Prognostic Value of the Global Left Ventricular Contractility Index in Patients with Severe Mitral Regurgitation and Preserved Left Ventricular Ejection Fraction
Abstract
1. Introduction
2. Methods
2.1. Assessment of dσ*/dtmax
2.2. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Global LV Contractility Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral regurgitation. Lancet 2009, 373, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 2440–2492. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Gaasch, W.H.; Meyer, T.E. Left Ventricular Response to Mitral Regurgitation. Circulation 2008, 118, 2298–2303. [Google Scholar] [CrossRef]
- Galli, E.; Lancellotti, P.; Sengupta, P.P.; Donal, E. LV Mechanics in Mitral and Aortic Valve Diseases: Value of Functional Assessment Beyond Ejection Fraction. JACC Cardiovasc. Imaging 2014, 7, 1151–1166. [Google Scholar] [CrossRef]
- Zhong, L.; Tan, R.S.; Ghista, D.N.; Ng, E.Y.; Chua, L.P.; Kassab, G.S. Validation of a novel noninvasive cardiac index of left ventricular contractility in patients. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2764–H2772. [Google Scholar] [CrossRef]
- Jia, X.; Choy, J.S.; Zhang, Z.D.; Svendsen, M.; Zhong, L.; Tan, R.S.; Kassab, G.S. Extent of load-independence of pressure-normalized stress in swine. Exp. Biol. Med. 2013, 238, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Poh, K.K.; Lee, L.C.; Le, T.T.; Tan, R.S. Attenuation of stress-based ventricular contractility in patients with heart failure and normal ejection fraction. Ann. Acad. Med. Singap. 2011, 40, 179–185. [Google Scholar] [CrossRef]
- Sim, H.W.; Ngiam, N.J.; Zhong, L.; Tan, B.Y.-Q.; Low, L.Y.; Djohan, A.H.; Boey, E.; Kong, W.K.F.; Tan, R.S.; Poh, K.K. A new non-invasive index for prognosis evaluation in patients with aortic stenosis. Sci. Rep. 2020, 10, 7333. [Google Scholar] [CrossRef]
- Zhong, L.; Ng, K.K.; Sim, L.L.; Allen, J.C.; Lau, Y.H.; Sim, D.K.; Lee, R.K.; Poh, K.K.; Chua, T.S.; Kassab, G.S.; et al. Myocardial contractile dysfunction associated with increased 3-month and 1-year mortality in hospitalized patients with heart failure and preserved ejection fraction. Int. J. Cardiol. 2013, 168, 1975–1983. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Nakano, K.; Sugawara, M.; Ishihara, K.; Kanazawa, S.; Corin, W.J.; Denslow, S.; Biederman, R.W.; Carabello, B.A. Myocardial stiffness derived from end-systolic wall stress and logarithm of reciprocal of wall thickness. Contractility index independent of ventricular size. Circulation 1990, 82, 1352–1361. [Google Scholar] [CrossRef]
- Belcher, P.; Boerboom, L.E.; Olinger, G.N. Standardization of end-systolic pressure-volume relation in the dog. Am. J. Physiol. 1985, 249 Pt 2, H547–H553. [Google Scholar] [CrossRef]
- Suri, R.M.; Vanoverschelde, J.-L.; Grigioni, F.; Schaff, H.V.; Tribouilloy, C.; Avierinos, J.-F.; Barbieri, A.; Pasquet, A.; Huebner, M.; Rusinaru, D.; et al. Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets. JAMA 2013, 310, 609–616. [Google Scholar] [CrossRef]
