Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm
Acknowledgments
Conflicts of Interest
List of Contributions
- Notenboom, M.L.; Van Hoof, L.; Schuermans, A.; Takkenberg, J.J.M.; Rega, F.R.; Taverne, Y.J.H.J. Aortic Valve Embryology, Mechanobiology, and Second Messenger Pathways: Implications for Clinical Practice. J. Cardiovasc. Dev. Dis. 2024, 11, 49.
- Lebehn, M.; Vahl, T.; Kampaktsis, P.; Hahn, R.T. Contemporary Evaluation and Clinical Treatment Options for Aortic Regurgitation. J. Cardiovasc. Dev. Dis. 2023, 10, 364.
- Iliuță, L.; Andronesi, A.G.; Scafa-Udriște, A.; Rădulescu, B.; Moldovan, H.; Furtunescu, F.L.; Panaitescu, E. Incidence and Risk Factors for Long-Term Persistence of Diastolic Dysfunction after Aortic Valve Replacement for Aortic Stenosis Compared with Aortic Regurgitation. J. Cardiovasc. Dev. Dis. 2023, 10, 131.
- Alhijab, F.A.; Alfayez, L.A.; Hassan, E.; Albabtain, M.A.; Elnaggar, I.M.; Alotaibi, K.A.; Adam, A.I.; Pragliola, C.; Ismail, H.H.; Arafat, A.A. Age-Specific Outcomes of Bioprosthetic vs. Mechanical Aortic Valve Replacement: Balancing Reoperation Risk with Anticoagulation Burden. J. Cardiovasc. Dev. Dis. 2024, 11, 227.
- Fazmin, I.T.; Ali, J.M. Prosthesis–Patient Mismatch and Aortic Root Enlargement: Indications, Techniques and Outcomes. J. Cardiovasc. Dev. Dis. 2023, 10, 373.
- Toto, F.; Leo, L.; Klersy, C.; Torre, T.; Theologou, T.; Pozzoli, A.; Caporali, E.; Demertzis, S.; Ferrari, E. Mid-Term Clinical Outcomes and Hemodynamic Performances of Trifecta and Perimount Bioprostheses following Aortic Valve Replacement. J. Cardiovasc. Dev. Dis. 2023, 10, 139.
- Baric, D.; Sliskovic, N.; Sestan, G.; Gjorgjievska, S.; Unic, D.; Kusurin, M.; Varvodic, J.; Safaric Oremus, Z.; Jurin, I.; Bulj, N.; et al. Aortic Valve Repair with External Annuloplasty in Bicuspid versus Tricuspid Aortic Valve Patients. J. Cardiovasc. Dev. Dis. 2024, 11, 17.
- Djordjevic, A.; Rudez, I. Aortic Valve Repair and Early-Career Surgeons—Nothing Is Impossible. J. Cardiovasc. Dev. Dis. 2023, 10, 284.
- Haidari, Z.; Ahmad, S.U.; Knipp, S.; Turaev, I.; El Gabry, M. Aortic Valve Infective Endocarditis Complicated by Annular Abscess: Antibiotics in the Abscess Cavity. J. Cardiovasc. Dev. Dis. 2024, 11, 189.
References
- Rozeik, M.; Wheatley, D.; Gourlay, T. The aortic valve: Structure, complications and implications for transcatheter aortic valve replacement. Perfusion 2014, 29, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, K.; Cruz, A.D.; Butcher, J.T. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ. Res. 2021, 128, 1344–1370. [Google Scholar] [CrossRef]
- Misfeld, M.; Sievers, H.-H. Heart valve macro- and microstructure. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1421–1436. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Malashicheva, A.; Sullivan, G.; Bogdanova, M.; Kostareva, A.; Stensløkken, K.O.; Fiane, A.; Vaage, J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J. Am. Heart Assoc. 2017, 6, 102529. [Google Scholar] [CrossRef]
- Schäfers, H.-J.; Bierbach, B.; Aicher, D. A new approach to the assessment of aortic cusp geometry. J. Thorac. Cardiovasc. Surg. 2006, 132, 436–438. [Google Scholar] [CrossRef]
- Durbin, A.D.; Gotlieb, A.I. Advances towards understanding heart valve response to injury. Cardiovasc. Pathol. 2002, 11, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Latif, N.; Sarathchandra, P.; Taylor, P.M.; Antoniw, J.; Brand, N.; Yacoub, M.H. Characterization of Molecules Mediating Cell-Cell Communication in Human Cardiac Valve Interstitial Cells. Cell Biochem. Biophys. 2006, 45, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.C.; Joag, V.R.; Gotlieb, A.I. The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology. Am. J. Pathol. 2007, 171, 1407–1418. [Google Scholar] [CrossRef]
- Arjunon, S.; Rathan, S.; Jo, H.; Yoganathan, A.P. Aortic valve: Mechanical environment and mechanobiology. Ann. Biomed. Eng. 2013, 41, 1331–1346. [Google Scholar] [CrossRef]
- Chester, A.H.; El-Hamamsy, I.; Butcher, J.T.; Latif, N.; Bertazzo, S.; Yacoub, M.H. The living aortic valve: From molecules to function. Glob. Cardiol. Sci. Pract. 2014, 2014, 52–77. [Google Scholar] [CrossRef]
- Wang, H.; Leinwand, L.A.; Anseth, K.S. Cardiac valve cells and their microenvironment—Insights from in vitro studies. Nat. Rev. Cardiol. 2014, 11, 715–727. [Google Scholar] [CrossRef]
- Heinrich, R.S.; Marcus, R.H.; Ensley, A.E.; Gibson, D.E.; Yoganathan, A.P. Valve orifice area alone is an insufficient index of aortic stenosis severity: Effects of the proximal and distal geometry on transaortic energy loss. J. Heart Valve Dis. 1999, 8, 509–515. [Google Scholar]
