Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turetz, M.; Sideris, A.; Friedman, O.; Triphathi, N.; Horowitz, J. Epidemiology, Pathophysiology, and Natural History of Pulmonary Embolism. Semin. Interv. Radiol. 2018, 35, 92–98. [Google Scholar] [CrossRef]
- Alikhan, R. Fatal pulmonary embolism in hospitalised patients: A necropsy review. J. Clin. Pathol. 2004, 57, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z. Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy. J. Thromb. Haemost. 2009, 7, 322–327. [Google Scholar] [CrossRef]
- Pasha, A.K.; Siddiqui, M.U.; Siddiqui, M.D.; Ahmed, A.; Abdullah, A.; Riaz, I.; Murad, M.H.; Bjarnason, H.; Wysokinski, W.E.; McBane, R.D. Catheter directed compared to systemically delivered thrombolysis for pulmonary embolism: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2022, 53, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Siordia, J.A.; Kaur, A. Catheter-directed Thrombolysis versus Systemic Anticoagulation for SubmassivePulmonary Embolism: A Meta-Analysis. CCR 2022, 18, e030621193818. [Google Scholar] [CrossRef]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef]
- Rawal, A.; Ardeshna, D.; Hesterberg, K.; Cave, B.; Ibebuogu, U.N.; Khouzam, R.N. Is there an optimal “door to cath time” in the treatment of acute pulmonary embolism with catheter-directed thrombolysis? Ann. Transl. Med. 2019, 7, 419. [Google Scholar] [CrossRef]
- Lehr, A.; Guichet, P.; Garimella, B.; Krolikowski, K.; Amoroso, N.; Sista, A.; Brosnahan, S.B. Impact of Time to Intervention on Catheter-Directed Therapy for Pulmonary Embolism. Crit. Care Explor. 2023, 5, e0828. [Google Scholar] [CrossRef]
- Gacutan, K. Healthcare Cost and Utilization Project—HCUP. Available online: https://www.ahrq.gov/data/hcup/index.html (accessed on 1 January 2024).
- Jang, S.-J.; Kim, L.K.; Sobti, N.K.; Yeo, I.; Cheung, J.W.; Feldman, D.N.; Amin, N.P.; Narotsky, D.L.; Goyal, P.; McCullough, S.A. Mortality of patients with ST-segment-elevation myocardial infarction without standard modifiable risk factors among patients without known coronary artery disease: Age-stratified and sex-related analysis from nationwide readmissions database 2010-2014. Am. J. Prev. Cardiol. 2023, 14, 100474. [Google Scholar]
- Jang, S.-J.; Yeo, I.; Jonas, C.; Goyal, P.; Cheung, J.W.; Feldman, D.N.; McCullough, S.A.; Krishnan, U.; Narotsky, D.L.; Singh, H.S. Thirty-Day Readmission Rates after Takotsubo Syndrome with or without Malignancy: A Nationwide Readmissions Database Analysis. J. Clin. Med. 2021, 10, 3701. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-J.; Yeo, I.; Feldman, D.N.; Cheung, J.W.; Minutello, R.M.; Singh, H.S.; Bergman, G.; Wong, S.C.; Kim, L.K. Associations between hospital length of stay, 30-day readmission, and costs in ST-segment–elevation myocardial infarction after primary percutaneous coronary intervention: A Nationwide Readmissions Database analysis. J. Am. Heart Assoc. 2020, 9, e015503. [Google Scholar]