- Grayburn, P.A.; Smith, R.L. Left Ventricular Ejection Fraction in Mitral Regurgitation Because of Flail Leaflet. Circ. Cardiovasc. Imaging 2014, 7, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, M.; Mahjoub, H.; Clavel, M.; Côté, N.; Toubal, O.; Tastet, L.; Dumesnil, J.G.; O’Connor, K.; Dahou, A.; Thébault, C.; et al. Forward Left Ventricular Ejection Fraction: A Simple Risk Marker in Patients with Primary Mitral Regurgitation. J. Am. Heart Assoc. 2017, 6, e006309. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Mitral regurgitation: Physiologic, clinical and surgical considerations. N. Engl. J. Med. 1969, 281, 425–433. [Google Scholar] [CrossRef]
- Gaasch, W.H.; Levine, H.J.; Zile, M.R. Chronic Aortic and Mitral Regurgitation: Mechanical Consequences of the Lesion and the Results of Surgical Correction. In The Ventricle: Basic and Clinical Aspects; Levine, H.J., Gaasch, W.H., Eds.; Springer: Boston, MA, USA, 1985; pp. 237–258. [Google Scholar]
- Tribouilloy, C.; Rusinaru, D.; Grigioni, F.; Avierinos, J.F.; Barbieri, A.; Szymanski, C.; Habib, G.; Enriquez-Sarano, M. Survival Implication of Left Ventricular End-Systolic Diameter in Mitral Regurgitation Due to Flail Leaflets: A Long-Term Follow-Up Multicenter Study. J. Am. Coll. Cardiol. 2009, 54, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, K.R.; Guggilam, A.; Cismowski, M.J.; Galantowicz, M.L.; West, T.A.; Stewart, J.A., Jr.; Zhang, X.; Lord, K.C.; Lucchesi, P.A. Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J. Appl. Physiol. 2011, 111, 1778–1788. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Tajik, A.J.; Schaff, H.V.; Orszulak, T.A.; Bailey, K.R.; Frye, R.L. Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation. Circulation 1994, 90, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Schaff, H.V.; Orszulak, T.A.; Bailey, K.R.; Tajik, A.J.; Frye, R.L. Congestive heart failure after surgical correction of mitral regurgitation. A long-term study. Circulation 1995, 92, 2496–2503. [Google Scholar] [CrossRef]
- Mathew, R.K.; Gaasch, W.H.; Guilmette, N.E.; Schick, E.C.; Labib, S.B. Anthropometric normalization of left ventricular size in chronic mitral regurgitation. Am. J. Cardiol. 2003, 91, 762–764. [Google Scholar] [CrossRef]
- Athanasuleas, C.L.; Stanley, A.W.H.; Buckberg, G.D. Mitral regurgitation: Anatomy is destiny. Eur. J. Cardio-Thorac. Surg. 2018, 54, 627–634. [Google Scholar] [CrossRef]
- Agricola, E.; Galderisi, M.; Oppizzi, M.; Schinkel, A.F.L.; Maisano, F.; De Bonis, M.; Margonato, A.; Maseri, A.; Alfieri, O. Pulsed tissue Doppler imaging detects early myocardial dysfunction in asymptomatic patients with severe mitral regurgitation. Heart 2004, 90, 406–410. [Google Scholar] [CrossRef]
- Borg, A.N.; Harrison, J.L.; Argyle, R.A.; Pearce, K.A.; Beynon, R.; Ray, S.G. Left ventricular filling and diastolic myocardial deformation in chronic primary mitral regurgitation. Eur. J. Echocardiogr. 2010, 11, 523–529. [Google Scholar] [CrossRef]
- Grue, J.F.; Storve, S.; Dalen, H.; Salvesen, Ø.; Mjølstad, O.C.; Samstad, S.O.; Torp, H.; Haugen, B.O. Automatic Measurements of Mitral Annular Plane Systolic Excursion and Velocities to Detect Left Ventricular Dysfunction. Ultrasound Med. Biol. 2018, 44, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lee, S.; Kwak, Y.L.; Shim, C.Y.; Chang, B.C.; Shim, J.K. Tissue Doppler imaging predicts left ventricular reverse remodeling after surgery for mitral regurgitation. Ann. Thorac. Surg. 2013, 96, 2109–2115. [Google Scholar] [CrossRef]
