEER (n = 59); T-TEER and concomitant M-TEER (n = 67) | MitraClip | Moderate to severe CKD: eGFR < 60 mL/min/1.73 m2 | 6 months | No change in eGFR in the overall cohort (50.7 ± 21.8 vs. 49.8 ± 21.9 mL/min/1.73 m2; p = 0.45); No change in eGFR in patients with moderate-to-severe CKD (37.5 ± 11.9 vs. 40.1 ± 17.3 mL/min/1.73 m2; p = 0.39). | NR | NR |
Jorde et al. [44] | 2024 | 572 | T-TEER and OMT (n = 285) versus OMT (n = 287) | TriClip | Mild to moderate: <60 mL/min/1.73 m2; Moderate to severe: <45 mL/min/1.73 m2 | 12 months | No difference in the change of eGFR (−0.10 ± 0.79 vs. −2.22 ± 0.82 mL/min/1.73 m2; p = 0.063) from baseline. In patients with moderate or lower levels of TR at discharge, eGFR significantly increased after T-TEER, compared to controls (+0.30 ± 0.85 vs. −2.27 ± 0.82 mL/min/1.73 m2; p = 0.03) Similar increase noted in patients with procedural success and baseline renal dysfunction (+3.55 ± 1.04 vs. +0.07 ± 1.10 mL/min/1.73 m2; p = 0.022) | Procedural success (TR ≤ moderate) | TEER patients with moderate to severe renal impairment had numerically lower HF hospitalization rates compared to control patients (28.9% vs. 36.2%; p = 0.40) |
Felbel et al. [46] | 2024 | 92 | T-TEER | TriClip | NR | 3, 12 months | eGFR improvement (eGFR at follow-up greater than baseline) was present in 57.6% of patients | TR vena contracta reduction (OR: 1.35; 95% CI: 1.12–1.64 per mm; p = 0.002); Reduced pre-interventional TAPSE (OR 0.89; 95% CI: 0.79–0.9 per mm; p = 0.033) | An eGFR improvement greater than >9 mL/min was related with significantly decreased 1-year HF hospitalization rates (aHR: 0.22; 95% CI: 0.07–0.62; p = 0.005). |
Study | Year | Number of Participants | Intervention | Device Used | AFTR (%) | Follow-Up | Improvement in TR Grade (Moderate or Less) | Improvement in Functional Outcomes (NYHA I/II)) | Improvement in Clinical Outcomes |
---|---|---|---|---|---|---|---|---|---|
Schlotter et al. [52] | 2022 | 651 | T-TEER (n = 213) or OMT (n = 418) | MitraClip and Pascal | 14.8% | 12 months | 86 vs. 81%; p < 0.001 from baseline for both arms | 75 vs. 60%; p < 0.001 from baseline for both arms | AFTR was associated with a decreased rate of mortality and HF hospitalizations at 1 year (12% vs. 36%; p = 0.017) This association remained independent of NYHA class, RV function, sex, baseline comorbidities, and baseline TR grade |
Scheffler et al. [56] | 2025 | 136 | T-TEER | TriClip and Pascal | 19.9 | 12 months | 94.5 vs. 96.3%, p = 1.0 | NR | Significantly increased rates of all-cause mortality in patients with VFTR (11.1 vs. 32.1%,
p = 0.01);
Significantly increased rates of HF hospitalization in patients with VFTR (7.4 vs. 29.4%, p = 0.02). In multivariate analysis, AFTR was independently associated with lower rates of the composite of all-cause mortality and HF hospitalization (HR: 0.21, 95% CI: 0.06–0.7, p < 0.01) |
Russo et al. [57] | 2023 | 298 | T-TEER | MitraClip/TriClip and Pascal | 22 | 10 months | 77 vs. 85%; p = 0.001 from baseline for both | NR | AFTR was significantly associated with increased survival rates at follow-up (91% vs. 72%, p = 0.02); In a multivariate model, VFTR was associated with a non-significant trend towards increased mortality (HR 2.11, 95% CI 0.99–4.47, p = 0.051, respectively) |
Stolz et al. [58] | 2024 | 641 | T-TEER | MitraClip/TriClip and Pascal | 31 | 12 and 24 months | 86.9 vs. 80.4%; p = 0.005 at 12 months | 62 vs. 54%; p = 0.033 at 12 months | At 24 months, AFTR was associated with increased survival and HF hospitalization-free rates (66.3% vs. 47.5%; p < 0.001). AFTR was an independent predictor of freedom from HF hospitalization (HR: 0.65; 95% CI: 0.45–0.96; p = 0.025) |
Study | Year | Number of Participants | Intervention | Device Used | Patients with CIED (%) | Follow-Up | Improvement in TR Grade (Moderate or Lower Levels) | Improvement in Functional Outcomes (NYHA I/II)) | Improvement in Clinical Outcomes |
---|---|---|---|---|---|---|---|---|---|
Braun et al. [64] | 2017 | 41 | T-TEER | NR | 31.7 | 1 month | 85 vs. 71%; p < 0.001 and =0.02 from baseline, respectively | 46 vs. 64%; p = 0.01 and <0.001 from baseline, respectively | NR |
Lurz et al. [65] | 2019 | 102 | T-TEER with or without concomitant M-TEER (in 64 and 48% of patients, respectively) | NR | 32.4 | 1 month | TR grade NR; No significant difference in EROA reduction (0.29 ± 0.25 vs. −0.23 ± 0.34 cm2; p = 0.86) | NR | NR |