- Li, X.; Simakov, S.; Liu, Y.; Liu, T.; Wang, Y.; Liang, F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering 2023, 10, 709. [Google Scholar] [CrossRef]
- Mancusi, C.; Bahlmann, E.; Basile, C.; Gerdts, E. New Evidence About Aortic Valve Stenosis and Cardiovascular Hemodynamics. High Blood Press. Cardiovasc. Prev. 2022, 29, 231–237. [Google Scholar] [CrossRef]
- Zelis, J.M.; Tonino, P.A.L.; Pijls, N.H.J.; De Bruyne, B.; Kirkeeide, R.L.; Gould, K.L.; Johnson, N.P. Coronary Microcirculation in Aortic Stenosis: Pathophysiology, Invasive Assessment, and Future Directions. J. Interv. Cardiol. 2020, 2020, 4603169. [Google Scholar] [CrossRef]
- El-Nashar, H.; Sabry, M.; Tseng, Y.T.; Francis, N.; Latif, N.; Parker, K.H.; Moore, J.E., Jr.; Yacoub, M.H. Multiscale structure and function of the aortic valve apparatus. Physiol. Rev. 2024, 104, 1487–1532. [Google Scholar] [CrossRef]
- Bäck, M.; Gasser, T.C.; Michel, J.B.; Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 2013, 99, 232–241. [Google Scholar] [CrossRef]
- Monge García, M.I.; Santos, A. Understanding ventriculo-arterial coupling. Ann. Transl. Med. 2020, 8, 795. [Google Scholar] [CrossRef]
- Guinot, P.G.; Andrei, S.; Longrois, D. Ventriculo-arterial coupling: From physiological concept to clinical application in peri-operative care and ICUs. Eur. J. Anaesthesiol. Intensive Care 2022, 1, e004. [Google Scholar] [CrossRef]
- Johnson, D.J.; Robson, P.; Hew, Y.; Keeley, F.W. Decreased elastin synthesis in normal development and in long-term aortic organ and cell cultures is related to rapid and selective destabilization of mRNA for elastin. Circ. Res. 1995, 77, 1107–1113. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 524. [Google Scholar] [CrossRef]
- Nettersheim, F.S.; Baldus, S. ESC/EACTS guidelines 2021 on the management of valvular heart diseases: What are the most important innovations? Herz 2022, 47, 19–30. [Google Scholar] [CrossRef]
- Lella, S.K.; Ferrell, B.E.; Sugiura, T. Contemporary Management of the Aortic Valve—Narrative Review of an Evolving Landscape. J. Clin. Med. 2024, 14, 134. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; De Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Modan, S.; Madan, K.; Mugwagwa, G.; Murray, L.; Gunton, J.; Gordon, D.; Joseph, M. An epidemiological update on infective endocarditis: A two-decade retrospective longitudinal analysis. Eur. Heart J. 2024, 45, ehae666.2620. [Google Scholar] [CrossRef]
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad426. [Google Scholar] [CrossRef]
- Grimaldi, A.; De Gennaro, L.; Chiara Vermi, A.; Pappalardo, F.; Daniele Brunetti, N.; Di Biase, M.; La Canna, G.; Alfieri, O. Cardiac Valve Involvement in Systemic Diseases: A Review. Clin. Cardiol. 2013, 36, 117–124. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, e57–e185. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Dweck, A.; Ferrell, B.E.; Guttman, D.; Spindel, S.M.; Sugiura, T. Treatment of the Aortic Valve in the Modern Era—A Review of TAVR vs. SAVR. Surgeries 2024, 6, 4. [Google Scholar] [CrossRef]
- Morselli, F.; McNally, R.; Nesti, L.; Liu, B.; Khan, H.; Thomson, R.J.; Stevenson, A.; Banerjee, A.; Ahmad, M.; Hanif, M.; et al. Pharmacological interventions for the treatment of aortic root and heart valve disease. Cochrane Database Syst. Rev. 2021, 2021, CD014767. [Google Scholar] [CrossRef]
- Saleem, M.S.; Kaleem, H.; Kamran, N.B. Beyond the valve: Lessons learned and future directions for trans-catheter aortic valve replacement in resourceconstrained settings. ASEAN J. Psychiatry 2024, 16, 655–658. [Google Scholar] [CrossRef]
- Bamford, P.; Abdelrahman, A.; Malkin, C.J.; Cunnington, M.S.; Blackman, D.J.; Ali, N. Artificial intelligence in heart valve disease: Diagnosis, innovation and treatment. A state-of-the-art review. Br. J. Cardiol. 2024, 31, 031. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kočica, M.J. Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm. J. Cardiovasc. Dev. Dis. 2025, 12, 223. https://doi.org/10.3390/jcdd12060223
Kočica MJ. Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm. Journal of Cardiovascular Development and Disease. 2025; 12(6):223. https://doi.org/10.3390/jcdd12060223
Chicago/Turabian StyleKočica, Mladen J. 2025. "Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm" Journal of Cardiovascular Development and Disease 12, no. 6: 223. https://doi.org/10.3390/jcdd12060223
APA StyleKočica, M. J. (2025). Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm. Journal of Cardiovascular Development and Disease, 12(6), 223. https://doi.org/10.3390/jcdd12060223