- de Isla, L.P.; de Agustin, A.; Rodrigo, J.L.; Almeria, C.; Manzano, M.d.C.; Rodríguez, E.; García, A.; Macaya, C.; Zamorano, J. Chronic mitral regurgitation: A pilot study to assess preoperative left ventricular contractile function using speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 831–838. [Google Scholar] [CrossRef]
Variables | Overall (n = 127) | Death (n = 14) | Alive (n = 113) | p-Value |
---|---|---|---|---|
Baseline Demographics | ||||
Age (years) | 58.46 ± 12.07 | 70.07 ± 11.19 | 57.03 ± 11.42 | 0.077 |
Male, n (%) | 93 (73.2%) | 11 (78.6%) | 82 (72.6%) | 0.758 |
Height | 164.67 ± 8.23 | 162.86 ± 8.48 | 164.89 ± 8.21 | 0.742 |
Weight | 64.83 ± 12.37 | 59.40 ± 13.58 | 65.50 ± 12.11 | 0.320 |
Smoking | 29 (22.8%) | 3 (21.4%) | 26 (23.0%) | <0.999 |
Systolic Blood Pressure (mmHg) | 133.15 ± 18.30 | 135.29 ± 26.27 | 132.88 ± 17.21 | 0.007 |
Diastolic Blood Pressure (mmHg) | 74.03 ± 10.77 | 74.36 ± 8.76 | 73.99 ± 11.03 | 0.243 |
Heart Rate (beats per minute) | 71.36 ± 13.82 | 68.79 ± 11.74 | 71.68 ± 14.06 | 0.321 |
Comorbidities | ||||
Hypertension | 67 (52.8%) | 9 (64.3%) | 58 (51.3%) | 0.407 |
Hyperlipidaemia | 56 (44.1%) | 7 (50.0%) | 49 (43.4%) | 0.777 |
Diabetes Mellitus | 16 (12.6%) | 1 (7.1%) | 15 (13.3%) | 0.514 |
Ischemic Heart Disease | 10 (7.9%) | 4 (28.6%) | 6 (5.3%) | 0.014 |
Atrial Fibrillation | 10 (7.9%) | 3 (21.4%) | 7 (6.2%) | 0.081 |
Peripheral Vascular disease | 1 (0.8%) | 0 (0.0%) | 1 (0.9%) | >0.999 |
Stroke or Transient Ischemic Attack | 11 (8.7%) | 3 (21.4%) | 8 (7.1%) | 0.104 |
Chronic Kidney Disease | 6 (4.7%) | 4 (3.1%) | 3 (2.7%) | 0.400 |
Medication Use | ||||
Antiplatelet | 22 (17.3%) | 5 (35.7%) | 17 (15.0%) | 0.067 |
Oral Anticoagulation | 8 (6.3%) | 2 (14.3%) | 6 (5.3%) | 0.215 |
Beta Blocker | 28 (22.0%) | 4 (28.6%) | 24 (21.2%) | 0.508 |
ACE-I/ARB/ARNI | 19 (15.0%) | 4 (28.6%) | 15 (13.3%) | 0.224 |
MRAs | 3 (2.4%) | 2 (14.3%) | 1 (0.9%) | 0.032 |
CCBs | 14 (11.0%) | 4 (28.6%) | 10 (8.8%) | 0.049 |
Diuretics | 15 (11.8%) | 5 (35.7%) | 10 (7.9%) | 0.012 |
Variables | Overall (n = 127) | Composite Adverse Outcome (n = 54) | Free from Event (n = 73) | p-Value |
---|---|---|---|---|
Baseline Demographics | ||||
Age (years) | 58.46 ± 12.07 | 58.24 ± 13.33 | 58.63 ± 11.14 | 0.056 |
Male, n (%) | 93 (73.2%) | 39 (72.2%) | 54 (74.0%) | 0.842 |
Height | 164.67 ± 8.23 | 165.17 ± 9.12 | 164.30 ± 7.50 | 0.410 |
Weight | 64.83 ± 12.37 | 64.95 ± 13.60 | 64.74 ± 11.47 | 0.123 |
Smoking | 29 (22.8%) | 10 (18.5%) | 19 (26.0%) | 0.394 |
Systolic Blood Pressure (mmHg) | 133.15 ± 18.30 | 132.33 ± 18.69 | 133.75 ± 18.12 | 0.006 |
Diastolic Blood Pressure (mmHg) | 74.03 ± 10.77 | 75.20 ± 10.03 | 73.16 ± 11.30 | 0.247 |
Heart Rate (beats per minute) | 71.36 ± 13.82 | 72.83 ± 2.18 | 70.27 ± 11.90 | 0.042 |
Comorbidities | ||||
Hypertension | 67 (52.8%) | 28 (51.9%) | 39 (58.2%) | 0.861 |
Hyperlipidaemia | 56 (44.1%) | 28 (51.9%) | 28 (50.0%) | 0.150 |
Diabetes Mellitus | 16 (12.6%) | 5 (9.3%) | 11 (15.1%) | 0.422 |
Ischemic Heart Disease | 10 (7.9%) | 6 (11.1%) | 4 (5.5%) | 0.322 |
Atrial Fibrillation | 10 (7.9%) | 7 (13.0%) | 3 (4.1%) | 0.096 |
Peripheral Vascular disease | 1 (0.8%) | 1 (0.8%) | 0 (0.0%) | 0.425 |
Stroke or Transient Ischemic Attack | 11 (8.7%) | 8 (6.3%) | 3 (4.1%) | 0.053 |
Chronic Kidney Disease | 6 (4.7%) | 4 (3.1%) | 2 (2.7%) | 0.400 |