Taramasso et al. [66] | 2020 | 470 | TV interventions, T-TEER in 79.2% of patients; Concomitant M-TEER in 33% | MitraClip, Pascal, FORMA, Cardioband, TriCinch, Trialign, CAVI, NaviGate | 25.7 | 1, 12 months | 73 vs. 70%; p = 0.60 and p < 0.05 from baseline for both | 65 vs. 66%; p = 0.30 and p < 0.05 from baseline for both | Survival was similar in the overall group among arms at 12 months (73.6 ± 5.2 vs. 80.7 ± 3.1%; p = 0.30). Similar results were reported in those with isolated TV intervention (82.0 ± 8.4 vs. 82.9 ± 4.2%; p = 0.70) |
Goebel et al. [67] | 2025 | 511 | T-TEER | TriClip | 21.5 | 1 month | 71 vs. 78%; p < 0.0001 for both from baseline | 75 vs. 80%; p < 0.0001 for both from baseline | Cardiovascular mortality was 0% for subjects with leads and 1% for subjects without leads. Major adverse event rate was similar among groups (1.8 and 2.7%) |
Naik et al. [68] | 2025 | 469 | T-TEER | TriClip | 20.9 | 12 months | 81 vs. 84%; p < 0.0001 for both from baseline | 77 vs. 85%; p < 0.0001 for both from baseline | No difference in all-cause mortality (11.2 vs. 10.8%; p = 0.90), cardiovascular death (8.2 vs. 7.5%; p = 0.84), and HF hospitalizations (16.3 vs. 15.9%; p = 0.92) among groups |
Study | Year | Number of Participants | Intervention | Device Used | Primary TR (%) | Follow-Up | Improvement in TR Grade (Moderate or Lower) | Improvement in Functional Outcomes (NYHA I/II)) | Improvement in Clinical Outcomes |
---|---|---|---|---|---|---|---|---|---|
Dannenberg et al. [72] | 2024 | 339 | T-TEER | MitraClip/TriClip and Pascal | 13 | Post-procedural results | 76 vs. 78%, p = 0.85 | NR | NR |
Rudolph et al. [73] | 2025 | 201 | T-TEER | NR | 13.4 | 12 months | 80 vs. 61.8%; p = 0.66 and 0.12 from post-procedural results, respectively | 75 vs. 65.7%; p < 0.001 from baseline for both | All-cause mortality was not different between groups (25.9 vs. 24.7%; p > 0.99). There was a trend towards lower HF hospitalization rates in patients with primary TR (3.7 vs. 22.4%; p = 0.08). |
Sugiura et al. [74] | 2025 | 114 | T-TEER | MitraClip/TriClip and Pascal | 100 | 12 months | 79.7%; p < 0.001 from baseline | 66.5%; p < 0.001 from baseline | In-hospital mortality: 1.8%; Estimated 1-year all-cause mortality: 17.3% (95% CI: 10.0–29.0%); Estimated HF hospitalization event rate: 11.1% (95% CI: 3.7–17.9%) |
Established Anatomical Criteria of T-TEER Optimal Phenotype | |
---|---|
Small coaptation gap (≤7 mm) | |
Septolateral gap | |
Anteroseptal or central jet location | |
Trileaflet valve morphology | |
Confined prolapse or flail | |
Sustained RV function | |
Low RA volume | |
Phenotype-based Patient Selection | |
Patient Phenotype | Considerations |
Renal dysfunction | Potential survival benefit in patients with moderate CKD Potential improvement of renal function |
AFTR | Enhanced clinical outcomes compared to VFTR, either phenotype-associated or disease stage-associated |
Primary TR | Potential suboptimal results in restricted leaflet anatomy |
Transvalvular leads | Despite their feasibility and absence of lead dysfunction, more data are needed to establish their safety in lead-related and lead-associated TR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadis, K.; Pyrpyris, N.; Beneki, E.; Theofilis, P.; Aznaouridis, K.; Papanikolaou, A.; Antonopoulos, A.; Chrysohoou, C.; Aggeli, K.; Tsioufis, K. Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate. J. Cardiovasc. Dev. Dis. 2025, 12, 293. https://doi.org/10.3390/jcdd12080293
Dimitriadis K, Pyrpyris N, Beneki E, Theofilis P, Aznaouridis K, Papanikolaou A, Antonopoulos A, Chrysohoou C, Aggeli K, Tsioufis K. Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate. Journal of Cardiovascular Development and Disease. 2025; 12(8):293. https://doi.org/10.3390/jcdd12080293
Chicago/Turabian StyleDimitriadis, Kyriakos, Nikolaos Pyrpyris, Eirini Beneki, Panagiotis Theofilis, Konstantinos Aznaouridis, Aggelos Papanikolaou, Alexios Antonopoulos, Christina Chrysohoou, Konstantina Aggeli, and Konstantinos Tsioufis. 2025. "Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate" Journal of Cardiovascular Development and Disease 12, no. 8: 293. https://doi.org/10.3390/jcdd12080293
APA StyleDimitriadis, K., Pyrpyris, N., Beneki, E., Theofilis, P., Aznaouridis, K., Papanikolaou, A., Antonopoulos, A., Chrysohoou, C., Aggeli, K., & Tsioufis, K. (2025). Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate. Journal of Cardiovascular Development and Disease, 12(8), 293. https://doi.org/10.3390/jcdd12080293