- Chao, T.H.; Tsai, L.M.; Teng, J.K.; Li, Y.H.; Tsai, W.C.; Lin, L.J.; Chen, J.H. Successful delayed thrombolytic therapy in a patient with massive pulmonary embolism. J. Formos. Med. Assoc. Taiwan yi zhi 1998, 97, 638–641. [Google Scholar]
- Goldhaber, S.Z.; Kessler, C.M.; Heit, J.A.; Elliott, C.G.; Friedenberg, W.R.; Heiselman, D.E.; Wilson, D.B.; Parker, J.A.; Bennett, D.; Feldstein, M.L.; et al. Recombinant tissue-type plasminogen activator versus a novel dosing regimen of urokinase in acute pulmonary embolism: A randomized controlled multicenter trial. J. Am. Coll. Cardiol. 1992, 20, 24–30. [Google Scholar] [CrossRef]
- Patel, N.; Patel, N.J.; Agnihotri, K.; Panaich, S.S.; Thakkar, B.; Patel, A.; Savani, C.; Patel, N.; Arora, S.; Deshmukh, A.; et al. Utilization of catheter-directed thrombolysis in pulmonary embolism and outcome difference between systemic thrombolysis and catheter-directed thrombolysis. Catheter. Cardiovasc. Interv. 2015, 86, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Panaich, S.S.; Ainani, N.; Kumar, V.; Patel, N.J.; Tripathi, B.; Shah, P.; Patel, N.; Lahewala, S.; Deshmukh, A.; et al. Comparison of In-Hospital Outcomes and Readmission Rates in Acute Pulmonary Embolism Between Systemic and Catheter-Directed Thrombolysis (from the National Readmission Database). Am. J. Cardiol. 2017, 120, 1653–1661. [Google Scholar] [CrossRef]
- Aujesky, D.; Mor, M.K.; Geng, M.; Stone, R.A.; Fine, M.J.; Ibrahim, S.A. Predictors of Early Hospital Readmission After Acute Pulmonary Embolism. Arch. Intern. Med. 2009, 169, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kamran, H.; Hariri, E.H.; Iskandar, J.; Sahai, A.; Haddadin, I.; Harb, S.C.; Campbell, J.; Tefera, L.; Delehanty, J.M.; Heresi, G.A.; et al. Simultaneous Pulmonary Artery Pressure and Left Ventricle Stroke Volume Assessment Predicts Adverse Events in Patients With Pulmonary Embolism. JAHA 2021, 10, e019849. [Google Scholar] [CrossRef]
- Casazza, F.; Becattini, C.; Bongarzoni, A.; Cuccia, C.; Roncon, L.; Favretto, G.; Zonzin, P.; Pignataro, L.; Agnelli, G. Clinical features and short term outcomes of patients with acute pulmonary embolism. The Italian Pulmonary Embolism Registry (IPER). Thromb. Res. 2012, 130, 847–852. [Google Scholar]
- Furlan, A.; Aghayev, A.; Chang, C.-C.H.; Patil, A.; Jeon, K.N.; Park, B.; Fetzer, D.T.; Saul, M.; Roberts, M.S.; Bae, K.T. Short-term mortality in acute pulmonary embolism: Clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology 2012, 265, 283–293. [Google Scholar]
- Shen, C.; Yu, N.; Wen, L.; Zhou, S.; Dong, F.; Liu, M.; Guo, Y. Risk stratification of acute pulmonary embolism based on the clot volume and right ventricular dysfunction on CT pulmonary angiography. Clin. Respir. J. 2019, 13, 674–682. [Google Scholar] [PubMed]
- Edla, S.; Rosman, H.; Neupane, S.; Boshara, A.; Szpunar, S.; Daher, E.; Rodriguez, D.; LaLonde, T.; Yamasaki, H.; Mehta, R.H.; et al. Early versus delayed use of ultrasound-assisted catheter-directed thrombolysis in patients with acute submassive pulmonary embolism. J. Invasive Cardiol. 2018, 30, 157–162. [Google Scholar] [PubMed]