Medication Use | ||||
Antiplatelet | 22 (17.3%) | 12 (27.8%) | 7 (9.6%) | 0.009 |
Oral Anticoagulation | 8 (6.3%) | 4 (7.4%) | 4 (5.5%) | 0.722 |
Beta Blocker | 28 (22.0%) | 14 (25.9%) | 14 (19.2%) | 0.393 |
ACE-I/ARB/ARNI | 19 (15.0%) | 7 (13.0%) | 12 (16.4%) | 0.625 |
MRAs | 3 (2.4%) | 2 (3.7%) | 1 (1.4%) | 0.574 |
CCBs | 14 (11.0%) | 7 (13.0%) | 7 (9.6%) | 0.578 |
Diuretics | 15 (11.8%) | 10 (18.5%) | 5 (6.8%) | 0.054 |
Variables | Overall (n = 127) | Death (n = 14) | p-Value | Composite Adverse Outcome (n = 54) | p-Value |
---|---|---|---|---|---|
LVEF (%) | 64.54 ± 3.10 | 64.36 ± 4.13 | 0.813 | 64.35 ± 3.30 | 0.552 |
LVEDD (mm) | 54.79 ± 5.85 | 54.65 ± 5.98 | 0.470 | 53.51 ± 5.42 | 0.004 |
LVESD (mm) | 33.14 ± 4.81 | 33.64 ± 4.22 | 0.681 | 34.57 ± 5.02 | 0.004 |
LVEDV (mm3) | 148.44 ± 36.63 | 154.36 ± 29.97 | 0.524 | 159.46 ± 38.97 | 0.003 |
LVESV (mm3) | 46.06 ± 16.19 | 47.36 ± 13.72 | 0.753 | 51.00 ± 17.48 | 0.004 |
LVMI (g/m2) | 121.87 ± 30.79 | 148.57 ± 35.94 | <0.001 | 131.85 ± 34.36 | 0.001 |
Cardiac Output (L/min) | 4.18 ± 1.08 | 4.11 ± 1.10 | 0.806 | 4.13 ± 1.25 | 0.648 |
Cardiac Index (L/min/m2) | 2.44 ± 0.60 | 2.51 ± 0.55 | 0.660 | 2.41 ± 0.67 | 0.595 |
LV S’ | 9.24 ± 2.43 | 8.36 ± 3.25 | 0.150 | 9.12 ± 2.43 | 0.255 |
PASP (mmHg) | 35.09 ± 9.82 | 40.69 ± 8.73 | 0.543 | 35.50 ± 9.73 | 0.701 |
dσ*/dtmax (s−1) | 2.71 ± 0.84 | 2.19 ± 0.65 | 0.013 | 2.53 ± 0.84 | 0.034 |
Factor | HR | p-Value |
---|---|---|
Age | 0.993 (0.969–1.017) | 0.544 |
Sex | 1.210 (0.646–2.263) | 0.354 |
IHD | 1.347 (0.541–3.350) | 0.412 |
PASP | 1.001 (0.974–1.038) | 0.739 |
LVESD | 1.046 (0.974–1.038) | 0.156 |
Poor LV global contractility | 2.056 (1.103–3.835) | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Panday, V.B.; Lai, J.; Gao, N.; Lim, B.; Leow, A.; Tan, S.; Chye, Q.S.; Sia, C.H.; Kong, W.; et al. Prognostic Value of the Global Left Ventricular Contractility Index in Patients with Severe Mitral Regurgitation and Preserved Left Ventricular Ejection Fraction. J. Cardiovasc. Dev. Dis. 2025, 12, 227. https://doi.org/10.3390/jcdd12060227
Li T, Panday VB, Lai J, Gao N, Lim B, Leow A, Tan S, Chye QS, Sia CH, Kong W, et al. Prognostic Value of the Global Left Ventricular Contractility Index in Patients with Severe Mitral Regurgitation and Preserved Left Ventricular Ejection Fraction. Journal of Cardiovascular Development and Disease. 2025; 12(6):227. https://doi.org/10.3390/jcdd12060227
Chicago/Turabian StyleLi, Tony, Vinay B. Panday, Jessele Lai, Nicholas Gao, Beth Lim, Aloysius Leow, Sarah Tan, Quek Swee Chye, Ching Hui Sia, William Kong, and et al. 2025. "Prognostic Value of the Global Left Ventricular Contractility Index in Patients with Severe Mitral Regurgitation and Preserved Left Ventricular Ejection Fraction" Journal of Cardiovascular Development and Disease 12, no. 6: 227. https://doi.org/10.3390/jcdd12060227
APA StyleLi, T., Panday, V. B., Lai, J., Gao, N., Lim, B., Leow, A., Tan, S., Chye, Q. S., Sia, C. H., Kong, W., Yeo, T. C., Tan, R. S., Zhong, L., & Poh, K. K. (2025). Prognostic Value of the Global Left Ventricular Contractility Index in Patients with Severe Mitral Regurgitation and Preserved Left Ventricular Ejection Fraction. Journal of Cardiovascular Development and Disease, 12(6), 227. https://doi.org/10.3390/jcdd12060227