Characteristics | Overall | Day 0 | Day 1 | Day ≥2 | p Value |
---|---|---|---|---|---|
Number of patients, n (%) * | 23,564 | 12,310 (52.2) | 7856 (33.3) | 3398 (14.4) | |
Patient characteristics | |||||
Age, mean (SE), y | 60.3 (0.2) | 59.9 (0.2) | 60.6 (0.3) | 61.5 (0.4) | <0.001 † |
Gender | 0.014 ‡ | ||||
Male | 12,528 (53.2) | 6678 (54.3) | 4148 (52.8) | 1702 (50.1) | |
Female | 11,034 (46.8) | 5631 (45.7) | 3708 (47.2) | 1695 (49.9) | |
Smoking | 6080 (25.8) | 3142 (25.5) | 2073 (26.4) | 865 (25.5) | 0.636 |
Hypertension | 12,632 (53.6) | 6467 (52.5) | 4310 (54.9) | 1855 (54.6) | 0.069 |
Diabetes mellitus | 6391 (27.1) | 3227 (26.2) | 2132 (27.1) | 1031 (30.4) | 0.009 |
Dyslipidemia | 7551 (32.0) | 3765 (30.6) | 2636 (33.6) | 1150 (33.9) | 0.004 |
Family history of coronary artery disease | 1989 (8.4) | 956 (7.8) | 762 (9.7) | 271 (8.0) | 0.006 |
Congestive heart failure | 1095 (4.6) | 524 (4.3) | 344 (4.4) | 227 (6.7) | <0.001 |
Coronary artery disease | 2750 (11.7) | 1365 (11.1) | 909 (11.6) | 476 (14.0) | 0.010 |
Peripheral vascular disease | 1114 (4.7) | 546 (4.4) | 361 (4.6) | 207 (6.1) | 0.038 |
Previous myocardial infarction | 805 (3.4) | 413 (3.4) | 230 (2.9) | 162 (4.8) | 0.013 |
Previous stroke | 907 (3.8) | 444 (3.6) | 324 (4.1) | 139 (4.1) | 0.489 |
Previous CABG | 500 (2.1) | 283 (2.3) | 155 (2.0) | 62 (1.8) | 0.350 |
Previous PCI | 711 (3.0) | 331 (2.7) | 280 (3.6) | 100 (2.9) | 0.070 |
Chronic pulmonary disease | 4535 (19.2) | 2182 (17.7) | 1536 (19.5) | 817 (24.1) | <0.001 |
Pulmonary hypertension | 6218 (26.4) | 2976 (24.2) | 2084 (26.5) | 1158 (34.1) | <0.001 |
Pulmonary circulatory disorder | 6497 (27.6) | 3109 (25.3) | 2175 (27.7) | 1213 (35.7) | <0.001 |
Chronic kidney disease | 2295 (9.7) | 1019 (8.3) | 807 (10.3) | 469 (13.8) | <0.001 |
Liver disease | 947 (4.0) | 440 (3.6) | 332 (4.2) | 175 (5.2) | 0.012 |
Anemia | 3950 (16.8) | 1973 (16.0) | 1279 (16.3) | 698 (20.5) | <0.001 |
Atrial fibrillation | 2231 (9.5) | 1160 (9.4) | 713 (9.1) | 358 (10.5) | 0.271 |
Valvular heart disease | 1908 (8.1) | 936 (7.6) | 583 (7.4) | 389 (11.5) | <0.001 |
Coagulopathy | 3251 (13.8) | 1671 (13.6) | 1072 (13.6) | 508 (15.0) | 0.364 |
Autoimmune disease | 822 (3.5) | 401 (3.3) | 294 (3.7) | 127 (3.7) | 0.431 |
AIDS | 88 (0.4) | 54 (0.4) | 18 (0.2) | 16 (0.5) | 0.199 |
Alcohol use disorder | 864 (3.7) | 429 (3.5) | 297 (3.8) | 138 (4.1) | 0.527 |
Drug abuse | 466 (2.0) | 219 (1.8) | 177 (2.3) | 70 (2.1) | 0.273 |
Obesity | 9761 (41.4) | 5005 (40.7) | 3200 (40.7) | 1556 (45.8) | 0.002 |
Hypothyroidism | 2852 (12.1) | 1370 (11.1) | 1033 (13.1) | 449 (13.2) | 0.004 |
Movement disorder | 534 (2.3) | 279 (2.3) | 184 (2.3) | 71 (2.1) | 0.862 |
Seizure disorder | 603 (2.6) | 302 (2.5) | 2011 (2.7) | 90 (2.6) | 0.755 |
Dementia | 578 (2.5) | 269 (2.2) | 222 (2.8) | 87 (2.6) | 0.121 |
Depression | 2800 (11.9) | 1339 (10.9) | 9,24 (11.8) | 537 (15.8) | <0.001 |
Cancer | 1699 (7.2) | 852 (6.9) | 591 (7.5) | 256 (7.5) | 0.495 |
Median household income | 0.477 | ||||
First quartile | 6932 (29.4) | 3609 (29.3) | 2248 (28.6) | 1075 (31.7) | |
Second quartile | 6749 (28.6) | 3500 (28.4) | 2280 (29.0) | 969 (28.5) | |
Third quartile | 5,91 (25.3) | 3115 (25.3) | 2023 (25.7) | 823 (24.2) | |
Fourth quartile | 3920 (16.6) | 2085 (16.9) | 1306 (16.6) | 529 (15.6) | |
Primary payer | <0.001 | ||||
Medicare | 10,723 (45.5) | 5399 (43.9) | 3646 (46.4) | 1678 (49.4) | |
Medicaid | 1903 (8.1) | 986 (8.0) | 579 (7.4) | 338 (9.9) | |
Private including HMO | 8876 (37.7) | 4804 (39.0) | 2929 (37.3) | 1143 (33.6) | |
Self-pay/no charge/other | 2062 (8.8) | 1121 (9.1) | 703 (8.9) | 238 (7.0) | |
Weekend admission | 5493 (23.3) | 2597 (21.1) | 1882 (24.0) | 1014 (29.8) | <0.001 |
Cardiogenic shock | 603 (2.6) | 369 (3.0) | 168 (2.1) | 66 (1.9) | 0.007 |
Cardiac arrest | 180 (0.8) | 106 (0.9) | 60 (0.8) | 14 (0.4) | 0.214 |
Length of hospital stay, d (IQR) | 4 (3–6) | 4 (4–5) | 4 (4–5) | 6 (6–7) | <0.001 |
Hospital characteristics | |||||
Hospital teaching status | 0.015 | ||||
Teaching | 17,755 (75.3) | 9452 (76.8) | 5797 (73.8) | 2506 (73.8) | |
Nonteaching | 5809 (24.7) | 2858 (23.2) | 2060 (26.2) | 891 (26.2) | |
Hospital location | 0.002 | ||||
Rural | 11,785 (50.0) | 6408 (52.1) | 3807 (48.5) | 1570 (46.2) | |
Urban | 11,777 (50.0) | 5901 (47.9) | 4049 (51.5) | 1827 (53.8) | |
Hospital bed size | 0.558 | ||||
Small | 2499 (10.6) | 1273 (10.3) | 899 (11.4) | 327 (9.6) | |
Medium | 6236 (26.5) | 3277 (26.6) | 2062 (26.2) | 897 (26.4) | |
Large | 14,828 (62.9) | 7760 (63.0) | 4895 (62.3) | 2173 (64.0) | |
Disposition | <0.001 | ||||
Home | 17,527 (74.4) | 9411 (76.5) | 5857 (74.6) | 2259 (66.5) | |
Facility ‖ | 5979 (25.4) | 2867 (23.3) | 1982 (25.2) | 1130 (33.3) | |
AMA/unknown | 56 (0.2) | 31 (0.3) | 17 (0.2) | 8 (0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nketiah Sarpong, K.S.; Jang, S.-J.; Quien, M.; Muralidharan, K.; Aggarwal, A.; Yeo, I.; Gopalratnam, K. Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. J. Cardiovasc. Dev. Dis. 2025, 12, 118. https://doi.org/10.3390/jcdd12040118
Nketiah Sarpong KS, Jang S-J, Quien M, Muralidharan K, Aggarwal A, Yeo I, Gopalratnam K. Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. Journal of Cardiovascular Development and Disease. 2025; 12(4):118. https://doi.org/10.3390/jcdd12040118
Chicago/Turabian StyleNketiah Sarpong, Kwabena Sefah, Sun-Joo Jang, Mary Quien, Karthik Muralidharan, Abhinav Aggarwal, Ilhwan Yeo, and Kavitha Gopalratnam. 2025. "Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States" Journal of Cardiovascular Development and Disease 12, no. 4: 118. https://doi.org/10.3390/jcdd12040118
APA StyleNketiah Sarpong, K. S., Jang, S.-J., Quien, M., Muralidharan, K., Aggarwal, A., Yeo, I., & Gopalratnam, K. (2025). Comparison of 30-Day Readmission Between Early and Late Catheter Directed Thrombolysis for Acute Pulmonary Embolism in the United States. Journal of Cardiovascular Development and Disease, 12(4), 118. https://doi.org/10.3390/jcdd12040118